
ANALYSIS OF MAPPING WITHIN S-MODULE FRAMEWORK 

Krzysztof Goczyla, Aleksander Waloszek, Wojciech Waloszek and Teresa Zawadzka 
Dept. of Software Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdansk, Poland 

Keywords: Ontology, Ontology modularization, Description logics, Ontology mapping, Ontology importing. 

Abstract: In this paper we present the results of our work on s-module (semantic modules) framework. The 
framework, introduced recently, consists of a high-level semantic description of a modular knowledge base 
accompanied by an algebra for manipulating module contents. The main contribution of the article is the 
presentation of the process of expressing Distributed Description Logics knowledge base within the 
s-module framework. As the two methods exhibit two different approaches to modularization, analysis of 
this procedure is helpful in capturing the specifics of DDL, comparing it to other methods, and discussing 
the completeness of the s-module framework. 

1 INTRODUCTION 

Recently significant amount of effort has been put in 
the area of on ontology modularization. Ontologies 
gain importance in Computer Science, and use of 
modularization techniques broadens the possibilities 
of their efficient development and deployment. 

In this paper we continue our work from 
(Goczyla et al., 2009a) on analyzing spaces of 
semantic modules (s-modules). In (Goczyla et al., 
2009a) we described a procedure for constructing a 
space of possibly useful modules. Construction of 
the space is algebraic: we specify a set of base 
modules and a set of operators. Therefore, 
assimilation of knowledge by one module from 
another can be depicted as a “shift” in this space and 
described as a sequence of algebraic operations. 

The s-module space was introduced as a 
common framework for describing properties and 
characteristics of a modular knowledge base or a 
specific modularization approach. In this paper we 
present a procedure of expressing Distributed 
Description Logics (DDL; Borgida and Serafini, 
2003) knowledge base in this space. The conclusions 
are rather encouraging: such a translation is possible 
with a minimal number of additional assumptions 
and with choose of very natural base modules. The 
description is a source of interesting observations 
about DDL and s-module space, moreover, it 
provides an alternative way of proving soundness 
and completeness of the method. 

2 PRELIMINARIES 

Due to space limitations we cannot present the full 
introduction to ontologies formulated in Description 
Logic (DL) ALC. Here we only review basic terms 
to establish the notation used henceforth. 

In all DLs we assume that we have three sets of 
names: constants (individual names), concepts 
(unary predicates), and roles (binary predicates). 
The full signature ܁෠ contains all the valid names. 
Other signatures S are subsets of ܁෠. 

The names are interpreted, and each interpre-
tation I = (ΔI, ·I) consists of a non-empty domain 
ΔI and an interpretation function ·I which assigns 
each constant an element of ΔI, each concept a 
subset of ΔI, and each role a subset of ΔI ä ΔI. We 
assume that every base interpretation I of every in 
fact interprets all the valid names from ܁෠. 

Projection I|S of a base interpretation to some 
selected signature S produces a set of interpretations 
with the same domain as I and interpreting all the 
names from S in the same way: 

 

I|S = {J: ΔJ = ΔI  ∀X ∈ S: XJ = XI} (1)
 

An ontology O is simply a set of sentences. A 
signature of O, denoted Sig(O), is the set of all 
names used in any sentence of O. An interpretation 
I satisfies O (is its model; denoted I  O) iff it 
satisfies all the sentences in O. Naturally if I  O 
then every J ∈ I|Sig(O) also satisfies O. 

267Goczyla K., Waloszek A., Waloszek W. and Zawadzka T..
ANALYSIS OF MAPPING WITHIN S-MODULE FRAMEWORK.
DOI: 10.5220/0003665402670272
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development (KEOD-2011), pages 267-272
ISBN: 978-989-8425-80-5
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)



 

3 S-MODULE SPACE 

In this section we describe s-module approach 
introduced in (Goczyla et al., 2009a). The semantic 
modules are defined in a way which disregards the 
exact form of a language (like DL) and focuses only 
on interpretations. Each semantic module is in fact a 
set (more precisely, a class) of base interpretations. 
Each semantic module also has a finite signature S 
which expresses the range of names about which we 
want to reason using the module: 

Definition 1. A s-module M = (S, W) is a pair of a 
signature S and a class W of base interpretations, 
such that W|S = W. Each interpretation from W is 
called a model of M. 

