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Abstract: In this paper we solve the cell formation problem with different variants of the simulated annealing method 
obtained by using different neighborhoods of the current solution. The solution generated at each iteration 
is obtained by using a diversification of the current solution combined with an intensification to improve 
this solution. Different diversification and intensification strategies are combined to generate different 
neighborhoods. The most efficient variant allows improving the best-known solution of one of the 35 
benchmark problems commonly used by authors to compare their methods, and reaching the best-known 
solution of 30 others.  

1 INTRODUCTION 

The Group Technology is an approach often used in 
manufacturing and engineering management taking 
advantage of similarities in production design and 
processes. In this context, the Cellular 
Manufacturing refers to maximize the overall 
efficiency of a production system by grouping 
together machines providing service to similar parts 
into a subsystem (denoted cell). The corresponding 
problem is formulated as a (Machine-Part) Cell 
Formation Problem. As a consequence, the 
interactions of the machines and the parts within a 
cell are maximized, and those between machines and 
parts of other cells are reduced as much as possible. 

The cell formation problem is a NP hard 
optimization problem (Dimopoulos and Zalzala, 
2000). For this reason, several heuristic methods 
have been developed over the last forty years to 
generate good solutions in reasonable computational 
time. To learn more about the different methods, we 
refer the reader to the survey papers proposed in 
(Goncalves and Resende, 2004), and in 
(Papaioannou and Wilson, 2010) where the authors 
survey the different techniques classified as follows:  

• Cluster analysis: techniques for recognizing 
structure in a data set 

• Graph partitioning approaches where a 
graph or a network representation is used to 
formulate the cell formation problem  

• Mathematical programming methods: the 
cell formation problem is formulated like a 
non linear or linear integer programming 
problem 

• Heuristic, metaheuristic and hybrid 
metaheuristic: The most popular methods 
are: simulated annealing, tabu search, 
genetic algorithms, colony optimization, 
particle swarm optimization, neural 
networks and fuzzy theory.  

In (Ghosh et al., 2010), the authors introduce a 
survey of various genetic algorithms used to solve 
the cell formation problem. The success of genetic 
algorithms in solving this problem induced 
researchers to consider different variants and 
hybrids in order to generate very robust techniques. 

In this paper, we introduce solution methods 
hybridizing different approaches. These methods are 
variants of the simulated annealing (Kirkpatrick et 
al., 1983, Cerny,1994) using different neighbor-
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hoods of the current solution. The solution generated 
at each iteration is obtained by using a 
diversification of the current solution combined with 
an intensification to improve this solution. Different 
diversification and intensification strategies are 
combined to generate different neighborhoods. 
Numerical results are obtained to compare 
numerically the efficiency of the variants with 
respect to the best-known solutions of 35 benchmark 
problems commonly used by authors to evaluate 
their methods. 

The cell formation problem is summarized in 
Section 2. Section 3 is devoted to the simulated 
annealing procedure. We introduce the different 
diversification and intensification strategies to 
develop the different neighborhoods. The numerical 
results are summarized in Section 4. The most 
efficient variant allows to improve the best-known 
solution of one problem and to reach it for 30 other 
problems. 

2 PROBLEM FORMULATION 

To formulate the cell formation problem, consider 
the following two sets  

        
 set of  machines: 1, ,
set of  parts: 1, , .

I m i m
J n j n
= =
= =

…
…  

The production incidence matrix [ ]ijA a=  indicates 

the interactions between the machines and the parts: 
1 if machine  process part 

0 otherwise.ij

i j
a =

⎧
⎨
⎩

 

Furthermore, a part j may be processed by several 
machines. A production cell k ( )1, ,k K= …  

includes a subset (group) of machines kC I⊂  and a 

subset (family) of parts kF J⊂ . The problem is to 
determine a solution including K production cells 
( ) ( ) ( ){ }1 1, = , , , ,K KC F C F C F… as autonomous as 
possible. Note that the K production cells induce 
partitions of the machines set and of the parts set: 

{ }

1 2 1 2

1 1

1 2 1 2

and

and for all pairs of   and 1, ,

and    .

,
K K

k k k k

C C I F F J

k k K

C C F F

k k

φ φ

= =

∈

= =

≠

∪…∪ ∪…∪

…

∩ ∩

To illustrate the production cells concept, consider a 
machine-part incidence matrix in Table 1. Table 2 
indicates a partition into 3 different cells illustrated 
in the gray zones. The solution includes the 3 

machine groups {(1,4,6), (3,5), (2)} and the 3 part 
families {(2,4,6,8), (1,7), (3,5)}.  

