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Abstract: This paper presents the development of Artificial Neural Network (ANN) models for the prediction of laser 
machined internal micro-channels’ dimensions and production costs. In this work, a pulsed Nd:YVO4 laser 
was used for machining micro-channels in polycarbonate material. Six ANN multi-layered, feed-forward, 
back-propagation models are presented which were developed on three different training data sets. The 
analysed data was obtained from a 33 factorial design of experiments (DoE). The controlled parameters 
were laser power, P; pulse repetition frequency, PRF; and sample translation speed; U. Measured responses 
were the micro-channel width and the micro-machining operating cost per metre of produced micro-
channel. The responses were sufficiently predicted within the set micro-machining parameters limits. Three 
carefully selected statistical criteria were used for comparing the performance of the ANN predictive 
models. The comparison showed that model which had the largest amount of training data provided the 
highest degree of predictability. However, in cases where only a limited amount of ANN training data was 
available, then training data taken from a Face Centred Cubic (FCC) model design provided the highest 
level of predictability compared with the other examined training data sets. 

1 INTRODUCTION 

Laser micro-machining is a materials-processing 
technique that uses precise laser energy per unit area 
and per unit time in order to manage the thermal 
field in the processed material with minimal thermal 
damage and high precision. The material is in most 
cases almost instantly brought up to melting 
temperature and to vaporisation temperatures to 
create the desired voxelated region of the micro-
machined channel. Laser micro-machining processes 
include the drilling, cutting, milling and engraving 
of materials with micro-dimensional tolerances.  

Various statistical and numerical methodologies 
have been implemented to predict and optimise 
several laser manufacturing processes including 
Artificial Neural Networks (ANN) (Lee et al. 2001); 
Genetic Algorithms (GA) (Ye, Yuan and Zhou, 
2009), Design of Experiments (DoE) (Karazi, Issa 
and Brabazon, 2009), Finite Element Analysis 
(FEA) (de Deus and Mazumder, 1996), Ant Colony 
optimisation (AC) (Wang and Xie, 2005), and Fuzzy 
Logic (FL) (Shen et al. 2006). 

Due to their non-linear, adaptive and learning 
ability using collected data, ANN models have been 
successfully applied to a large number of problems 
in several domain applications. Neural network 
nodal functions can be evaluated simultaneously, 
thereby gaining enormous increases in processing 
speed (Collins and DeLucca, 2008, Neural 
networks). 

The prediction of the dimensions of the laser 
micro-machining channels is an important 
requirement for optimisation of the laser control 
parameters. A Nd:YVO4 laser micro-machining 
system was previously used by the current authors 
for the production of micro-channels (Karazi and 
Brabazon, 2010) where it was shown that a wide 
variety of desired geometries can be prepared. 

ANN models were constructed and analysed to 
test their predictive capabilities in this work. These 
predictive models relate the input laser processing 
parameters (power, traverse speed and pulse 
repetition frequency) to the output responses 
(machined channel width and micro-machining 
cost). These ANN models may be used to select the 
process input parameters which are required in order 
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to achieve micro-channel dimensions within a 
specified budget. 

2 EXPERIMENTAL SET-UP 

2.1 Experimental Work 

In this paper, a 2W Nd:YVO4 1064 nm wavelength 
laser system was used for the micro-channel 
fabrication. These internal micro-channels were 
created in polycarbonate (PC) sheets of 10 mm 
thickness. In order to facilitate the measurement of 
the micro-channels’ widths, a 2 mm distance 
between micro-channels was set. For micro-
machining, the PC work pieces were initially 
positioned on the 3D positioning stage such that the 
laser spot was focused beyond the sample surface. 
The laser beam was then fired and the sample moved 
away from the stationary laser head. This laser 
micro-machining processing technique enabled 
creating the internal micro-channel from the back to 
the front of the sample  

2.2 Experimental Design 

In order to study the relationship between the main 
Nd:YVO4 laser process parameters and the 
developed micro-channel width and corresponding 
micro-machining operating cost, an arranged series 
of information-gathering experiments was designed 
according to DoE methodology. 

In this paper, the examined laser process input 
parameters were laser power, P; pulse repetition 
frequency, PRF; and sample translation speed; U. 
Each of these parameters was analysed at the low, 
middle, and high levels, all of which were 

determined after initial screening experiments. This 
33 factorial design of experiments was prepared 
using Design-Expert V7 software. The design levels 
of the laser input parameters are shown in Table 1.  

