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Abstract: The purpose of the paper is to present how very large scale networks for learning can  be designed by using 
Hamiltonian Neural Network-based orthogonal filters and in particular by using octonionic modules. We 
claim here that octonionic modules are basic building blocks to implement AI compatible processors. 

1 INTRODUCTION 

It is well known that true artificial intelligence 
cannot be implemented with traditional hardware. 
However, it should also be clear that in order to 
build machines that learn, reason and recognize one 
needs power-efficient processors with computational 
efficiency unattainable even by supercomputers. 
Two such processors are  theoretically known: 
quantum computers and neuromophic or brain-like 
structures. Unfortunately, in recent years, quantum 
computers have lost much of their luster. Some 
researchers are sceptical about eventual realization 
of quantum computers (Gea-Banacloche, 2010). One 
of the Nobel Prize winners even claims that the ideal 
quantum computer can never be built: “no quantum 
computer can ever be built that can outperform a 
classical computer if the latter would have its 
components and processing speed scaled to Planck 
units” (Hooft, 2000). The main premise for the claim 
above is the essential and unavoidable decoherence 
in quantum systems. Thus, due to the decoherence, 
an ideal quantum computer as the state superposition 
based processor cannot be constructed. It is also 
worth noting that an ideal quantum computer is an 
example of a Hamiltonian system. As mentioned 
above the other way leading to the realization of 
power-efficient processors involves neuromorphic 
systems. It is well known that up to date, using 
different technology, several neuromorphic devices 
(e.g. oscillatory and static artificial neurons and 
based on them structures) have been proposed (Basu 
and Hasler, 2010). The newest project in this field is 

memristor concept based neuromorphic structure 
(Versace and Chandler, 2010). The authors of 
MoNETA, the brain on a chip, claim that memristor 
based technology, which mimicks biological axon 
and wetware structure, is a solution leading even to 
true AI. An interesting question that arises here is 
whether such structures, classified as bottom-up 
solutions, can create true AI processors. We claim 
that a biological brain is an almost lossless dynamic 
structure and hence neuromorphic systems should be 
sought in a class of Hamiltonian systems i.e. 
Hamiltonian neural networks. The main goal of this 
presentation is to prove the following statement: Let 
as assume that AI issues can be formulated as 
implementation of mapping  z = F(x), where F(.)  is 
known by training set { xi, zi }; i = 1, … , m. Then 
any such F(.) can be implemented by using 
Hamiltonian neural networks and in particular by 
using octonionic modules. 

2 HAMILTONIAN NEURAL 
NETWORKS 

It is well known that a general description of 
Hamiltonian network is given by the following 
state–space equation:  
 

H '( ) ( ) x J x ν x  (1)
 

where: x – state vector, 2n
Rx  

 ν(x) – a nonlinear vector field 
 J – skew-symmetric, orthogonal matrix. 
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Function H(x) is an energy absorbed in the network. 
Since Hamiltonian networks are lossless 
(dissipationless), their trajectories in the state space 
can be very complex for t  (-, ). Equation (1) 
gives rise to the model of Hamiltonian Neural 
Networks (HNN), as follows: 
 

( ) x WΘ x d  (2)
 

where: W – (2n2n) skew-symmetric, orthogonal 
weight matrix (W2 = -1) 
Θ(x) – vector of activation functions (output 
vector y = (x) ) 

 d – input data 
and  Θ(x) ≡ H’(x) 

 

One assumes here that activation functions are 
passive i.e.: 

1 2 1 2

Θ(x)
μ μ  ;  μ ,μ (0, )

x
     

The HNN described by Eq.(1) cannot be realized as 
a macroscopic scale physical object. Introducing the 
negative-feedback loops, the Eq.(2) can be 
reformulated as follows: 
 

 0 ( )w  x W 1 Θ x d  (3)
 

where: w0 > 0 
 

and Eq.(3) sets up an orthogonal transformation 
(HNN-based orthogonal filter): 
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0

1
( w )

1 w
 


y W 1 d  (4)

 

where: W2 = -1 
 

8-dim. orthogonal filter, referred to as octonionic 
module, can be synthesized by the formula: 
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(5)

 

i.e. w = Y d 
 

It can be seen that Eq.(5) is a solution the following 
design problem: for a given input vector 
d = [d1, … , d8]

T and a given output vector 
y = [y1, … , y8]

T find weight matrix W of HNN 
based  orthogonal filter (octonionic module). Thus: 
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(6)

 

W8- matrix belongs to the family of Hurwitz-Radon 
matrices. 

Octonionic module can be seen as a basic 
building block for the construction of AI processors. 
Moreover, the output y of filter in Eq.(4) is a Haar 
spectrum of input vector d. It is worth noting that an 
octonionic module sets up an elementary memory 
module as well. Designing, for example, an 
orthogonal filter, using Eq. (4) and (5), which 
performs the following transformation: 
 

0[1] 2
0

1
( w )

1 w
 


y W 1 m  (7)

 

where: y[1] = [1, 1, … , 1]T i.e. synthesizing by 
Eq.(5) a flat Haar spectrum for given input vector m, 
such that  

8

1

m 0i
i

  

one gets an implementation of linear perceptron, as 
shown in Fig.1. 
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Figure 1: Implementation of elementary memory module 
by octonionic module. 

Moreover, according to Eq.(5) and (7) the matrix  
Y with y1 = y2 = … = y8 = 1 generates the structures 
of all memory modules. It is worth noting that 
transformation in Eq.(5) can be also realized by the 
octonionic modules, as shown in Fig.2. 
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Figure 2: Self-creation of memory module. 

where: Ys–skew-symmetric part of matrix Y 
(Eq.(5)) 
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W - weight matrix of memory modules 
(Eq.(6) and Eq.(7)). 