Table 1: Incidence matrix. 

Parts 1 2 3 4 5 6 7 8 

M
ac

hi
ne

s 

1 0 1 0 1 1 1 0 1 
2 1 0 1 0 1 0 0 0 
3 1 0 1 0 0 0 1 0 
4 0 1 0 1 0 1 0 1 
5 1 0 0 0 0 0 1 1 
6 1 1 0 0 0 1 1 1 

Table 2: Matrix solution. 

Parts 2 4 6 8 1 7 3 5 

M
ac

hi
ne

s 

1 1 1 1 1 0 0 0 1 
4 1 1 1 1 0 0 0 0 
6 1 0 1 1 1 1 0 0 
3 0 0 0 0 1 1 1 0 
5 0 0 0 1 1 1 0 0 
2 0 0 0 0 1 0 1 1 

The exceptional elements (1,5), (6,1), (6,7), (3,3), 
(5,8) and (2,1) correspond to entries having a value 
1 that lay outside of the gray diagonal blocks. 
Sarker and Khan, (2001) carry out a comparative 
study of different autonomy measures for the 
solution of a cell formation problem. In this paper 
we consider the grouping efficacy Eff  (Kumar and 
Chandrasekharan, 1990) that is mostly used: 

                         1 1

0 0

Out In

In In

a a a
Eff

a a a a

−
= =

+ +
                       

where 
1 1

m n

ij
i j

a a
= =

= ∑∑ denotes the total number of 

entries equal to 1 in the matrix A, 1

Outa  denotes the 

number of exceptional elements, and 1 0and In Ina a are 
the numbers of one and of zero entries in the gray 
diagonal blocks, respectively. The objective 
function of the problem is maximizing Eff . 

In our numerical experimentation we fix the 
number K of cells for each problem to its value in 
the best-known solution reported in the literature. 

3 SIMULATED ANNEALING 

The local search procedure used to solve the cell  
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formation problem is a straightforward 
implementation of the simulated annealing method 
presented in (Ferland and Costa, 2001), but the 
different neighborhoods are specific for the 
problem. 
Procedure Simulated Annealing (N) 
Initialization: 

  Let ( )0 0,C F an initial solution; 0TP the initial 

  temperature 

  Let 0iter : 0; : ; : 0TP TP fcount= = =  

  Let ( ) ( ) ( )* * 0 0, : , : , ; stop : falseC F C F C F= = =  

While not stop 
  : 0; : 0changes trials= =  

  While trials SF<  and changes coff<  

     Generate a solution ( ) ( ), ,C F N C F′ ′ ∈   

     ( ) ( ): , ,Eff C F Eff C F′ ′Δ = −  

      If 0Δ >  

         then ( ) ( ), : ,C F C F′ ′=   

                  and changes := changes + 1 

          else generate a random number ( )0,1r ∈  

                  If / TPr eΔ<  then  

                                    ( ) ( ), : ,C F C F′ ′=   

                                    and changes := changes + 1 

      If  ( ) ( )* *, ,Eff C F Eff C F′ ′ >  then  

                ( ) ( )* *, : ,C F C F′ ′=  and fcount := 0                                             

      trials := trials + 1 
   :TP TPα=  
   Iter := iter + 1 
   If changes/trials < mpc then  
                             fcount := fcount + 1 
   If iter ≥ itermax or fcount = flimit then  
                             stop := true 

( )* *,C F  is the best solution generated              ,                                                                                      

In this variant of the simulated annealing, we 
complete several iterations with the same 

temperature TP. This temperature is modified when 
the number of trial solutions (trials) or when the 
number of times that the current solution is changed 
(changes) reaches threshold values Sf or coff, 
respectively. The parameter α is used to modify the 
temperature. Two stopping criteria are used. The 
first is fixed in terms of the number of different 
temperature values used (itermax). To apply the 
second criterion, we keep track of the number of 
consecutive temperature values (fcount) where the 
number of changes over the number of trials is 
smaller than a threshold value mpc. When fcount 
reaches the value flimit, the procedure stops. 

To complete the presentation of the procedure, 
we indicate how the initial solution ( )0 0,C F  is 
generated and the different neighborhoods N that we 
are using. 

