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Abstract: Rehabilitation tasks are generally subjected to the physiotherapist’s qualitative interpretation of the patient’s 
pathology and needs. Motivated by the recently increasing use of virtual reality in rehabilitation, we propose 
a novel approach for the design of those biomechanical tasks for an improved patient-specific and 
entertaining rehabilitation. During training, the subject wears 3D goggles in which virtual tasks are 
displayed to him. His kinematics and muscles activation are tracked in real time and an inverse model is 
estimated by artificial neural networks. The resulting inverse model produces a physical exercise according 
to the observed abilities of the subject and to the expected performance dictated by the physiotherapist. The 
system offers several advantages to both the patient and the physiotherapist: the tasks can be presented in 
the form of interactive personalized 3D games with augmented feedback, stimulating the patient’s 
motivation and reducing the need of constant monitoring from the therapist. Additionally, offline 
quantitative data from every training session can be stored for further analysis. The results of our study on 
arm movements suggest an improvement in the training efficiency by 10% for the biceps and by 32% 
(p=0.02) for the triceps. 

1 INTRODUCTION 

Physiotherapy aims at helping patients recover 
maximal movement and functionality after surgical 
operations, injuries or strokes. Neuromuscular 
rehabilitation is generally performed in the form of 
biomechanical tasks, designed to restore a cognitive 
or mechanical function within the patient. These 
tasks are elaborated by the physiotherapist, based on 
his diagnosis of the patient’s pathology. Success of 
the rehabilitation training relies on the adequate 
design of these tasks, on the repetition of the 
physical exercises by the patient, on the subject’s 
motivation and on the feedback to the patient 
(Holden, 2005). Furthermore, for good results, the 
task must be adapted to the actual performance of 
the patient. This adaptive physiotherapy is very 
difficult to perform online and is subjected to the 
trainer’s interpretation of the patient's performance.  

Today, rehabilitation in virtual reality has 
become a large field of research and several studies 
have been published on the efficiency and the 
advantages offered by this approach. Virtual 
rehabilitation consists in the execution of 
biomechanical tasks in virtual environments, 

generally by the means of display devices, 
biofeedback or haptic instrumentation and adapted 
software. Virtual rehabilitation has proved efficient 
in the treatment of neurological diseases (e.g. in Jack 
et al., 2001 or Holden et al., 2005) for patients with 
balance disorders (Jacobson et al., 2001) or sports 
medicine. Studies have shown scientific evidence 
that motor skills can be learned in virtual 
environments (Regian et al., 1992) and transferred to 
the real world (Holden and Dyar, 2002). 
Furthermore, the augmented feedback on 
performance offered by virtual reality improves the 
results of rehabilitation (Shea and Wulf, 1999). It is 
also likely to increase the motivation of the patient 
during training (Maclean et al., 2000, Rizzo and 
Kim, 2005). Some researchers even claim that motor 
learning in virtual environments can surpass training 
in the real world (e.g. Todorov et al., 1997). 

Training in virtual environments also permits to 
enhance the rehabilitation platform with 
computational models and learning systems. In this 
paper, we introduce a virtual adaptive biofeedback 
rehabilitation approach aimed at improving 
neuromuscular training using artificial neural 
networks able to learn from biofeedback and to 
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produce online new patient-specific virtual 
physiotherapy missions. With the help of a motion 
capture system and electromyograms (EMG), our 
rehabilitation system tracks at any time the 
kinematics of a subject and his muscle activation. 
The subject is exposed, via a head mounted display 
unit, to virtual tasks, which he is asked to perform. 
After a calibration phase, a neural network is trained 
to respond to the subject's biofeedback information, 
based on the desired muscle activation and motions 
prescribed by the physiotherapist.  Once training is 
complete, the network calculates a new trajectory as 
biomechanical exercise, subjected to the previous 
performance of the subject. This adaptive loop is 
repeated continuously, resulting in an online 
biofeedback-based adaptive virtual rehabilitation 
system. 

