
Evolving Software Quality Knowledge

Daniel Speicher

Computer Science III, University of Bonn, Bonn, Germany

Abstract. Instead of having a system of rigid quality criteria, we suggest to co-
evolve the knowledge about good and bad design with the code. Based on an in-
frastructure that represents object-oriented code in a logic factbase, we describe
how to defined code critiques (”bad smells”) and well established structures (”de-
sign pattern”) and how to make the bad smells aware of the design pattern. A case
study on ArgoUML shows that it is more effective to find unjustified warnings by
taking developers knowledge into account then by structural criteria.

1 Introduction

Good software design improves maintainability, evolvabilty and understandability. As
any maintenance or evolution step requires the developer to understand the software
reasonably good, understandability is the most crucial of these qualities. Therefore it
can not be a goal to develop detection strategies for design flaws that a developer does
not need to understand to use them. How could a criterion for understandability be
meaningful, if it is not understandable itself? Developers should know and understand
the detection strategies they use. In this paper we want to argue, that in addition detec-
tion strategies should know more of what developers know. It is essential for automated
design flaw detection to be adaptable to respect developers knowledge found in the
design.

Detection strategies for design flaws need to be generic, as they are meant to apply
to many different systems. On the other hand software solutions are at least to some part
specific. If there were no need for specificity, it would not require many developers to
build software. This does not yet say, that generic quality criteria are inappropriate, as
there might be - and probably are - some general principles that should be met always.
What it does say, is that developers answer to specific design challenges, so that there
is at least some probability that there are good reasons to make a different choice in
a specific situation than one would make while discussing design in general. We will
present such (moderately) specific situations.

We wrote this article on the background of established Refactoring literature. With
a broader acceptance of object-oriented programming at the end of the last century
programmers needed advice to build systems with high maintainability and evolvability.
Today the catalog of signs for refactoring opportunities (bad smells) [1] developed by
Beck and Fowler as well as the catalog of proven design solutions (design pattern) [2]
developed by Gamma, Helm, Johnson and Vlissides are common software engineering
knowledge.

Speicher D..
Evolving Software Quality Knowledge.
DOI: 10.5220/0003699100360047
In Proceedings of the 2nd International Workshop on Software Knowledge (SKY-2011), pages 36-47
ISBN: 978-989-8425-82-9
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



Marinescu devised in [6] a method to translate the informal descriptions of bad
smells [1] and object-oriented design heuristics [7] into applicable so called detection
strategies. The method first decomposes the informal descriptions into parts, which are
then translated into an expression built of metrics and comparisons with thresholds.
These expressions are then composed into one rule with the help of the elementary
logical operators. Marinescu and Lanza elaborate in [5] how developers should sys-
tematically work through the bad smells (here called disharmonies) and step by step
resolve cohesion problems (“identity disharmonies”) then coupling problems (“col-
laboration disharmonies”) and finally problems in the type hierarchy (“classification
disharmonies”). Developers are in general well equipped with this book and established
reengineering und refactoring literature [8], [1], [4].

Overview. The rest of the paper is organized as follows. Section 2 will discuss, how the
same design fragment can be a well respected design pattern and an instance of a well
know bad smell. As the choice of the design pattern is expected to be the result of trade-
offs, the smell detection should be enabled to take the knowledge about the pattern into
account and ignore this smell instance. Section 3 therefore develops our approach based
logic meta programming. We represent the Java code base as Prolog facts, on which we
define detection strategies and design pattern as predicates. Finally we explain, how we
suggest to incorporate the knowledge about pattern into the knowledge about smells.
Section 4 shortly suggests how to use our infrastructure to develop a process of step-
wise evolution of design knowledge. Section 5 finally reports about a case study, that
gives an example where taking developer intentions into account, strongly increases the
precision of a detection strategy.

2 Visitors Tend to have Feature Envy

Objects bring data and behavior together. This is at the core of object-orientation and
allows developers to think of objects in programs similar as of real objects. The devia-
tion from this ideal are the smells data class and feature envy. A class is a data class if
the class has mainly data and only little behavior. A method in a class has feature envy,
if it operates for the major part on data of another class. Still in some situations one
wants to separate the data and the behavior of one conceptual object into two or more
technical objects, which can result in both smells.