3.1 Initial Solution 

To generate the initial solution, we use a procedure 
quite similar to the one proposed in (Rojas et al., 
2004) that is introduced in (Elbenani et al., 2010). 
First we determine K machine groups 0 0

1
, ,

K
C C… . 

Then the K part families 0 0

1 , , KF F…  are specified on 
the basis of the K machines groups known. 
Denote : 

1 1

 and 
n m

i ij j ij
j i

a a a a
= =

= =∑ ∑i i  

the number of parts processed by machine i and the 
number of machines processing j, respectively. To 
initiate the machine groups formation, select the K 
machines having the largest values ia i , and assign 

them to the different groups 0 , 1, .kC k K= …  Then 
each of the other machines left is assigned to the 
group 0

kC  including machines processing mostly the 
same parts. 
On the basis of the K machine groups 0 0

1 , , KC C… , 

determine the K part families 0 0

1 , , KF F… . For each 
part j, denote 

( )
0

1  the number of machines 

in group  that are processing part 
k

In

j ij

i C

a k a

k j

∈

• = ∑�
      

( ) ( )0

0 1  the number of machines

 in group  that are not processing part 

In In

j k ja k C a k

k j

• = −� �
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( )
( )

1

0

  an approximation of the impact on 

the grouping efficiency of assigning 

part  to family .

In

j

In

j j

a k

a a k

Eff

j k

+
•

i

�

�

( )
0Then each part  is assigned to the family k jj F�

( )
( )
( )

1

1, ,
0

where ArgMax   
In

j

In
k K

j j

a k
k j

a a k=

=
+

⎧ ⎫
⎨ ⎬
⎩ ⎭…

i

��
�

in order to 

generate a good initial solution ( )0 0,C F  having the 
grouping efficiency 

( )
( )( )

( )( )

1
10 0

0
1

, .

n
In

j
j

n
In

j
j

a k j
Eff C F

a a k j

=

=

=
+

∑

∑

��

��
 

3.2 Neighborhoods 

Different neighborhoods are used to obtain different 
variants of the simulated annealing method. Each 
neighborhood is obtained by using a diversification 
strategy to destroy and recover a new solution, and 
an intensification strategy to improve the new 
solution. This solution generated is denoted  
( ) ( ), ,C F N C F′ ′ ∈ . 

3.2.1 Diversification of the Solution ( ),C F  

The procedure is applied on the current solution 
( ),C F in order to modify (destroy) the assignment 
of some elements (machines and/or parts) to be 
reassigned to other cells selected randomly in order 
to recover a new solution ( ),C F′′ ′′ . We consider 
two different ways to destroy the current solution 
( ),C F : 

• D1: Modify the assignment of %n⎡ ⎤⎢ ⎥  parts and 

of %m⎡ ⎤⎢ ⎥  machines (% being a parameter 
of the method). 

• D2: Select randomly between two strategies: 
modify either %n⎡ ⎤⎢ ⎥  parts or modify 

%m⎡ ⎤⎢ ⎥  machines. 

3.2.2 Intensification of the Solution ( ),C F′′ ′′  

To intensify the search around the solution 
( ),C F′′ ′′ , we modify successively the machine 

groups on the basis of the part families and the part 
families on the basis of the machine groups until no 
modification is possible. The solution 
( ) ( ), ,C F N C F′ ′ ∈  is the best solution generated 
during the process. In this paper we consider two 
different ways for doing the intensification. 

I1: Local Search Algorithm: 
This intensification strategy is introduced in 
(Elbenani et al., 2011). The procedures to modify 
the machine groups on the basis of the part families 
and to modify the part families on the basis of the 
machine groups are similar to the process for fixing 
the part families on the basis of the machine groups 
introduced in the preceding Section 3.1 (where we 
generate the initial solution). 

Note that whenever the machines groups (or the 
part families) include an empty one, then we apply a 
repair process to reassign one machine to it 
inducing the smallest decrease of the grouping 
efficiency. 

I2: Exact Procedure: 
The exact procedure relies on the Dinkelbach 
approach for solving the problem of generating part 
families on the basis of the machine groups. This 
procedure can be adapted mutatis mutandis for the 
problem of generating machine groups on the basis 
of the part families. Since the definition of the group 
efficiency  

1 1

0 0

Out In

In In

a a a
Eff

a a a a

−
= =

+ +
 

is fractional, the Dinkelbach approach is appropriate 
because the problem of generating the part families 
on the basis of the machines reduces to solving a 
sequence of problems where the objective function 
has the form 

( )1 0( ) In InE a a aλ λ= − +  

for a sequence of  values { }λ that are generated 
during the solution process in order to obtain an 
optimal value of .Eff  This procedure is even more 
efficient since the problem of maximizing the value 
of ( )E λ  is trivial to solve once the machine groups 
are specified. To reduce the length of the paper, we 
are not presenting the details of the procedure that 
can be found in (Khoa et al., 2011). 