We exploit in this study the ability of artificial 
neural networks to accurately model systems on 
which little information is available or complex 
systems where a computational model is preferred 
over an explicit model based on arbitrary 
assumptions and constraints. Biological systems 
undoubtedly are the most difficult systems to model, 
as they often involve several functional elements. 
For instance, virtual upper-limb rehabilitation not 
only involves motor learning and control of the 
subject, but also his interpretation of the virtual 
environment or his hand-eye coordination faculty. 
Our research hypothesis is that an artificial neural 
network can be utilized to model biological systems 
by defining only the input and output signals to the 
system. This contrasts with works aiming at building 
sophisticated internal models of human motor 
control (e.g. Kawato 1990, 1999). We validate our 
hypothesis on a simple case of neuromuscular 
rehabilitation. To the best of our knowledge, the 
approach presented in this paper is novel and has no 
antecedent in the literature. The results of this study 
can encourage others in this field to further explore 
the ability of learning systems to model human 
functions by the means of biofeedback 
instrumentation. 

2 METHODS 

2.1 Experimental Setup 

Using the Vicon™ motion capture system 
capabilities, we track the subject's motions in real 
time and continuously gather kinematic data. 
Markers are placed on the subject's body or on part 
of it (we first focused our study on the arms). During 

training, the subject is immersed in a virtual 
environment in which he is shown floating targets 
(Figure 1). The subject is then asked, for instance, to 
follow the motions of a target with his pointing 
finger (virtual ball application). His motions are 
continuously recorded by the system while 
following the virtual missions presented to him. 
Moreover in order to record the subject muscular 
activation, we place electromyograms sensors on 
key muscles associated related to the motion. 

 
Figure 1: Experimental Setup. 

The user receives, in real time, augmented 
feedback on his performance during training. For 
instance in the virtual ball application, in which the 
subject must continuously get his hand as near as 
possible to the ball in motion, the feedback on the 
distance to the target is provided in several manners. 
On the virtual replica of the subject's hand is drawn 
a ball, having the same radius as the virtual ball to 
reach. The color of this ball changes with respect to 
the distance to the target, according to a pre-defined 
color code. The subject can also read his score rising 
proportionally to the distance to the target. An 
additional indication on the distance to the virtual 
ball in the horizontal plane is provided by the 
shadows of both balls, projected vertically onto the 
virtual ground. Those indicators allow the user to 
correct his gestures while performing the exercise. 
For an improved accuracy yet, when the subject is 
relatively close to the target, an additional feedback 
is given to the subject, as the volume of a musical 
background varies according to the distance to the 
target. This last estimator offers the subject the 
opportunity to perform fine-tuning on his hand's 
position. The activation of a specific muscle is also 
displayed as sweat drops coming out the virtual 
sleeve, proportionally to the produced effort. 

2.2 An Inverse Model of the Subject 

The subject can be seen as a model receiving a 
biomechanical exercise as an input and producing a 
performance, that may include kinematic signals 
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(e.g. the trajectory of a limb), as well as EMG 
signals as an output. We wish to develop a system 
able to generate a patient-specific physiotherapeutic 
task, given the kinematic and/or muscular 
performance of the subject. This goal may be 
attained from an estimation of the inverse model of 
the subject, with the desired performance as the 
input and the exercise trajectory at the output 
(Figure 2). 

 
Figure 2: Best Estimated Inverse of the Subject. 

2.3 The Learning System 

Our goal is to train an artificial neural network 
capable of producing a subject-specific 
biomechanical task, given a desired subject’s 
performance. The definition of the subject’s 
performance is arbitrary and may include for 
example kinematic, kinetic, or muscular parameters. 

2.3.1 Network with Kinematic Input Only 

In the first phase of our study, we tracked the 
kinematics of the subject’s pointing finger. We use 
this data to train a neural network. However, we first 
have to determine the network architecture. 

The universal approximation theorem for neural 
networks states that every continuous function that 
maps intervals of real numbers to an output interval 
of real numbers can be approximated at any level of 
desired accuracy by a multi-layer feed-forward 
neural network with a single hidden layer having a 
sigmoid activation function. In our case, the network 
is designed to map, at each instant, the desired 
position and velocity of a marker placed on the 
subject, to another spatial point and velocity 
corresponding to the displayed exercise.  
Consequently, we need a system capable of 
modeling the mapping from R6 to R6. We assume the 
mapping to be a continuous function and use the 
approximation theorem to build a multi-layer feed-
forward network with one hidden layer. This 
network has a generic architecture for all subjects 
and is specific to this definition of the performance. 

Nonetheless, each subject will have his own tuned 
network. 