Table 1: Design of Experiment set levels of power, pulse 
repetition frequency and sample speed used, as well as 
corresponding level coding. 

Variables P (W) PRF (kHz) U (mm/sec) 

Low 0.5 13 0.5 

Mid 1 23 1.74 

High 1.5 33 2.98 

There are 27 possible combinations of the three 
process parameters at the three selected levels. The 
centre point of the design was repeated five 
additional times, where (P=1 W, PRF=23 kHz, 
U=1.74 mm/sec), to provide a measure of process 
stability and inherent variability. 

2.3 Micro-channels Width 
Measurement 

The micro-channel width (diameter) for each 
experiment was measured at three different locations 
along the produced channel and the average values 
were determined. Theses dimensional measurements 
were carried out using Leica optical microscope and 
OMNIMET image analysis software. 

The measurement results of the repeated 
experiments were averaged to one, bringing the 
overall number of experiments from 32 to 27 unique 
experiments. These measurement results (27 for 
width and 27 for micro-machining cost) provided the 
data set from which training sets were chosen for the 
subsequent ANN modelling. 

Table 2: Breakdown of estimated micro-machining cost per hour. 

Element of cost Calculations Cost €/hr 
Laser power supply (800 W) (€0.16/kW hr) (P/2) / 1000 0.064×P 
DELL PC Optiplex 170L & monitor (140 W)(€0.16/kW hr) / 1000 0.0224 
CompactRIO - control power (8.2 W) (€0.16/kW hr) / 1000 0.0013 
D-link network switch (4.5 W) (€0.16/kW hr) / 1000 0.0007 
BWD MiniLab - motion power (43 W) (€0.16/kW hr) / 1000 0.0069 
Diode replacement (€ 11,410 / 10000 hr) 1.141 
Maintenance labour (12 hr/2000 hr operation) (€ 50/hr) 0.3 

Total estimated micro-machining cost per hour 1.4723 + 0.064×P 

 

Micro-machining cost [€/m] =  
ଵ.ସ଻ଶଷା଴.଴଺ସ×୔  €

hr(଴.଼ହ)×୙ ቂ೘೘ೞ೐೎ ቃቂଷ଺଴଴ ೞ೐೎hr ቃቂ ೘భబబబ೘೘ ቃ = (଴.ସ଼ଵା଴.଴ଶଵ	୔)୙  (1) 

EVALUATION OF THE EFFECT OF ND:YVO4 LASER PARAMETERS ON INTERNAL MICRO-CHANNEL
FABRICATION IN POLYCARBONATE

255



2.4 Micro-machining Cost Calculation 

Processing cost can be approximated as micro-
machining cost per length for a specific laser micro-
machining operation. In this approach, unplanned 
maintenances and breakdowns have not been taken 
into consideration. Furthermore, labour cost was not 
considered since the Nd:YVO4 laser was for 
experimental purposes. Assuming the relationship 
between the electrical consumption of the laser 
power supply and the laser power emitted by the 
laser head is linearly proportional, the total 
estimated operating cost per hour as a function of the 
output power can be expressed by 1.4723 + 
0.064×P. 
Table 2 shows a breakdown of estimated micro-
machining cost per hour. Assuming 85% utilisation, 
the total approximated operating cost per unit length 
(in €/m) is given by the following Equation (1). 
 

2.5 ANN Models’ Setup 

Three ANN predictive models were developed for 
the width and another three for micro-machining 
cost estimation using the three inputs P, U, and PRF. 
These models were developed in order to examine 
the influence of changing the number and the 
selection of training data on the prediction capability 
of the ANN model. These six models were based on 
3 different training data sets as follows: 
- Model I: 24 randomly selected experiments (from 

the total of 27) were used to train the   network;  
- Model II: 14 experiments, selected according to the 

Face Centred Cubic (FCC) Design, were used to 
train the network;  

- Model III: 13 experiments, selected according to 
the Box-Behnken (BB) Design, were used to train 
the network. 

 

 
 

 

Figure 1: Schematic representation of the training data for (a) model I, (b) model II, and (c) model III. 