3.2.3 Four Different Neighborhoods 

In this paper we compare numerically four different 
variants specified using the following 
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neighborhoods: 
1N : generated with the diversification D1 and the 

       intensification I1 
2N : generated with the diversification D1 and the  

       intensification I2 
3N : generated with the diversification D2 and the 

       intensification I1 
4N : generated with the diversification D2 and the 

        intensification I2. 

4 NUMERICAL RESULTS 

To complete the numerical experimentation, we 
consider 35 benchmark problems that are commonly 
used by authors to evaluate the efficiency of their 
methods. The first 5 columns of Table 3 indicate the 
problem number, the reference where it is specified 
(Problem source), its size (values of m, n, and K), 
and the value of its best-known solution (Best-
known solution). Moreover the values of the best-
known solutions are identified by refereeing to the 
following references (Goncalves and Resende, 2004, 
James et al., 2007, Luo and Tang, 2009, Mahdavi et 
al., 2007, Tunnukij and Hicks, 2009, Elbenani et al., 
2010, and Ying et al., 2011). 

The purpose of this analysis is twofold. First we 
compare the average group efficiency over 10 runs 
obtained with the simulated annealing method using 
the four neighborhoods with the best-known 
solutions for the 35 benchmark problems. As a 
consequence we should identify the best 
diversification (D1 or D2) and the best 
intensification (I1 or I2) strategies. In the second 
part, we compare the impact of the percentage % of 
modified elements in the diversification strategies. 
Three different values are considered: 20%, 30%, 
and 50%. 

The numerical tests are completed on a PC 
equipped with an INTEL Core 2 Duo processor 
running at 2.2 GHZ, and having a 2 GB of central 
memory on a Linux system. The parameters to 
implement the simulated annealing method are as 
follows: 

0 100 mpc 0.5

2 itermax 10

2 0.2

TP K

Sf K K

coff K α

= =

= =

= =

 

       flimit = 5K 

The last four columns of Table 3 include the average 
grouping efficiency over 10 runs of the simulated 
annealing method using the four different 
neighborhoods , 1, , 4.iN i = …  For each problem, 
the best solution is marked in bold. To reduce the 
length of the paper, we report only the table where 
the percentage is fixed at 30%, but the tables for the 
other two values of % are quite similar. The 
numerical results in Table 3 indicate that the variants 
using neighborhoods 2 4and N N allows to generate 
better results than using 1 3 and N N . The variants 

2 4and N N generate a solution better that the best-
known solution of P33, and the number of problems 
where the best-known solution is reached is equal to 
30 and 29 for 2N  and 4N , respectively. 
Furthermore, the overall averages (last row of the 
Table 3) for the variants with 2N and 4N  are at 
0.030 % and 0.045%, respectively, from the overall 
average of the best-known solutions. Hence these 
variants seem very efficient to solve the cell 
formation problem. 

This analysis above allows to conclude that the 
intensification strategy I2 seems more efficient than 
I1. Furthermore, since the variant 2N is slightly more 
efficient than 4N , it follows that the diversification 
D1 seems to be slightly more efficient than D2 when 
combined with the intensification I2.       

Now consider the results summarized in Table 4 
to analyze the efficiency of the variant using 

2N when using the different percentages %. For 
each problem, the best-solution is marked in bold, 
and the smallest solution time is marked in italic 
bold.On the one hand, as far as the average grouping 
efficiency is concerned, the percentage 30% allows 
to generate slightly better results: the three 
percentages allow generating solutions having the 
same overall average (last row of the Table 4) of 
65.95, but the number of problems where the best-
known solution is reached or exceeded is 29, 31, and 
30 for the values 20%, 30%, and 50%, respectively. 
On the other hand, using the percentage 20% allows 
an average solution time (12.03 sec.) smaller that of 
the other percentages  (14.73 sec. for 30% and 
19.15sec. for 50%). Thus if the user put more 
emphasis on the quality of the solution, then the 
percentage 30% is more appropriate, but if the 
solution time must be reduced, then the percentage 
of 20% is more convenient.  
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Table 3: Compare grouping efficiency of the four neighborhoods when %=30%. 

