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Abstract: Our research group has found behavioral evidence that an attention function exists in the olfactory system
similarly to in the visual and auditory systems. In this paper we propose a neural network model that accounts
for olfactory attention based on macroscopic neural connections. Specifically, on-center/off-surround connec-
tions were assumed to be involved in the attention process in accordance with our hypothesis of an attention
window that extracts local activity. The model employs glomerular activity patterns as its input, and compares
them with stored patterns focusing on their local activity. The model also can shift and change the attention
window with respect to learning. From the simulation results, we confirmed that the model can account for
the results of a behavioral experiment on olfactory attention in mice.

1 INTRODUCTION of our knowledge, the existence of an attention mech-
anism in olfactory systems has only recently begun to
Attention is an important cognitive function for fil-  be investigated.
tering out irrelevant information and extracting use- As natural odors are generally composed of a
ful information from a noisy environment. Atten- complex mixture of volatile compounds (odorants),
tion thus enables efficient information processing in of which more than 400,000 types (Mori et al., 2006)
the case of limited computational capacity (Dayan exist, focusing on part of them should be an efficient
et al., 2000). The mechanisms of visual and auditory means of recognizing odor. To determine whether an
attention have been studied over previous decadesattention function also exists in the olfactory system,
(Broadbent, 1958) from the behavioral level to the our research group performed an odor discrimination
neural level. These studies suggest that selective at-experiment on mice (Takiguchi et al., 2008). The
tention can be caused by modulation of the ampli- experiment provided evidence that mice can mem-
tude of neural activity evoked by stimuli (Hillyard orize and discriminate odors by focusing on a sub-
etal., 1998). As physiological mechanisms have beenset of odorants comprising an odor. Furthermore,
gradually elucidated, their mathematical models have when a difficult discrimination task was presented,
begun to be applied to robotics (Vijayakumar et al., the mice slowly modified the attention subset through
2001; Ruesch et al., 2008). In contrast to these devel-their learning experience. As visual and auditory sys-
opments for visual and auditory systems, to the besttems can quickly switch their attention to different ob-
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Figure 2: Results of odor discrimination experiment.

Figure 1: Y-maze.

jects, from this viewpoint the attention function in the

olfactory system is different from that in the visual - ] ) ]

and auditory systems. combmatu_)ns. In this section we review the procedure
Although an attention function was found at the and €xperimental results.

behavioral level, its mechanism at the neural level is  The experiment employed a Y-maze assay, which

not clear. As current technology does not allow the Uses a Y-shaped channel as shown in Figure 1. At the

exhaustive measurement and interpretating of neural€nd S, there is a small chamber with a gate (starting

activity, building a mathematical model is a perspec- b0ox) separated from the channel to trap the subject.
tive approach to this pr0b|em_ Most previous olfac- The other ends E1 and E2 have attached odor boxes,

tory models were built with the aim of accounting which transmit odors into the Channel, and water feed-
for neural dynamics (Cleland and Sethupathy, 2006) ers to provide the reward. During the experiment the
and background segmentation (Li and Hertz, 2000); SUbjeCt mice were prohlblted from drinking water ex-
however, a model to account for the attention mech- cept as a reward.
anism has not yet been proposed. Against this back- A trial started with setting the rewarded odor [IA,
ground, we previously proposed an attention model Ci, EB] and an unrewarded odor in the two odor
that could predict perceptual similarity between odors boxes. The subject was then placed in the starting
(Soh et al., 2009); however, several assumptions em-box. When the gate opened, the subject could run
ployed in the model were not realistic, and the model through the channel and choose one of the branches
could not explain shifts and changes in attention. In of the channel depending on the response to the odor.
this paper, we propose an olfactory attention model The subjectwas allowed to drink water from the water
taking the macroscopic neural connections in the ol- feeder next to the rewarded odor, otherwise it was re-
factory system into account. The model employs neu- turned to the starting box immediately. This trial was
ral activity evoked on the glomeruli as its input and repeated 24 times in a day, referred to as one session.
predicts the odor discrimination ability of mice re- After the subjects were trained to form an asso-
sulting from their attention function. In addition, we cjation between the rewarded odor [IA, Ci, EB] and
demonstrate that the discrimination ability predicted water in the first several sessions, the subjects were
by the model has a similar tendency to that observedrequired to discriminate between the rewarded odor
In experiments. and unrewarded odors. Figure 2 shows the average
discrimination rate of eight subjects in the first 12 tri-
als and the following 12 trials in a session. The dis-