The Visitor pattern as in Fig. 1 places functionality that operates on the the data of
certain objects (Elements) in separate classes (Visitors). One reason for this separation
is, that the Elements build a complex object structure and the functionality belongs
rather to the whole structure than to single Elements. Another reason might be, that
the functionality is expected to change more frequently and/or is used only in specific
configurations. Since the functionality in the Visitor accesses the data of the Elements,
this intended collaboration could falsely be identified as Feature Envy.

There are variations of the same data-behavior separation in other design pattern, as
listed in Tab. 1. We separate data into an extra object, if we want other objects to share
this data. So does the ExtrinsicState in the Flyweigth Pattern and the Context in the
Intepreter Pattern. As a result the classes which use this data (Flyweight in Flyweight,

37



Fig. 1. A simple Visitor: The ProjectItems build a tree structure via the
getProjectItems() method. The ProjectCostVisitor implements the single re-
sponsibility to calculate the total costs of a project. He accesses the data of the ProjectItems
to fulfill this responsibility.

Expressions in Interpreter) develop Feature Envy. In the Memento Pattern some data
of the Originator is stored in a separate data class called Memento. We separate be-
havior from the data, if we want to dynamically change it as we do by exchanging one
ConcreteState for another in the State Pattern. The more data is left and accessed in the
Context class, the stronger the Feature Envy will be. Finally, if we want to let Colleague
classes interact with each other without knowing about each other the ConcreteMedia-
tor might operate on the data of a few of the Colleagues.

3 Logic based Code Analysis

In the following we want to introduce the overall architecture of our prototype.

3.1 Structures

Our implementation of the structures behind the metrics and of the structures of design
pattern are similar. They consist of a set of predicates that generates - given an handle
element - a labeled graph.

38



Table 1. Data-Behavior Separation: Roles in the pattern that can develop a smell as a consequence
of strong data-behavior separation.

Pattern Data Class Feature Envy
Flyweight ExtrinsicState Flyweight
Interpreter Context Expression
Mediator ConcreteMediator
Memento Memento Originator

State Context ConcreteState
Strategy ConcreteStrategy
Visitor Element ConcreteVisitor

The smell feature envy analyses how strongly a method operates on fields of another
class. This analysis involves can be seen as the analysis of a certain graph with nodes
for the method and the own and foreign attributes and as well for the access relation.

The pattern visitor can be seen as graph with nodes for the single abstract visitor
and the single abstract element and a few nodes for the concrete visitors and concrete
elements. Access relations could be seen as part of this graph, but this is not necessary
for our purpose.

Definition 1 (Structure Definition). A structure definition consists of

– one unary predicate that tests whether a program element is the handle of a struc-
ture,

– some binary predicates that tests whether given the handle of a structure, another
program elements plays a certain role in the structure with this handle,

– and some ternary predicates that tests whether given the handle, a relation between
two other program elements that play a role in this structure holds true.

Definition 2 (Structure). Given a structure definition and a program element that ful-
fils the handle predicate, we call this program element the handle of the structure, where
the structure consists of

– role players, which are all program elements annotated with the name of a role
predicate of the structure definition, for which the role predicate is true, if we use
the handle as a first argument and the role player as a second argument;

– relation player duos, which are all pairs of program elements annotated with the
name of a relation predicate of the structure definition, for which the relation pred-
icate is true, if we use the handle as a first argument, the first element of the pair as
second argument, and the second element of the pair as a third argument.

3.2 Fact Representation of Object-oriented Code

Our prototypes are implemented as plug-ins for development environment Eclipse.
They contain a builder that runs everytime the builder of the Java Development Tool
is run and translates the complete Java Abstract Syntax Tree (AST) of a program into
a representation in Prolog facts. In this AST all references are resolved and all lan-
guage elements of Java 5 are represented. Figure 2 shows the facts representing the first

39



Fig. 2. Fact representation of the first line of the method
ProjectCostVisitor.visit(DependentTask).

statement in method visit(DependentTask) in ProjectCostVisitor. Each fact
represents a node of the AST. The first parameter of a fact is a unique ID that is used
to reference this node. The second parameter is a back reference to the parent node.
The third parameter references the enclosing method. The remaining parameters con-
tain some attributes as well as references to the child nodes. It is very easy to build on
this fact representation more abstract predicates, as for example in listing 1.1:

method_contains_call(M, C) :- call(C, _, M, _, _, _, _).
call_calls_method(C, M) :- call(C, _, _, _, _, _, M).