Problem 
number 

Problem source m n K 
Best-
know

n 
1N  2N  3N  4N  

P1 King and Nakornchai (1882) 5 7 2 82.35 82.35 82.35 82.35 82.35 

P2 Waghodekar and Sahu (1984) 5 7 2 69.57 69.25 69.57 69.41 69.57 

P3 Seifoddini (1989) 5 18 2 79.59 79.59 79.59 79.59 79.59 

P4 Kusiak and Cho (1992) 6 8 2 76.92 76.92 76.92 76.92 76.92 

P5 Kusiak and Chow (1987) 7 11 5 60.87 60.87 60.87 60.87 60.87 

P6 Boctor (1991) 7 11 4 70.83 70.83 70.83 70.83 70.83 

P7 Seifoddini and Wolfe (1986) 8 12 4 69.44 69.44 69.44 68.84 69.44 

P8 Chandrasekharan and Rajagopalon (1986a) 8 20 3 85.25 85.25 85.25 85.25 85.25 

P9 Chandrasekharan and Rajagopalon (1986b) 8 20 2 58.72 58.62 58.56 58.4 58.5 

P10 Mosier and Taube (1985a) 10 10 5 75 75 75 75 75 

P11 Chan and Milner (1982) 10 15 3 92 92 92 92 92 

P12 Askin and Subramanian (1987) 14 24 7 72.06 71.64 72.06 71.54 72.06 

P13 Stanfel (1985) 14 24 7 71.83 71.83 71.83 71.83 71.83 

P14 McCormick (1972) 16 24 8 53.26 52.96 53.26 52.83 53.26 

P15 Srinivasan et al. (1990) 16 30 6 69.53 67.83 69.53 68.02 69.11 

P16 King (1980) 16 43 8 57.53 57.41 57.53 57.38 57.53 

P17 Carrie (1973) 18 24 9 57.73 57.73 57.73 57.73 57.73 

P18 Mosier and Taube (1985b) 20 20 5 43.45 43.01 43.12 42.83 43.06 

P19 Kumar et al. (1986) 20 23 7 50.81 50.81 50.81 50.68 50.81 

P20 Carrie (1973) 20 35 5 77.91 76.33 77.91 76.33 77.91 

P21 Boe and Cheng (1991) 20 35 5 57.98 56.93 57.98 56.86 57.98 

P22 Chandrasekharan and Rajagopalon (1989) 24 40 7 100 100 100 100 100 

P23 Chandrasekharan and Rajagopalon (1989) 24 40 7 85.11 85.11 85.11 85.11 85.11 

P24 Chandrasekharan and Rajagopalon (1989) 24 40 7 73.51 73.51 73.51 73.51 73.51 

P25 Chandrasekharan and Rajagopalon (1989) 24 40 11 53.29 53.29 53.29 53.29 53.29 

P26 Chandrasekharan and Rajagopalon (1989) 24 40 12 48.95 48.95 48.95 48.85 48.95 

P27 Chandrasekharan and Rajagopalon (1989) 24 40 12 47.05 46.57 46.58 46.52 46.55 

P28 McCormick (1972) 27 27 5 54.82 54.82 54.82 54.78 54.82 

P29 Carrie (1973) 28 46 10 47.08 46.39 47.08 46.23 47.08 

P30 Kumar and Vannelli (1987) 30 41 14 63.31 62.99 63.31 62.9 63.31 

P31 Stanfel (1985) 30 50 13 60.12 60.12 60.12 60.09 60.12 

P32 Stanfel (1985) 30 50 14 50.83 50.8 50.83 50.74 50.83 

P33 King and Nakornchai (1982) 36 90 17 47.75 47.65 47.98 47.61 47.98 

P34 McCormick (1972) 37 53 3 60.64 58.31 60.63 58.26 60.63 

P35 Chandrasekharan and Rajagopalon (1987) 40 10
0

10 84.03 84.03 84.03 84.03 84.03 

Average     65.97 65.68 65.95 65.64 65.94 
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Table 4: Compare grouping efficiency of 2N   when  %=20% , 30% and 50%. 