To define the network’s architecture, we start 
with a known exercise trajectory.  The subject is 
presented with this task and is asked to follow the 
target trajectory displayed to him. Concurrently, the 
tracking system records his motions at given 
timestamps. The recorded kinematic data serves as 
an input set to the network, while the corresponding 
exercises displayed to him serve as target outputs. 
We use Levenberg-Marquardt error back-
propagation learning method (Moré, 1977) so that 
the error between the actual output of the network 
and the target output is minimized. The network’s 
weights are initialized according to Nguyen-
Widrow’s method (Nguyen & Widrow, 1990). 

The network used for a single marker contains 
six input neurons and six output neurons: 
corresponding to the spatial position and velocity 
vectors. Next, the number of neurons in the hidden 
layer needs to be determined. On the one hand, this 
parameter affects the runtime and should therefore 
be minimized. On the other hand, it also influences 
the system’s accuracy and balance between 
precision and efficiency must be attained. We 
performed a set of tuning experiments where several 
healthy subjects were given a cyclic trajectory as a 
task to follow while their motions were tracked 
(Figure 3). 

 
Figure 3: Three-dimensional task and subject’s 
performance. 

The network was trained on the training set 
composed by the exercise and the average 
performance over the number of cycles. We used 
three criteria to evaluate the network’s performance 
for each subject and exercise: the output error, the 
positional output error and the average of the 
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positional output errors over each of the ten different 
cycles performed by the subject. The average of the 
output errors reflected the network’s ability to 
extrapolate its results on samples that were not 
directly included in the training set. After iteratively 
testing different sigmoid activation functions for the 
hidden layer of the network, numbers of epochs and 
numbers of hidden neurons, the final configuration 
of the network was determined.  

The resulting network comprised seven hidden 
neurons with the hyperbolic tangent as activation 
function and the number of epochs was set to 50. 
The reader is referred to previous publication 
(Barzilay and Wolf, 2009) for a detailed explanation 
on the setting of the network’s architecture. 

2.3.2 Network with Kinematic and EMG 
signals as Input 

In the second step of this research, we added the 
patient's biceps and triceps EMG signals to the input 
of the network, such that the new exercise would be 
designed with respect to the information on the 
muscles of the subject as well as the knowledge on 
the kinematic data of his limb. 

The data provided by the electromyograms 
contain useful information that can be deciphered by 
signal processing. There are numerous ways 
described in the literature to extract this information 
from the EMG signal, including analysis in time or 
frequency domains. We use the workflow described 
in Hodges and Bui (1996) to compute the linear 
envelope of the signal by processing it in the time 
domain. The processed signal is needed at every 
instant in our application and the processing time 
has to be minimized, all the more since several 
signals are needed simultaneously. We accelerated 
this operation by using the processed signals from 
the precedent instant and reduced the processing 
time by approximately 96% (Barzilay and Wolf, 
2011). This fast implementation allows providing 
the subject with continuous visual feedback on his 
own muscular performance during the training. 

The same parameters that were described in 
section 2.3.1 are used to evaluate the network, but 
now in addition to the 3D curve, the desired EMG 
performance specific to that trajectory should also be 
designed. We therefore determined a few desired 
cyclic trajectories for the limb of the subject and 
recorded the EMG performances of a dozen of 
healthy subjects. The average of this set of data is 
then used as the desired EMG performance over a 
specific trajectory, and fed as input to the neural 
network  together  with  the trajectory of the desired 

kinematic performance. 
The number of neurons in the hidden layer has 

been set to 17, according to the evaluation criteria 
which were previously used. 

2.3.3 System Evaluation 

The first network, described in section 2.3.1, 
considers only the endpoint kinematics of the subject 
and has obviously less physiotherapeutic interest 
than the network involving the subject’s muscular 
performance (section 2.3.2). Nevertheless, the 
optimistic results (section 3.1 and Barzilay and 
Wolf, 2009) suggested evidence of the feasibility of 
modeling human motor control with neural networks 
and brought us to expand the subject model to 
include muscular performance as well. 

From a therapeutic perspective, the muscles 
activation of the patient is more significant than his 
ability to accurately reproduce specific trajectories. 
For that reason, we focus our efforts on minimizing 
the error in the EMG performance, whereas the 
kinematics error is considered more moderately. 
Although the EMG signals are calibrated from 
measurement of the maximal voluntary contraction 
prior to the training, the signals’ amplitudes tend to 
differ between different subjects. Furthermore, we 
focus on the rhythmical patterns of the muscles more 
than on the activation intensity. To do that, we 
consider the error between the desired and actual 
EMG performance in the frequency domain. 