2 EXPERIMENT ON crimination rate of 46.9% against odor [IA, EB] in
the first 12 trials implies that the subjects considered
OLFACTORY ATTENTION odor [IA, EB] as the rewarded odor, since a discrimi-

nation rate of 50% would be expected as a result of
To elucidate the attention mechanism in the olfac- random selection. In the following 12 trials, how-
tory system, our research group performed an odorever, the subjects became more able to discriminate
discrimination experiment on mice (Takiguchi et al., between these odors since the average discrimination
2008) using different mixtures of three types of odor- rate increased to 66.7%. This suggests that when the
ant: isoamyl acetate (lA), ethyl butyrate (EB), and association between water and the rewarded odor [IA,
Citral (Ci). In the experiment, the subject mice were Ci, EB] was made, the subjects only paid attention to
prompted to discriminate between a water-rewarded the odorants IA and EB. Subsequently, the attention
odor [IA, Ci, EB] and odors composed of different of the mice changed, enabling them to perform cor-
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tor protein from among thousands of different vari-
eties (Buck and Axel, 1991); each neuron is activated
by a specific group of odorants and sends signals to
the olfactory bulb.

The olfactory bulb mainly consists of glomeruli,
mitral cells, and granular cells. A glomerulus is a
round cluster of axon terminals accumulated from
receptor neurons. The activity patterns evoked on
glomeruli are odor-specific ((Mori et al., 2006; John-
son and Leon, 2000), shown in the lowest part of Fig-
ure 3). A mitral cell is an excitatory neuron that re-
ceives the output from a glomerulus. Granular cells
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Figure 3: Structure of the olfactory system. other but distant cells inhibit each other (Grossberg,
1976). The mitral cells also transfer signals to the
rect discrimination. These results thus confirmed the pyramidal cells in the piriform cortex, which then
attention ability of the olfactory system. send signals back to the granular cells in the olfactory
Although this experiment illustrated the occur- - bulb and indirectly inhibit the mitral cells.
rence of incorrect discrimination caused by attention On-center/off-surround connections in the olfac-
ability, considering the large number of odorants that tory bulb are well-known neural connections found
exist, paying attention to a few important odorants in sensing systems and typically perform contrast en-
comprising odors is much more efficient for identi- hancement. In this paper, we consider that these con-
fying or discriminating between odors. Despite its nections have an important role in generating a win-
importance, the mechanism of attention at the neu- dow of attention to extract neural activity.
ral level has not been investigated. To explain the at-
tention ability of the olfactory system, a window that
extracts local neural activity evoked by odors was as-
sumed (Takiguchi et al., 2008). Discrimination be- 4 PROPOSED MODEL
tween odors is then performed using only the neural
activity included in this window. However, this hy-
pothesis has not been validated.

Since several experimental results and mathematical
models have suggested that the olfactory bulb has
the functions of input normalization and contrast en-
hancement (Grossberg, 1976; Cleland and Sethupa-
thy, 2006), we modeled the attention function as an in-
3 STRUCTURE OF THE teraction between these two functions. However, the
OLFACTORY SYSTEM interconnections involved in the olfactory system can
evoke complex dynamics that prevent us from analyz-
As the mechanism of attention has not been eluci- INg attention mechanisms; we thus designed a simple
dated in the biological field, partly because of the dif- Model that makes it possible to focus on spatial neu-
ficulty of exhaustively measuring and interpretation ral activity patterns taking the macroscopic connec-
of neural activity, in this paper, we propose a possible tions between neurons into account. In this section,
attention model from an engineering approach basedthe structure of each layer and the parameter settings
on the neural structure of the olfactory system (Mori ©f the proposed model are described.
et al., 2006; Heimer, 1968) and the above hypothe-
sis (Takiguchi et al., 2008). In this section we briefly 4.1 Structure of the Proposed M odel
review the structure of the olfactory system.

Figure 3 shows the basic structure of the olfac- Figure 4 shows the structure of the proposed model,
tory system of mice, which consists of three parts: re- which consists of three layers: the input layer, the ol-
ceptor neurons, the olfactory bulb, and the piriform factory bulb layer, and the output layer.
cortex. Receptor neurons are distributed on the sur-  The input layer carries the activity patterns evoked
face of the nasal chamber, expressing a single recep-on the glomeruli by odorants mixed in an odoO =
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Figure 4: Structure of the proposed model.