Problem 
number 

Best 
Known 
Solution 

2 (20%)N  2 (30%)N  2 (50%)N  

Average 
Eff 

Solution 
time 

Average 
Eff 

Solution 
time 

Average 
Eff 

Solution 
time 

P1 82.35 82.35 0.018 82.35 0.027 82.35 0.037 

P2 69.57 69.57 0.02 69.57 0.028 69.57 0.03 

P3 79.59 79.59 0.037 79.59 0.048 79.59 0.053 

P4 76.92 76.92 0.026 76.92 0.028 76.92 0.037 

P5 60.87 60.87 0.374 60.87 0.426 60.87 0.465 

P6 70.83 70.83 0.227 70.83 0.245 70.83 0.313 

P7 69.44 69.44 0.251 69.44 0.28 69.44 0.329 

P8 85.25 85.25 0.146 85.25 0.166 85.25 0.203 

P9 58.72 58.53 0.045 58.56 0.051 58.68 0.056 

P10 75 75 0.421 75 0.493 75 0.628 

P11 92 92 0.14 92 0.154 92 0.193 

P12 72.06 72.06 2.252 72.06 2.735 72.06 3.234 

P13 71.83 71.83 2.206 71.83 2.755 71.83 3.271 

P14 53.26 53.26 4.83 53.26 5.22 53.26 6.107 

P15 69.53 69.53 1.621 69.53 1.904 69.53 2.432 

P16 57.53 57.53 6.932 57.53 7.759 57.53 8.837 

P17 57.73 57.73 6.288 57.73 7.34 57.73 8.461 

P18 43.45 43.04 1.398 43.12 1.702 43.06 2.157 

P19 50.81 50.81 3.336 50.81 3.8 50.81 4.699 

P20 77.91 77.91 1.254 77.91 1.484 77.91 1.895 

P21 57.98 57.98 1.483 57.98 1.764 57.98 2.233 

P22 100 100 4.284 100 4.362 100 5.196 

P23 85.11 85.11 4.423 85.11 4.865 85.11 7.3 

P24 73.51 73.51 4.637 73.51 5.502 73.51 8.439 

P25 53.29 53.29 15.459 53.29 19.5 53.29 25.688 

P26 48.95 48.95 21.828 48.95 29.264 48.89 39.328 

P27 47.05 46.58 21.194 46.58 27.573 46.47 44.499 

P28 54.82 54.82 1.306 54.82 1.631 54.82 1.98 

P29 47.08 47.07 21.323 47.08 22.886 47.08 30.358 

P30 63.31 63.29 47.698 63.31 58.074 63.31 65.067 

P31 60.12 60.12 32.113 60.12 39.162 60.12 51.728 

P32 50.83 50.83 47.931 50.83 55.442 50.83 78.725 

P33 47.75 47.96 135.463 47.98 177.951 47.97 220.549 

P34 60.64 60.63 1.008 60.63 1.021 60.63 1.07 

P35 84.03 84.03 29.171 84.03 30.058 84.03 44.561 

Average 65.97 65.95 12.03 65.95 14.73 65.95 19.15 
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5 CONCLUSIONS 

The cell formation problem is solved with the 
simulated annealing method where the solution in 
the neighborhood of the current solution is obtained 
by using a diversification strategy to destroy and 
recover a new solution, and an intensification 
strategy to improve the new solution. We consider 
two different diversification strategies to destroy the 
current solution ( ),C F : 

• D1: Modify the assignment of %n⎡ ⎤⎢ ⎥  parts and 

of %m⎡ ⎤⎢ ⎥  machines  
• D2: Select randomly between two strategies: 

modify either %n⎡ ⎤⎢ ⎥  parts or modify 

%m⎡ ⎤⎢ ⎥  machines 

where the parameter % takes the values 20%, 30%, 
or 50%. Two different intensification strategies are 
specified as follows: 
• I1: Local search algorithm introduced in 

(Elbenani et al., 2011) 
• I2: Exact procedure based on the Dinkelbach 

method. 
Different variants combining a diversification and 
an intensification are compared numerically with the 
best-known solution of 35 benchmarked problems 
commonly used by authors to compare the 
efficiency of their method. The most efficient 
variant using the diversification D2 with 30% 
destroying rate and the intensification I2 allows to 
improve the best-known solution of one problem 
and to reach it for 30 other problems. 

We are now implementing adaptive methods 
where the selection of the diversification and the 
intensification strategies is modified during the 
solution procedure. The selection should be made 
randomly according to probabilities assigned to the 
strategies that are proportional to their efficiency up 
to this point.  
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