(b) (c) 

(a)
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Each of these three models was used for two 
models, one for the width prediction and another for 
the operating cost per metre prediction. All 27 
experimental data were employed for verification 
purposes in order to locate the best ANN structure 
within the various possible architectures for each 
model. Figure 1 shows a representation of the 
training data distribution in 3D space (a) for model I, 
(b) for model II, and (c) for model III. The training 
set of models II & III were selected according to two 
popular designs; FCC Design and BB Design 
respectively. These two designs were selected in 
order to investigate which design should be chosen 
in case only a limited number of experiments could 
be performed. This scenario could occur when for 
example carrying out the experiments is time 
consuming, expensive, or dangerous. 

2.6 Configuration of ANN Models 

In this work, all the studied ANN models were of 
feed-forward structure and back-propagation 
algorithm. Moreover, they were designed and 
executed using the aNETka software. Due to the 
lack of a quantifiable procedure for theoretical 
appraisal of the best ANN architecture, exhaustive 
trial-and-error study was performed to find the best 
ANN configuration for each model. Two ASCII text 
input files were prepared for each model. The first 
one contained the training data inputs and 
corresponding outputs for the training stage. The 
second one contained all 27 experimental data inputs 
and their corresponding outputs for the verification 
stage. In order to find the best ANN model, the 
number of hidden layers was changed up to four and 
the number of neurons in each hidden layer was 
varied up to 100 neurons. A diagrammatic 
description of the examined ANN architectures is 
shown in Figure 2. 

 

Figure 2: Architecture of feed-forward ANN schema 
developed with three inputs and one output. 

Due to its good generalisation capability, a 
transfer sigmoid function was used in all 
investigated ANN architectures. Since the learning 
rate value controls the magnitude of weight and bias 
updates, the choice of this value meaningfully 
influences ANN schemas training time. Empirically 
the learning rate value was manually varied between 
0.0001 and 6 depending on the progress of the 
aNETka execution during training process.  

To avoid and reduce the probability of the 
training runs being stuck in local optima, the 
momentum parameter was utilised and fixed at a 
medium value of 0.8 for all ANN training runs. 

In the ANN program used the training data was 
iteratively passed one by one through the ANN 
structure and the weights were automatically 
adjusted after each iteration. Part of the training data 
was randomly selected and set aside by the aNETka 
software in order to be used as a validation set and a 
criterion to decide when to stop the training. In an 
effort to minimise the training error and avoid over 
training, the training process was supervised during 
the ANN model formulation. The training part of the 
aNETka software provided the user with a graphical 
chart of the past and current RMS error value. This 
graphical chart was ceaselessly supervised so that 
ANN configurations with the highest prediction 
capability could be obtained for each model. 
Configurations for which the RMS errors raised 
significantly and continuously during training were 
dropped. Afterwards, the process of ANN structure 
formation was restarted and only structures with 
RMS error value below 0.001% were accepted. 

3 RESULTS 

3.1 Final ANN Structures  

In this work and after trying a wide variety of hidden 
layer diversifications, it was discovered that the best 
ANN schemas were obtained with one or two hidden 
layers. Table 3 shows the number of neurons in the 
hidden layers that achieved best predictions of width 
and cost for models I, II, and III. 

Table 3: Number of neurons in the hidden layers for width 
and depth in I, II, and III models. 

Model Hidden layers width cost  
I 1st 6 4 

II 1st 3 4 
2nd 3 - 

III 1st 8 4 
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3.2 ANN Predictive Models’ 
Comparison 

Comparison criteria are needed in order to quantify 
the difference between values produced by a model 
and the actual values. After a profound search in 
statistics, three statistical estimators were found to 
be the best criterions that together can do the 
required work. These statistical estimators are MSE 
(Mean Squared Error), R2 (The coefficient of 
determination), and MAPE (Mean Absolute 
Percentage Error). These estimators were employed 
to provide a measure of how well future outcomes 
are likely to be predicted by the investigated model. 
Table 4 shows a side by side comparison between 
models I, II, and III in terms of the three chosen 
estimators. 

The Mean Squared Errors (MSE), the 
coefficients of determination (R2), and the Mean 
Absolute Percentage Errors (MAPE) for width and 
depth in I, II, and III models are shown in Table 4. 
Lower values of MSE and MAPE and higher values 
of R2 indicate better model fit.  

MSE, R2, and MAPE were calculated according 
to the Formulas below: 

MSE	 = 1݊෍((y୧ − yො୧)ଶ)௡
୧ୀଵ    (2) 

Rଶ 	= ∑ ((yො୧ ∑ത)ଶ)௡୧ୀଵݕ	− ((y୧ ത)ଶ)௡୧ୀଵݕ	−  
(3)

MAPE = 	 1݊෍ฬy௜ − yො୧y୧ ฬ௡
୧ୀଵ 		 (4)

Where n is the number of experiments, y is the 
actual value, and yො  is the predicted value, ݕത  is the 
mean of actual values. 