 

Such transformation can be seen as a process of self 
creation of memory modules. 

To summarize the considerations above, one can 
state that the octonionic module is an universal 
building block to realize very large scale orthogonal 
filters and in particular memory blocks. 
Multidimensional, octonionic modules based 
orthogonal filters can be realized by using  family of 
Hurwitz-Radon matrices. Thus, 16-dim orthogonal 
filter can be, for example, determined by the 
following matrix: 
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where: w8 R 
Similarly, for dimension N = 2k, k = 5, 6, 7, … 

all Hurwitz-Radon matrices can be found, as: 
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where: wK  R. 

3 ORTHOGONAL FILTER BASED 
APPROXIMATION OF 
FUNCTIONS 

The purpose of these considerations is to show how 
a function f(x), given at limited number of trainings 
data xi, can be implemented by a composition of 
HNN based orthogonal filters in particular by using 
octonionic modules. Such an implementation can be 
regarded as a problem of approximation of 
multivariate function from sparse data i.e. training 
pairs {xi, zi}, i = 1, 2, … , m (the problem known 
from learning theory). Let us define f: x  z by: 
 

i

i=1

f( ) c K( , )
i

m

 x x x  (10)

where coefficients ci are such as to minimize the 
errors on the training set, i.e. they satisfy the 
following system of the linear equations: 
 

 K c z  (11)
 

where: c = [ c1, … , cm]T and K is kernel matrix: 

   
i jijK K ( , ) K x x , i ,j = 1,2, … ,m 

 

The solvability and quality of approximation 
depends on the properties of the kernel matrix. 
Orthogonal filter based structure of function 
approximator is shown in Fig.3. To simplify the 
presentation, we assume that the structure in Fig.3 is 
8-dimensional, i.e. dim x = 8. 
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Figure 3: Orthogonal filter-based structure of a function 
approximator. 

This structure relies on using the following 
kernels (Sienko and Citko, 2009): 
 

 T T

i i i2

1
0 1 w0i

K( , ) ( )o 


  u v u v u v  (12)
 

where: 0( . ) – a nonlinear odd function 
 ( . ) – Kronecker’s delta 
 0  0 
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and kernel matrix has a form: 
 

K = Ks + 0 1 (16)
 

where: Ks- skew-symmetric matrix. 
  dim Ks = m (number of training points) 
 

It is clear that the design equation (11), with the 
kernel matrix (16), is for 0 > 0 well-posed. Hence, a 
numerical stable solution exists: 

-1c K z  (17)
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Moreover, Eq.(11) can be embedded into the  
following differential equation: 
 

0( ) ( )s 


  ς K 1 Θ ς z  (18)
 

and hence, for number m even (i.e. even number of 
training points), it can be implemented by a lossless 
neural network, as shown schematically in Fig.4. 
 

() = cz  

-  0  1 

Lossless neural 
network  

Weight matrix  

W=-Ks 

 

Figure 4: Lossless neural network-based structure for 
solution of Eq.(17). 

The output of this neural network is: 
 

1

0( ) ( )s    c Θ ζ K 1 z  (19)
 

The stability of solution (19) can be achieved by 
damping action of parameter 0 > 0 (it can be 
regarded as a regularization mechanism (Evgeniou 
et. al., 2000). It is easy to see that the lossless neural 
network shown in Fig.4. can be realized by using 
octonionic modules, similarly as Hamiltonian neural 
network given by Eq.(3). Thus, one gets the 
following statement: Octonionic module is a 
fundamental building block for the realization of AI 
compatible processors. The 8-dimensional structure 
from Fig.3 can be directly scaled up to dimension 
N = 2k, k = 5, 6, 7, … using octonionic modules. 

4 ON IMPLEMENTATION OF 
OCTONIONIC MODULES 

It can be seen that HNN as described by Eq.(2) is a 
compatible connection of n elementary building 
blocks-lossless neurons. A lossless neuron is 
described by the differential equation:  
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Hence, the octonionic module, with weight matrix 
W8 consists of four lossless neurons, according to 
Eq.(6). A practical circuit solution of near lossless 
neurons can be realized using nonlinear voltage 
controlled current sources (VCCS), which are 
compatible with VLSI technology. A concrete 
circuit however, is beyond the scope of this 
presentation. 

5 CONCLUSIONS 

The main goal of this paper was to prove the 
following statement: 

AI compatible processor should be formulated in 
the form of top-down structure via the following 
hierarchy: Hamiltonian neural network (composed 
of lossless neurons) – octonionic module (a basic 
building block) – nonlinear voltage controlled 
current source (device compatible with VLSI 
technology). 

Hence, it has been confirmed in this paper that 
by using octonionic module based structures, one 
obtains regularized and stable networks for learning. 
Thus, typical for AI tasks, such as realization of 
classifiers, pattern recognizers and memories, could 
be physically implemented for any number N=2k  
(dimension of input vectors) and any even m <  
(number of training patterns). 

It is clear that octonionic module cannot be 
ideally realized as an orthogonal filter (decoherence-
like phenomena). 

Hence, the problem under consideration now is 
as follows: how exactly an octonionic module be 
realized by using  cheap VLSI technology to 
preserve the main property-orthogonality, power  
efficiency and scaleability. 

The possibility to directly transform the static 
structure to the phase-locked loop (PLL)-based 
oscillatory structure of octonionic modules is 
noteworthy. 
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