Henceforth we use S(M) and W(M) to describe 
the two parts of a s-module M. 

For any ontology O we might construct a module 
M(O) such that W(M(O)) = {I: I  O} and 
S(M(O)) = Sig(O). However, while M(O) holds all 
the possible (base) models of the ontology O, it 
“forgets” the exact form of sentences; e.g. 
M({A  B}) = M({A ≡ A  B}). 

(Goczyla et al., 2009a) define a number of ope-
rations for s-modules (M, L denote arbitrary s-mo-
dules, S any signature, γ a function ܁෠ ö ܁෠): 

 

M  L = (S(M)  S(L), W(M)  W(L)) (2)

M  L = (S(M)  S(L), W(M)  W(L)) (3)

M ‒ L = (S(M)  S(L), W(M) ‒ W(L)) (4)

ργ(M) = (γ(S(M)), γ(W(M))) (5)

πS(M) = (S, W(M)|S) (6)
 

The operations , ρ, π form the backbone of the s-
module algebra. The intersection () of s-modules 
representing ontologies corresponds to adding all 
sentences (importing) from one ontology to another: 
M(O1)   M(O2) = M(O1  O2).  

Simple importing is possible only if there is no 
name conflict between two ontologies. In the 
presence of name conflicts we can use the rename 
operator (ρ). Rename operation (ρ) uses the notion 
of a signature mapping, which is a function γ: ܁෠ ö ܁෠. We also (like in (5)) apply γ to an 
interpretation in which case γ(I) = J such that 
ΔI = ΔJ and ∀X ∈ ܁෠: γ(X)J = XI. 

Sometimes we might not want to import all the 
names from an ontology. To restrict a set of names, 
but to preserve the relations between extensions of 
the remaining names, we use projection operator (π). 

Example 1  Let O1 = {Teacher  Employee, Publica-
tion Achievement}, and assume that O2 is much 
larger and contains axioms like: Book  Publication, 
Chapter  Publication, Monograph Book etc. We 
like to reuse O2 in O1, however, in O2 the notion of 
Publication does not include position papers. 
Moreover, we find the term Book from O2 too gene-
ral and do not want to include it the ontology. To 
meet our goals we take O1′ = O1  {NPPaper ≡ 
Publication   ŸPositionPaper} and construct M: 
M = M(O1′)  πS ‒ Book(ρPublication Ø NPPaper(M(O2))). 
In Ex. 1 we introduce some intuitive shortcuts  to 
notation that we also exploit further in the paper. For 
example by ρA Ø B we mean that corresponding γ 
function changes only the name A to B and by  
πS ‒ X(M) we mean πS(M) ‒ {X}(M). Occasionally for de-
noting names we might use wildcards: e.g. * Ø 1:*. 

While , , ‒ are taken directly from Boolean 
algebra of sets,, π and ρ are equivalents of cylindrifi-
cation and substitution from the cylindric algebra 
(Henkin, Monk and Tarski, 1971). Any space of 
module (class of modules M closed under π, ρ, , , 
‒) can be used to construct a cylindric algebra. 

A space of modules can be constructed by 
choosing a base space and closing it wrt. π, ρ, , , 
‒. A very natural choice of a base space is {M(α)} 
where α is a sentence valid in a selected language L. 

Several auxiliary operators can be introduced for 
such a space. The selection operator σ is a shortcut 
for σα(M) = M  M(α). The further two operators 
“put under” (υ) and restriction (ξ) are defined below 
(I  S denotes an interpretation J: ΔJ = ΔI  S and 
∀X ∈ ܁෠: XJ = XI  S): 

 

L υC M = (S(L)  S(M), {I ∈ W(M): 
I  CI ∈ W(L)}) 

(7)

ξC(M) = (S(M), {I  CI: I ∈ W(M)  
I  CI ∈ W(M)}) 

(8)

“Put under” (Goczyla et al., 2009a) correlates the 
domains of two modules by introducing relation-
ships between extensions of terms in L only to a 
fragment of M. The restriction operator ξ is an 
operator complementing υ. Namely it restricts the 
domain of the module to the extension given concept 
C. For ALC it may be simply treated as a shortcut 
for ξC(M) = σC ≡ (M). 

