A REFINING METHOD OF OBTAINED ATTRIBUTES TO CHARACTERIZE UNDEFINED CONCEPTS USING SEARCH ENGINE

Noriyuki Okumura¹ and Yuto Hatakoshi²

Department of Electronics and Computer Science, Nagano National College of Technology, 381-8550 Nagano, Japan
Faculty of Culture and Information Science, Doshisha University, Kyo-tanabe, 610-0394 Kyoto, Japan

Abstract: In this paper, we propose a method to resolve problems of the attributes obtaining method using WWW search engine characterizing undefined concepts, which do not exist in Concept-base. Concept-base is a key database constituting Word Association Mechanism to perform commonsense judgment. Concept-base was constructed automatically by electronic dictionaries and newspapers. Therefore, Concept-base has about 120,000 statically defined concepts. Nevertheless, it has no effective learning system. This paper proposes a method to make Concept-base to learn concepts dynamically using Auto Feedback system. In addition, a removal method of noise attributes is also proposed. We present attributes refinement method that paid attention to changing with time of the Internet. Furthermore, we inspect the effectiveness by an evaluation experiment.

1 INTRODUCTION

The objective of this research is to construct an automatically learning method using WWW for existing Concept-base(Okumura et al., 2007). Concept-base is a large-scale Knowledge-base constructed by electronic dictionaries and newspapers. Nevertheless, it has no effective learning system. Therefore, we need a machine learning system for existing Concept-base.

Concept-base has a large number of concepts, which have some Attribute-Weight pairs. It is difficult to deal with new concepts such as new words, proper nouns, and etc. generated momentarily because Concept-base was constructed by static data. We proposed Auto-Feedback method(Tsuzi et al., 2004) using a search engine¹ to resolve the problems. However, this method obtained Attribute-Weight pairs in retrieved point. As were shown in earlier reports(Gulla et al., 2007; Gordon et al., 2010), words gathering systems were proposed. These methods were not suitable for our Concept-base because these systems did not work in the long period. The method which paid attention to time series(Horiuchi and Uchida, 2011), but this method did not refine attributes. Consequently, this method had the problem that different results were obtained whenever we retrieved new concepts.

This paper proposes a method to resolve above-mentioned problems. Proposed method statistically refines Attribute-Weight pairs, which were obtained for long periods. By evaluating experiments, we showed that the proposed method was superior to the method in the past from the standpoint of obtaining Attribute-Weight pairs.

2 METHOD

In the following, we present a method to refine Attribute-Weight pairs obtained by search engine. First, our Concept-base, Auto Feedback and Revision of Morphological Analysis are briefly depicted. Second, our proposal method was described. Finally, we presented the evaluation method.

2.1 Concept-base

Concept-base(Okumura et al., 2007) is a large-scale Knowledge-base constructed by electronic dictionar-
ies and newspapers. Headwords in dictionaries were assumed to be concepts and content words in explanation sentences were assumed to be attributes for headwords (concepts). A concept (A) consists of pairs of attributes (a_i) which characterizing the concept (A) and weights (w_i) which mean the importance of each attributes (e is a natural number for each concepts, ‘znum’ is a number of attributes)(1).

\[A = (a_i, w_i) | 0 < i < znum + 1. \] (1)

Attributes for each concept were also defined in Concept-base as concepts. Therefore, one concept was defined as attributes chain model of n-th-order dimension. In this paper, Concept-base has about 120,000 concepts, and each concept has 30 attributes on average. Fig.1 shows the example of concept (automobile). eAutomobilef has attributes (engine, car, tire, etc.). eEnginef, eCarf, and eTiref are also defined in Concept-base. Thus, eEnginef has attributes (Combustion, Motor, etc.).

In this paper, we aim to construct an automatically learning method for Concept-base using search engine.

2.2 Auto Feedback

An undefined concept in Concept-base was input, and the documents that were described about the undefined concept, were obtained from the retrieval result pages of search engine. The words included in the retrieval result pages were attributes of undefined concepts. The weight of each attribute was granted by tf and idf. tf was the frequency that undefined concepts appear in the retrieval result pages. idf was calculated from the number of the retrieval pages and the number of all pages of search engine. Table.1 showed examples of the obtained attributes of undefined concepts.

In this research, we obtained 100 candidate attributes descending in weight order by Auto Feedback. The Auto Feedback got attributes at the point in time when I retrieved undefined words. Therefore retrieval results were influenced by a temporary topic, and it was considered that Auto Feedback was not able to obtain attributes definitely.

2.3 Revision of Morphological Analysis

This paper used MeCab(Kudo et al., 2004) as a Morphological Analyzer. Japanese have no custom leaving a space between words like English. A problem to divide sentences needlessly too much happened when we used a Morphological Analyzer. It unnecessarily divided a sentence into words by the default MeCab's setting. It had an original revision rule for this problem. However, we set a simple rule without using its rule.