Listing 1.1. Derived Predicates.

In the following we will use many predicates of this kind without defining them.
The names of the predicates should convey their meaning.

3.3 Smell Detection Strategies

Smell Detection Strategies as defined by Marinescu and Lanza in [5] are elementary
logical formulas build of comparisons of metrics with corresponding thresholds. To
illustrate our approach we will explain the detection strategy for the smell Feature Envy
top-down. The detection strategy reads

feature_envy(M) :-
feature_envy_structure(M),
access_to_foreign_data(M, ATFD), ATFD > 2,
locality_of_attribute_access(M, LAA), LAA < 0.3,
foreign_data_provider(M, FDP), FDP =< 5.

The first goal verifies that M is a method for which we can calculate the feature
envy. It is build of three metrics Access To Foreign Data (The number of directly or
indirectly accessed fields in a foreign class), Locality of Attribute Access (The ratio to
which, the accessed fields are from the own class.) and Foreign Data Provider (The
number of foreign classes from which the methods accesses a field.) are calculated.

40



These metrics simply count the number of certain role player in the structure, as the
source code shows:

access_to_foreign_data(M, Value) :-
count(F, method_accesses_foreign_field(M, M, F), V).

locality_of_attribute_access(M, V) :-
count(F, method_accesses_own_field(M, M, F), AOF),
count(F, method_accesses_foreign_field(M, M, F), AFF),
Value is AOF / (AOF + AFF).

foreign_data_provider(Method, Value) :-
count(C, method_accesses_foreign_class(M, M, C), V).

The metrics build on the role (own class, own field, foreign class, foreign field) and
relation (method accesses own field, method accesses foreign field) definitions of the
feature envy structure. The first lines of the definition read like follows:

feature_envy_structure(S) :-
source_method(S), not(abstract(S)).

method(S, M) :-
feature_envy_structure(S), S = M.

own_class(S, C) :-
method(S, M), method_is_in_type(M, C).

own_field(S, F) :-
own_class(S, C), type_contains_field(C, F),
modifier(F, private).

[...]
method_accesses_foreign_field(S, M, F) :-

method(S, M),
foreign_field(S, F),
once(method_accesses_field(M, F)).

[...]

Listing 1.2. Feature Envy Structure (Excerpt).

We illustrated this structure in Figure 3. The complete structure consists of the roles
and the relations.

3.4 Lightweight Pattern Definition

To make our smell detection pattern aware, we need only a very lightweight pattern
definition. The structure for the pattern consists of the roles visitor, concrete visitor,
method in concrete visitor, visited element and field in visited element. The complete
definition reads like follows:

visitor_pattern(P) :-
declared_as_visitor(P).

visitor(P, V) :-
visitor_pattern(P), P = V.

concrete_visitor(P, C) :-
visitor(P, V), sub_type(V, C), not(interface(C)).

method_in_concrete_visitor(P, M) :-

41



(a) Feature Envy Structure (b) Lightweight Visitor Pattern

Fig. 3. The instance of the visitor pattern overlayed with: (a) The feature envy structure for the
method visit(DependentTask) in the ProjectCostVisitor. (b) The lightweight pat-
tern definition for the visitor pattern with the handle ProjectVisitor. “five” is an abbrevia-
tion for “field in visited element”.

concrete_visitor(P, C), type_contains_method(C, M).
visited_element(P, E) :-

visitor(P, V), type_contains_method(V, M),
method_has_parameter(M, R), parameter_has_type(R, E).

field_in_visited_element(P, F) :-
visited_element(P, E), type_contains_field(E, F).

Listing 1.3. Visitor Pattern.

Note that we impose very little constraints on the elements and relations within the
pattern. The idea is to focus in a first step on the identification of the elements and
relations, describing the extension of the design pattern. The predicates are means to
capture the intended extension of the developer under the assumption that he expressed
it well enough. Typically developers use standard names or name parts at least for some
of the role players in a pattern and we found that all other role players can be identified
starting from one of these. Alternatively one could require that one or a few role players
are annotated with the role.