[01,02,...,0n]. In this paper, we used the activity pat-

terns measured from actual organisms obtained from
an online database (http://gara.bio.uci.edu/). The pro-

vided activity patterns were originally in an image file
format. To convert each image file into an input, the
image is divided intd. = 1805 lattice squares approx-
imately corresponding to the number of glomeruli on

on the glomeruli, and the coefficien: andD; de-
note the maximum distances of the on-center excita-
tory connections and off-surround inhibitory connec-
tions that exist, respectivelyu; at the equilibrium
point (Uj = 0) is then
U — Bl; _
Ty Wil — Z)Wlkaj'
De<d<D; d<De

thus, uj is normalized by the total input of neuron
units in the regiorDe < d < Dj and is enhanced by
those in the regiod < De.

Finally, the output layer calculates the sum of the
outputs from the olfactory bulb layer as follows:

3 wipf (u)), (5)
]

1
F) 1+ exd—g(x—6p)]’

wherew;;, is the weight coefficient, angand6, are
the gain and threshold constants of the sigmoid func-

(4)

Up

(6)

a mouse’s olfactory bulb. Each of the lattice squares tion, respectively. Because the outputis the cal-

is then converted into a value ranging from O to 1 de-
pending on the color in the lattice, which corresponds
to the activity strength. The activity evoked on tjtk
lattice square by odorant is thus denoted a&;, and

the activity pattern is the vecta; € R1<L.

The olfactory bulb layer consists df neuron
units. They receive inputs from the input layer as
well as inhibitory inputs from the output cortex layer.
To realize the functions of normalization and con-

trast enhancement, this layer employs a neural net-
work model whose structure was previously proposed

(Grossberg, 1976), given as

N
i=
L
UjZ—TUj+(B—Uj)|j—UJ( WJ‘/J‘IJ{—HJ)7 (2)
i'#i

wherelj, |1 is the input from the input layer, which is
the summation of activity strengths evoked by odor-
ants,u; is the activity of thejth neuron unitT,B, and
L are constant coefficientbl; is the inhibitory input
adjusted by the output layer, ang; is the weight co-
efficient representing the on-center/off-surround con-
nections as follows;

1)

W, d < De
Wjrj = W, De< d < Dj (3)
0, d > Dj

Here,W is a constantd is the distance between the
units, calculated from their corresponding locations
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culated inner product between the stored pattern and
input pattern when an activity pattern is storeai,

up is defined as the correspondence with the stored
odor.

4.2 Proposed Attention Process

To implement the hypothesis that a window extracts a
local activity pattern for attention, the weight coeffi-
cientwjp is determined as follows:

|0 uj(Or) < By
WJD_{ 1/R Uj(or)ZeU ) (7)

where Oy, represents a rewarded odor such as [IA,
Ci, EB] used in the odor discrimination experiment.
uj(Or) is then the activity pattern of the olfactory bulb
layer evoked by odo®y, 6y is the threshold constant
for uj, andP is the total number of neuron units in
the olfactory bulb layer whose output is greater than
By . This allows the output layer to compare the activ-
ity patterns by focusing only on the part activated by
odor Oy, which is expressed in the window of atten-
tion.

As observed in the odor discrimination experi-
ment, attention can cause incorrect discrimination. In
this case, the window has to be changed. To model
this function, we apply the inhibitory inpid; to the
olfactory bulb layer when an odor different from the
rewarded odor generates a high outputdgr The
inhibitory inputHj is thus determined as follows:

H. :{ Buj, up<Bp and uj(Or) > 6By
! otherwise ’

3 ®
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Figure 5: Glomerular activity patterns evoked by the odor-
ants in odor discrimination experiments.

| g

Figure 6: Activity patterns on the olfactory bulb layer for
each odorant obtained by simulation.

where6p is the threshold constant for,, andp is a
gain coefficient used to determine the strengthipf
This configuration generates new activity by turning
off inhibition from off-surround connections, and the

activity produces a new window in accordance with Attention . . .
y P wmdow Filtered Filtered Filtered

Equation 7. (win) [IAEBCi] = [IAEB] [Ci]

5 SIMULATION

5.1 Simulation Procedure

Figure 7: Attention window and activity patterns filtered by

The model was validated by performing two sets of  =* .

discrimination experiments. First, the parameters of
the model were adjusted manually in accordance with
; P Up(Or)

the experimental results when a combination of IA, = 9)
EB, and Ci was used. The parameters were then vali- Up(Or) +up(Ou)
dated by comparison with another set of experimental whereup(Oy) is the output of the rewarded odor and
results using the odorants IA, linaool (Li), and Ci. Fi- up(Oy) is that of the unrewarded odor. The param-
nally, the ability to change the attention window was eters were thus adjusted to fiwith the correct dis-
also investigated. crimination rate.