For the evaluation of the adaptive system, we 
thus consider the root mean squared deviation, in the 
frequency domain, between the desired EMG 
performance and the smoothed EMG performance of 
the subject. Each participant (n = 16) performed 
motor training on two exercises: the patient-specific 
exercise produced by the trained neural network 
(adapted training), and a general exercise having for 
trajectory the desired kinematic performance. The 
latter resembles a standard physiotherapeutic session 
where the physiotherapist demonstrates to the 
patient, for example with his hand, the desired 
gesture to reproduce (conventional training). The 
primary criterion for the system evaluation was 
defined as the ratio of the errors obtained in the 
performances in both cases. 

3 RESULTS 

3.1 Network with Kinematic Input 

The  exercise  trajectory, designed  by  the  network, 
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deviates by 15 millimeters per point in average from 
the exact trajectory. This average deviation is 
reduced to 3-5 millimeters per point when a 
smoothing filter is applied to the trajectory produced 
by the network. The network succeeds by such to 
estimate the inverse model of the subject. 

In Figure 3, one can see that, due to the relative 
location between the planar target and the subject's 
eye, the task (in blue) can be perceived as a 
projection on a plane normal to the subject's line of 
sight. Nevertheless, the neural network system 
learned and corrected the projection, although far 
from being a linear phenomenon. 

 
Figure 4: The exercise projection: side (left) and front 
(right) views. 

Once trained, the network is capable of 
generating a patient-specific exercise, given a 
desired patient performance. The inverse model of 
the patient can be evaluated by comparing the 
measured performance of the subject with respect to 
desired one. Given in figure 5 are the desired 
performance, the patient-specific exercise created by 
the network, and the performance of the subject on 
this adapted task. 

 
Figure 5: Desired Vs. actual performance: front (left) and 
side (right) views. 

Let us recall that, during rehabilitation session, 
the subject does not see the whole exercise 
trajectory, but only the virtual ball, in motion along 
that trajectory. Moreover, he is not exposed to the 
desired trajectory. In the depicted case, the average 
distance between the subject's performed trajectory 
and the desired performance was approximately 
equal to the average distance between the hand 

trajectory and the trajectory of the displayed 
exercise. However, in several sections of the task, 
the subject's trajectory was noticeably closer to the 
desired trajectory than to the virtual ball, as can be 
observed on the left side of the side view in Figure 
5. It is also notable that, in this section, the network 
was able to predict that, in order to cause the 
subject's hand to follow the desired trajectory (in 
black), the virtual ball had to be displayed a bit 
farther along the y axis (farther from the subject). 
This observation suggests that the model created by 
the network was able to detect some of the subject's 
behavioral patterns. This phenomenon was observed 
in several sessions and for different subjects. It is 
also notable, in Figure 5, that the system’s prediction 
was effected twice on the same portion of the 
exercise trajectory, while the subject’s hand had 
different velocities. 

3.2 Network with Kinematic and EMG 
Signals as Input 

Figure 6 demonstrates the capability of the network 
to adapt itself to the muscular information recorded 
from the electromyograms. Patterns characteristic to 
the desired signal appear within the performance of 
the subject on the exercise designed by the system. 
Frequency-domain analysis shows how close the 
spectra of the desired and the actual performance 
signals are. We found that in many cases the subject 
obtained a better performance on the network-
designed exercise than if he is directly shown the 
desired trajectory of his limb as an exercise (Figure 
6). 

 
Figure 6: EMG performance: time (left) and frequency 
(right) domains. 

The deviations from the desired EMG 
performance in the frequency domain for the 
adapted and conventional training are presented in 
Table 1. These results are summarized in Table 2. 
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Table 1: Adapted and conventional training comparison. 

Suhject 
Adapted Training Conventional 

Training Error Ratio 

Biceps Triceps Bi. Tri. Bi. Tri. 