1. Connecting words and phrases in the parenthesis.
2. Connecting if nouns were next to each other.

For example, in the case of a sentence eJiEVJh, uJiEVJiNAUSICAA/of V alley of the Windywas divided with uJv, uiEVJv before reviewing setting, and the title of the movie is divided needlessly. We united nouns to be adjacent by uJv after the setting changed, we can extract uJiEVJv (Table 2).

2.4 Proposal Method

Auto Feedback was a method to learn undefined concepts on the spot. Consequently, the method paid no attention to changing with time of Internet. Proposal method re-peats the Auto Feedback trial many times and refines attributes and weights of undefined concepts statistically (Fig. 2).

2.5 Evaluation Method

In this section, we explain the evaluation method of our work.

Evaluation Method. Three subjects evaluated these acquired all attributes (about 20,000 words). We adopted attributes which two or three subjects answered suitable as correct words. In all of Auto Feedback trials, we calculated precision (Eq.3), recall (Eq.4), and F-measure (Eq.4).

About Recall, there may be correct attributes other than acquired attributes using Auto Feedback. However, it was difficult to collect attributes that human beings thought suitable by a questionnaire. In this research, we adopted correct attributes evaluated by
Table 2: uJiEVJv for leaving a space between words.

<table>
<thead>
<tr>
<th>Before revision</th>
<th>After revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquired attributes</td>
<td>Evaluation</td>
</tr>
<tr>
<td>Right</td>
<td>Wrong</td>
</tr>
<tr>
<td>J</td>
<td>Wrong</td>
</tr>
<tr>
<td>iEVJ</td>
<td>Right</td>
</tr>
</tbody>
</table>

Figure 2: The flowchart of proposal method.

three subjects to a numerator of Recall. Therefore Recall takes 1.0 value when we output all acquired attributes. We evaluate the method in the past by averaging all trials.

\[
\text{precision} = \frac{1}{n} \sum_{i=1}^{n} \frac{\text{correct attributes}}{\text{all obtained attributes}}
\]

\[
\text{recall} = \frac{1}{n} \sum_{i=1}^{n} \frac{\text{correct attributes in selected attributes}}{\text{correct attributes}}
\]

\[
F - \text{measure} = \frac{1}{n} \sum_{i=1}^{n} \frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}}
\]

Evaluation Data. We use 49 undefined concepts in Concept-base as evaluation data.

3 RESULTS

We obtained attributes for 49 undefined concepts by Auto Feedback for one month. The number of obtained attributes except the repetition was 302 on average. For each undefined concept, we sorted the attributes for the threshold at the number of times which attributes was obtained every ten times in the experiment period. The horizontal axis of Fig. 3 shows the number of times that was not obtained as attributes in entire experiment period. About evaluation data, we calculated F-measure with each threshold. Fig. 3 shows a change of the average.

Numerical value of the horizontal axis of Fig. 4 means a number appropriated to undefined concepts in Table 3. The horizontal axis of Fig. 4 is sorted in order of the average of all Auto Feedback trials using the method in the past (250 trials).

Table 4 shows samples of the retrieval result (undefined concept: Google) of Auto Feedback once trials and the result of proposed method that refined Attribute-Weight pairs based on the number of appearance.

4 DISCUSSION

When number of times that was not obtained as attributes in Fig. 3 is smaller than 200, F-measure takes the maximum. In other words, when number of times that was attributes were obtained is greater than 50, F-measure takes 0.42 of the maximum. We adopted
this value (200) for the threshold and sorted the attributes. As a comparison experiment, we calculated precision, recall, and F-measure for all of Auto Feedback trials. Fig. 4 shows relations of F-measure in all Auto Feedback trials and sorting by the proposal method.

When number of trials that attributes were obtained is greater than 50, F-measure takes maximum value in Fig. 3. We guessed that the refinement method of the attributes works effectively. We calculated F-measure whenever Auto Feedback was carried out and found average about 250 trials.

5 CONCLUSIONS

In this research, we proposed refining method of obtained attributes for undefined concepts using Auto Feedback. Proposed method refined Auto Feedback attributes based on the number of appearance statistically.

In addition, we showed that higher F-measure score was provided than Auto Feed-back in the past. It is necessary to examine weighting method for refined attributes. We showed that it is effective to limit weights using dispersion by a precedence study(Hatakoshi, 2010). We compound with a precedence study and proposal method to gain high performance.

ACKNOWLEDGEMENTS

This work was supported by Grant-in-Aid for Young Scientists (B) (No. 23720222)

REFERENCES

Proceedings of the 10th WSEAS international conference on Applied computer and applied computational science, ACACOS'11, pages 137–141, Stevens Point, Wisconsin, USA. World Scientific and Engineering Academy and Society (WSEAS).