To let the developers tie their class via a naming convention to the pattern, there
should be predicate like:

declared_as_visitor(V) :- class_name_ends_with(V, ’Visitor’),
not(subclass(V, P), class_name_ends_with(P, ’Visitor’)).

To tie it to the pattern via an annotation, another predicate should be used:

declared_as_visitor(V) :- class_annotated_with(V, ’Visitor’).

42



Defining what it actually means for these elements to form a design pattern is a
second step. This distinction allows us to say that the role players implement a design
pattern incorrectly in contrast to just saying, that the pattern is not there. And we may
even evolve our knowledge about the intension of a design pattern (What it means to be
a design pattern) separate from the knowledge about the extension of a design pattern
(Which elements of the program a meant to form the design pattern.) The goal that a
developer wants to achieve, the intention of the pattern, should be seen as part of the
intension.

3.5 Intention Aware Smell Detection

To make the smell detection aware of the possible intentions, we add a check
into the respective predicates at the earliest possible place, i.e. as soon as the varia-
bles are bound. For this purpose we define predicates intended_field_access,
intended_method_call, natural_odor. Here is the adapted code for the relation
method accesses foreign field of the feature envy structure and the dataclass.

dataclass(C) :-
named_internal_type(C),
not(natural_odor(dataclass, C)),
weight_of_class(C, WOC), WOC < 3.34,
[...]

method_accesses_foreign_field(S, M, F) :-
method(S, M),
foreign_field(S, F),
not(intended_field_access(M, F)),
once(method_accesses_field(M, F)).

Listing 1.4. Intention aware relation and smell.

Given this adaptation and the definition of the pattern, it is easy to make the smells
ignore the intended field access and the natural odor:

natural_odor(dataclass, Element) :-
concrete_element(_, Element).

intended_field_access(M, F) :-
visitor_pattern(P),
method_in_concrete_visitor(P, M),
field_in_visited_element(P, F).

Listing 1.5. ’Publishing intentions and natural odors’.

The smell dataclass will now ignore any class that plays the role of a concrete ele-
ment in the visitor pattern. In the calculation of the feature envy structure all accesses
from a method in a concrete visitor to a field in a visited element will be ignored. That
is, feature envy towards other classes will still be detected.

As a side note: Having to adapt all the different relations and smell definitions is not
desirable. An aspect-oriented adaptation would be very helpful here and Prolog is very
well suited to be enhanced with Aspects.

Another way to adapt the smells is to use thresholds that depend as well on the roles
an element plays. We will not discuss this option although it is obviously considerable.

43



4 Conflicts Stimulate Knowledge Evolution

We suggested to use our technology for an alternating process of code review (qual-
ity improving) and code documenting (quality knowledge improving). For the process
of quality improvement [5] give an excellent guideline. For the process of improving
the explicit quality knowledge, we gave a first suggestion here. Currently we expect
the strongest stimulus to increase the design knowledge in unjustified smell warnings.
Making the design explicit allows the smell to ignore it, while providing much more in-
formation than a single declaration that just asks to ignore this smell instance (like with
the @SuppressWarnings in Java 5). Of course in the longer run, this design knowledge
needs reviewing as well. We would suggest to make further expectations explicit and
verify them. For example there should be no dependencies from any Concrete Element
in the Visitor Pattern to any Concrete Visitor. Another expectation is, that the Element
classes can stay much more stable than the visitors do. Making this expectation explicit
and executable, will allow for a third feedback cycle.

5 Evaluation

5.1 Smell in Pattern

Sebastian Jancke implemented the detection strategies as well as a few more as part of
his diploma thesis [3]. The instances of Natural Odors he found are listed in table 2.

Table 2. Natural Odors Found in Open Source Software Projects.