#1 53.13 66.56 73.84 77.13 1.39 1.16 

#2 36.25 85.10 76.95 79.76 2.12 0.94 

#3 59.49 32.24 78.75 58.90 1.32 1.83 

#4 85.00 85.64 40.44 92.74 0.48 1.08 

#5 88.92 60.19 67.09 83.63 0.75 1.39 

#6 63.85 97.61 56.58 84.20 0.89 0.86 

#7 92.61 94.98 62.03 89.72 0.67 0.94 

#8 62.94 39.51 18.53 68.19 0.29 1.73 

#9 72.05 59.18 81.32 88.28 1.13 1.49 

#10 74.67 42.19 148.20 58.98 1.98 1.40 

#11 72.05 59.18 81.32 88.28 1.13 1.49 

#12 65.00 29.28 74.27 86.06 1.14 2.94 

#13 92.78 64.54 103.48 48.57 1.12 0.75 

#14 56.12 55.39 71.95 69.94 1.28 1.26 

#15 73.25 47.07 54.98 52.16 0.75 1.11 

#16 44.71 93.98 54.85 72.04 1.23 0.77 

Table 2: Adapted and conventional training comparison ˗ 
Summary. 

 
Adapted Training Conventional 

Training Error Ratio 

Biceps Triceps Bi. Tri. Bi. Tri. 

Average 68.30 63.29 71.54 74.91 1.10 1.32 

Std. Dev. 16.50 22.53 28.10 14.16 0.48 0.54 

Most subjects (n = 14, 87.5 %) benefitted from 
our system for at least one of the muscles, and 
almost half of them improved the accuracy of their 
muscular performance for both biceps and triceps (n 
= 7, 43.75%). In summary, the results indicate that 
the average muscular performance of the subjects is 
closer to the desired performance when the exercise 
is generated by the system, rather than set as the 
desired kinematic performance like in conventional 
physiotherapy. This is indicated by a 10% increase 
for the biceps performance and by 32% for the 
triceps performance. 

A one-tailed Student T-test shows that the 
improvement in the triceps performance is attained 
with statistical significance (p = 0.02). However, the 
improvement in the biceps performance is lesser in 
magnitude and in statistical significance (p = 0.34 
and p = 0.09 with omission of two subjects). We 
believe that this is due to the fact that the physical 
exercise stimulated by the system involves the 
biceps  in  a  smaller  measure than the triceps or the 

shoulder muscles. 

4 DISCUSSION 

We introduce, in this study, a platform for motor and 
cognitive rehabilitation, able to model the subject's 
kinematics and to generate a subject-specific 
physiotherapeutic exercise. The system requires no 
prior knowledge on the patient, nor any model of his 
motor control or trajectory planning. It only involves 
the desired performance dictated by the 
physiotherapist and a training reference set, recorded 
in situ from the patient's performance prior to 
rehabilitation. To date, and to the best of our 
knowledge, no study combining virtual reality 
rehabilitation and learning algorithms for patient-
specific training has been reported.  

The developed system offers several 
opportunities to both the physiotherapist and the 
patient. The virtual tasks can be designed as 
interactive games and stimulate the motivation of the 
patient during rehabilitation. We have developed 
several applications where the subjects are enjoined 
to pop bubbles, stop soccer balls, or whack objects 
with their hands in a controlled way. Most of the 
participants expressed their enthusiasm after having 
performed motor training in our virtual applications. 

In every session, all the kinematic and EMG data 
are stored and may be further analyzed offline by the 
physiotherapist. Furthermore, the system proved to 
emphasize some kinematic and muscular patterns in 
motor training, and may contribute to a better 
diagnosis of the subject. This system may find its 
application in patients after stroke, with cerebral 
palsy, dyslexia or other developmental coordination 
disorders. 

At this time, we have tested the system on 
healthy subjects only, choosing to generalize and 
validate it before testing it on pathological subjects. 
The success of the system in learning some of the 
subject’s behavioral patterns leads us to expect good 
results in the modeling of motor patterns in patients 
with pronounced pathology. Besides clinical trials, 
we would like to expand the system to combine 
more markers and EMG sensors, and other biometric 
sensors.  

Besides physiotherapy, this system could prove 
useful in sportive performance enhancement, in the 
development of new types of human-machine 
interfaces, in entertainment, and in the training of 
any kind of motor skills.  

While a description of the subject model, 
including his motor control and trajectory planning, 
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hand-eye coordination and probably many additional 
features, would be very difficult to elaborate, the 
computational power of the simplest form of feed-
forward neural networks provided very optimistic 
results in the modeling of the subject. First to 
combine virtual rehabilitation with machine learning 
of human models, the positive results of this study 
encourage carrying on the use of biofeedback-based 
artificial intelligence and virtual reality, for 
applications in therapy and other diverse areas. 
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