Practically these three estimators were used for 
the selection of the best ANN schemas for each 
model in the first place. Moreover, they were used to 
compare the models I, II, and III. 

4 DISCUSSION 

In this work, factorial DoE assisted in the selection 
of training data sets for the ANN predictive models. 
Furthermore, it was found that ANN predictive 
models have inherent capability to effectively re-
produce the outcomes of a nonlinear, complex and 
dynamic system, like a laser micro-machining 
system.  

Ranking the models (I, II, and III) according to 
the three statistical estimators, model I was the best 
for width and cost responses. This might be 
attributed to the great number of training data used 
in this model (24 out of 27 available data). This was 
the largest amount of training data compared to the 
other models (14 for model II and 13 for model III). 
This enabled model I to predict the whole 
experimental data width and operating cost with a 
small margin of error. 

Model II was next best and better than model III, 
even though both having almost the same number of 
training data but different training data set. This 
might be due to the fact that the training data set in 
model II was chosen according to FCC Design 
which covers all the corner points from the 
experimental data space. While the rather worse 
prediction of model IIIs that used BB Design, can be 
comprehended when the absence of the eight 
experimental data space corner points from the 
training set is taken into account. So due to the lack 
of these influential points, the estimation within the 
data ranges will not be adequately exact from this 
model. 

It can be seen clearly from Table 4 that statistical 
estimators for cost prediction are a lot better than 
their counterparts for width prediction.  This can be 
attributed to the fact that production cost is 
proportional to its inputs and it was originally 
estimated using Equation (1). Furthermore, this 
demonstrates the ability to utilise ANN as an 
arbitrary function estimation technique that uses 
experimentally observed data to “learn”. 

Another notice from Table 4 that all statistical 
estimators  came  to  an  agreement,  model I was the 

Table 4: Comparison criteria for width and depth models in I, II, and III models. 

Estimator Width Estimator Cost 
I II III I II III 

MSE 24.8 192.7 206.8 MSE 8x10-11 9065x10-11 273253x10-11 

R2 0.99 0.95 0.95 R2 0.99 0.99 0.99 
MAPE  1.2 % 6.0% 7.2 % MAPE 0.003 % 0.038 % 0.100 % 

 
 

NCTA 2011 - International Conference on Neural Computation Theory and Applications

258



best, model II the second, and model III the worst 
with regards to both predictions, width and cost. 
This indicates that these estimators work together in 
harmony and have been well chosen. These results 
empirically establish their use as criteria for 
selecting both the best ANN configuration for a 
developed model and the best model that describes a 
system or a problem. 

5 CONCLUSIONS 

DoE was used to design an arranged series of 
information-gathering experiments to characterise 
micro-channel formation using a Nd:YVO4 laser. 
The relationship between the main laser process 
parameters and the developed micro-channel width 
and corresponding micro-machining operating cost 
was examined using feed-forward, back-propagation 
ANN predictive models. The influence of changing 
the number and the selection of training data on the 
prediction capability of the developed ANN 
predictive model was investigated. MSE (Mean 
Squared Error), R2 (The coefficient of 
determination), and MAPE (Mean Absolute 
Percentage Error) were utilised as a basis for 
comparison between the developed ANN predictive 
models. 

The comparison showed that model I (which has 
the highest number of training data) was the best. 
Moreover, model II is better than model III (both 
have almost the same number of training data but 
different training data set). This indicates that the 
more training data employed the better model fit 
acquired. However, when limited number of 
experiments (training data) is allowed, the outcomes 
of this work favoured using FCC Design over BB 
design for the selection of training data. This result 
indicates that using FCC design for training data 
selection was found more efficient in predicting 
width and micro-machining cost and highlighted the 
importance of including all experimental data space 
corner points in any training data set. Moreover, this 
comparison showed that the ANN modelling 
technique can be smoothly employed to predict the 
laser machined micro-channel dimensions and 
production cost precisely. 

Automated systems control can allow the use of 
the models presented in this paper in order to 
produce optimised micro-channels with high 
dimensional precision and least production cost.  

It was established in this work that the developed 
ANN predictive models were efficient at satisfying 
these demands and were effective for the prediction 

of the most appropriate laser micro-machining 
parameters. 
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