Smell Role/Concept Source Code
Feature Envy Concrete Visitor JRefactory 2.6.24, SummaryVisitor
Feature Envy Concrete Strategy JHotDraw 6, ChopBoxConnector
Middleman Abstract Decorator JHotDraw 6, DecoratorFigure

Law of Demeter Violation Embedded DSL Google Guice 2.0
Shotgun Surgery (stable) API [everywhere]

5.2 Taking Advantage of Expressed Intentions: Creation Methods

In [5, Ch. 6] ”Collaboration Disharmonies” Lanza and Marinescu reference design
knowledge in a way, that is unique within their detection strategies. The two strate-
gies Intensive Coupling and Dispersed Coupling contain besides conditions about the
coupling an additional condition ”Method has few nested conditionals” measured by
MAXNESTING > SHALLOW; where MAXNESTING is the maximal nesting
depth of blocks in the method and SHALLOW is 1. The authors motivate this con-
dition as follows:

“Additionally, based on our practical experience, we impose a minimal
complexity condition on the function, to avoid the case of configuration oper-
ations (e.g., initializers, or UI configuring methods) that call many other meth-
ods. These configuration operations reveal a less harmful (and hardly avoid-
able) form of coupling [. . . ].” [5, p.121]

44



This motivation references the concept of operations (methods) for configuration.
Although this concept is not precisely defined, the description gives every experienced
OO programmer a first operational impression about it. The condition is interesting
because it makes an exception with the reference to this explicit concept that is not just
a language level concept.

Therefore we wanted to test this statement with a little case study using the current
version of the same source code that was used in [5]1. To discuss this statement we
call methods with MAXNESTING = 1 flat and present the claim in form of three
hypotheses:

Flat methods are configuration methods. (1)
It is safe to ignore the coupling in flat methods. (2)
It is safe to ignore the coupling in configuration methods. (3)

A quick view at the source code showed that the hypothesis (1) is wrong. Many of
the flat methods are obviously test methods and some are neither test nor configuration
methods. It turned out that the code was well designed enough, so that we could rely
on naming conventions. Exploring twenty randomly and a few systematically chosen
methods following these naming conventions we were convinced that the two following
statements were true for the code under consideration:

In ArgoUML methods with names starting with “init”, “create”,
“build” or “make” are configuration methods. (4)

In ArgoUML methods with names starting with “test” or containing
the term “Test” in their name or in the name of the enclosing class
of the method are test methods.

(5)

Given this two name based rules and the detection strategies for Intensive Coupling
and Dispersed Coupling (without the condition of the methods being flat) we were able
to classify the methods. The result is presented in Table 3.

Table 3. Methods in ArgoUML: The maximal nesting within the method and the classification
into configuration, test and other methods influences whether the method has Intensive or Dis-
persed Coupling.

All Methods Intensive Coupling Dispersed Coupling
Max. Nesting config test other � config test other � config test other �

1 772 880 6416 8068 19 57 26 102 27 143 32 202
2 318 110 2468 2896 88 97 19 204 60 24 213 297
> 2 152 53 2128 2333 209 234 29 472 52 34 568 654
� 1242 1043 11012 13297 316 388 74 778 139 201 813 1153

On the first view Hypothesis (1) seems to be backed by the data, as many (772=
1242 = 62%) configuration methods are indeed flat and most (1090=1242 = 88%)

1 http://argouml.tigris.org/, accessed in June 2011. The 13 projects referenced in the team project
set file “argouml-core-projectset.psf” were used and all 13297 non abstract methods of the
2083 named classes were analyzed. For [5] the version from October 2004 was used.

45



have nesting not bigger than 2. Unfortunately these configuration methods build only
a small fraction (772=8068 = 10% or 1090=10964 = 10%) of the methods with
limited nesting, so that hypothesis (1) is not true, as we already said. Still, there are
many (8068=13297 = 61%) flat methods, so that excluding them from further analy-
sis can improve performance. We further observe, that the major part of the methods
with intensive coupling are configuration methods (316=778 = 41%) and test methods
(388=778 = 50%). The major part (781=1153 = 68%) of the methods with dispersed
coupling are other methods with a nesting of at least 2.

We still have to discuss whether this is safe to ignore flat methods, configuration
methods and test methods. The coupling in configuration methods is indeed hardly
avoidable as all the decoupled classes need to be instantiated and connected somewhere.
That is, the coupling in some specific methods is a natural consequence of the overall
decoupling effort across the system. Even if the responsibility for configuration is ”ex-
tracted” into XML configuration file, the coupling is still part of the system although
not part of the source code in the original programming language.