As the input to the model, we used mea-
sured glomerular activity patterns evoked by the 5.2 Results
odorants in the odor discrimination experiment.
These were obtained from the database websiteFirst, the parameters were adjusted. Similarly to in
http://gara.bio.uci.edu/, where the activity patterres ar the odor discrimination experiment, odor [IA, EB, Ci]
provided as unrolled maps of the spherical surface of was used as the rewarded odor. As a result of simu-
the olfactory bulb as shown in Figure 5. However, lation, the activity patterns of the olfactory bulb layer
since the activity pattern for odorant Ci was not in the shown in Figure 6 were obtained. In addition, Figure
database, we used the activity pattern predicted from7 shows the attention window, represented by white
a glomerular activity prediction model (Soh et al., spots generated by the model, and examples of ac-
2011). Figure 5 shows the activity patterns for each tivity patterns on the olfactory bulb layer filtered by
odorant. the attention window. This figure demonstrates how a

A comparison between the simulation and exper- comparison between odors can be made by focusing
imental results was carried out by defining a metric on the window generated by the model.
corresponding to the correct discrimination rate ob- Figure 8 shows the values ofobtained from the
tained from the experiment on mice described in Sec- model with adjusted parameters and the correct dis-
tion 2. As mentioned in the previous section, the out- crimination rate against each odorant. This figure
putup represents the correspondence with the storedconfirmed thatr and the correct discrimination rate
pattern in weight coefficientvj p; we thus used the have a similar tendency, for example, the lowest cor-
following metric to represent the correct discrimina- rect discrimination rate was observed when odor [IA
tion rate: EB] was the unrewarded odor. These results con-

firmed that the model focused attention on the activity
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Figure 8: Comparison of attention between model and mice.
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Figure 10: Changes in attention window (white spots).
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window, as observed in the odor discrimination ex-
periment on mice.

6 CONCLUSIONS

We proposed an attention model for the olfactory sys-
tem assuming the existence of an attention window
generated by normalization and contrast enhancement
processes in the olfactory bulb. A possible learning
mechanism was also proposed in which an inhibitory
signalis-applied to the olfactory bulb, which modifies
the attention window. Although the model only con-
sidered the macroscopic structure of the olfactory sys-

ination experiment. The adjusted parameters were asteém, a comparison with the correct discrimination rate

follows.

o Olfactory bulb layer
T=01,B=20,
De =3.0,D; = 10.0,W =0.012
e Output layer
g=0.036,=0.7

of mice confirmed the attention ability of the model.
The correct discrimination rate can also be inter-
preted in terms of the perceptual characteristics of
mice as the Y-maze experiment is a type of sensory
evaluation assay. The proposed model can thus be ap-
plied as an artificial sensory evaluation method. As a
future work we are planning to increase the odorant

Using the adjusted parameters, a simulation was set to validate and improve the model. We are also

performed with another odor set, where odor [IA, Li,

considering applying the model to predict the percep-

Ci] was used as the rewarded odor. Figure 9 showstual characteristics of human olfaction.

the values of obtained from the model and the cor-
rect discrimination rate of mice against each odorant.

From the figure, we can confirm that the proposed ACKNOWLEDGMENTS

model and the mice have a similar tendency that both

focused attention on odorant [IA].

We then tested the ability to change the attention
window by applying an inhibitory input; to the ol-
factory bulb layer. Since the discrimination ability of
the mice improved in the later 12 trials as described in
Section 2, we also investigated whether the value of

increases when the attention window is changed. For

this simulation, we set [IA, EB, Ci] as the rewarded

odor. Figure 10 shows the changes in the attention

window with increasing strength of the inhibitory in-
put (parametef). From the figure, we can confirm
that the window changed with increasifig We also
confirmed that whefd was increased from 0 t0.8),

r increased from approximately 0.48 to 0.72. These
results confirmed the ability to change the attention
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