To test Hypothesis (3) that coupling in configuration methods can be ignored, we
reviewed the 13 configuration methods with the highest coupling intensity (22 � 116)
that have one of the smells: Even they are clearly understandable and the coupling is
not harmful. The same is true for the 13 test methods with the highest coupling intensity
(28 � 68).

To challenge the nesting condition, we reviewed the 13 methods with highest cou-
pling intensity (10 � 16) within the other methods with no nesting, but with one of
the smells. Our impression was not that clear as in the two cases before, but still the
coupling did not require any refactoring2. Therefore we see no reason to reject Hypoth-
esis (2).

To summarize, we expect all smells in configuration methods and all test methods to
be false positives. The same is true for all methods with no nesting, i.e. Hypothesis (2)
and (3) are plausible. The nesting condition reduces the smell results by 102=778 =
13% or 202=1153 = 18% while ignoring configuration and test methods reduces the
results by 704=778 = 90% or 340=1153 = 29%. So, if smell detection can use other
information than structure (e.g. naming conventions) to identify configuration methods
and test methods, the number of false positives can be strongly reduced.

configuration_method(M) :-
declared_as_configuration_method(M).

natural_odor(intensive_coupling, E) :-
configuration_method(E).

declared_as_configuration_method(M) :-
source_method(M), method_name(M, N),
member(P, [’init’, ’create’, ’build’, ’make’]),
starts_with(N, P).

2 Indeed half of them turned out to be a sort of configuration method again. So restricted (!)
to the methods with smells the nesting condition could be a reasonable heuristic to detect
configuration methods, i.e. (1) is true.

46



6 Contributions

This paper showed that automated bad smell detection should take developer inten-
tions into account, as different structural quality criteria are appropriate, depending on
these intentions. To illustrate this point we discussed a well known design pattern and
how it is still good design even if it shows a smell. These intentions are often already
expressed in the code, but not yet available to the automated analysis. We presented
a technological and conceptual framework that allows to combine the perspectives of
structures that should be avoided (bad smells) and structures that are useful building
blocks (design pattern). We presented our approach to implement structures based on
logic meta-programming and explained how smell detection can be made aware of ex-
isting structures in code. We suggested to use our technology for an alternating process
of code review (quality improving) and code documenting (culture improving). A case
study showed that the precision can be increased if the design knowledge that devel-
opers already made explicit is utilized instead of guessing developer intentions from
structural properties.

Acknowledgements

The author wants to thank everyone who made this research possible. Sebastian Jancke
developed the “smell detection in context” plug-in, an earlier version of the prototype
presented here, and evaluated the usability benefits of this approach. My colleague Jan
Nonnen, current and former diploma students as well as former participants of our labs
contribute to the evolution of “Cultivate”, our platform code quality evaluation and
coding culture evolution. Tobias Rho, Dr. G“unter Kniesel and further students develop
“JTransformer” our platform that makes logic meta programming for Java possible and
comfortable. Finally the author wants to thank Prof. Dr. Armin B. Cremers for letting
the author work on this interesting topic.

References

1. Martin Fowler. Refactoring: improving the design of existing code. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

2. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. Addison-
Wesley, Boston, MA, January 1995.

3. Sebastian Jancke. Smell detection in context, diploma thesis. University of Bonn, 2010.
4. Joshua Kerievsky. Refactoring to Patterns. Pearson Higher Education, 2004.
5. Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice: Using Software

Metrics to Characterize, Evaluate, and Improve the Design of Object-Oriented Systems.
Springer, 1 edition, 9 2006.

6. Radu Marinescu. Detection strategies: Metrics-based rules for detecting design flaws. In
ICSM ’04: Proceedings of the 20th IEEE International Conference on Software Maintenance,
pages 350–359, Washington, DC, USA, 2004. IEEE Computer Society.

7. Arthur J. Riel. Object-Oriented Design Heuristics. Addison-Wesley Professional, 5 1996.
8. O. Nierstrasz S. Demeyer, S. Ducasse. Object Oriented Reengineering Patterns. Morgan

Kaufmann, July 2002.

47