Theorem 1.  For every module M from M(ALC) 
obtained from the basic space {M(α)} with use of 
operators (π, ρ, , , σ, υ, ξ) it is decidable whether 
the module is satisfiable (i.e. W(M) ≠ ∅). 

KEOD 2011 - International Conference on Knowledge Engineering and Ontology Development

268



 

4 DISTRIBUTED DL 

Distributed Description Logics (DDL) is one of the 
most prominent modularization methods for DL 
ontologies. Originally proposed by Borgida and 
Serafini in (2003), it was extended and adapted in 
many works. The presentation in this Section is 
mainly based on (Homola and Serafini, 2010). 

DDLs focus on mapping the terms from a source 
module to a target module. We assume there exists a 
collection of modules {Oi}i ∈ I, indexed by a set I. 
Each module is simply an ontology (it has its local 
collection of sentences). Between each pair of 
modules Oi (as a source) and Oj (as a target; here 
and hence in this section i, j ∈ I, i ≠ j) there is 
defined a (possibly empty) set of bridge rules μij. 

There are three types of bridge rules (C, D are 
concepts and a, b constants, resp. from O1 and O2):  

 
 
 

A distributed knowledge base (DKB) ä = ({Oi}, 
{μij}), consists of modules and sets of bridge rules. 
Whenever μij is non-empty, we say that Oj uses Oi.   

A distributed interpretation à is a pair ({Ii}, 
{rij}), where {Ii} are interpretations (called local in-
terpretation), and {rij} are domain relations between 
the domains of Ii and Ij. In contrast to standard DL, 
each local interpretation might also be a hole, a 
special interpretation Ie with empty domain. A dis-
tributed interpretation à is a model of ä iff for each 
i, j ∈ I,  we have Ii  Oi and à  μij. à  μij iff it satis-
fies all the rules μij according to the following: 

 
 
 

DDL exhibits a different behavior than s-modules. 
While the latter focuses on importing, DDL focuses 
on mapping between terms (this distinction is based 
on (Homola and Serafini, 2010)). 

While in the basic DDL relation rij might be of 
any form, one might consider also more constrained 
versions of DDL, denoted by additional symbols: 
e.g. F for only functional rij or I for injective rij, e.g. 
DDL(F) or DDL(F, I). The following well-known 
“penguin” example illustrates the importance of the 
relation. 

Example 2 (Grau et al., 2004)  Let us consider the 
ontology O1 = {Nonflying ≡ ŸFlying, Bird  Flying}  
and the ontology O2 = {Penguin  }. We define 
the mapping μ12 in the following way: 

 
 

It might seems that Penguin is unsatisfiable “being 
subsumed” by both Nonflying and Bird. But we can 
still obtain a non-empty interpretation I2 in a model 
of ä, if the relation r12 maps at least two individuals 
(one Nonflying and one Bird) to a single Penguin. 

Originally intended for illustrating cumbersome 
behavior of DDL, in fact this example shows its 
distinctive capability: to combine knowledge about 
several individuals into one. In situations when such 
behavior is undesirable we can turn to DDL(F). 

5 DDL IN S-MODULE SPACE 

In this section we present the results of our work on 
expressing DDL in the s-module framework. 
Starting from a bit simplified conversion for 
DDL(F, I), we gradually move to less constrained 
versions of DDL. 

5.1 DDL(F, I) with No Cycles 

At first we consider a case of DDL(F, I) in which 
each individual from ΔIi corresponds to at most one 
individual from ΔIj and vice versa. 

As it turns out, such assumption significantly 
reduces the difficulties of bridging DDL and s-mo-
dules. As a case-study let us consider a distributed 
KB ä with two simple DDL-modules O1 = {C  , 
D  } and O2 = {E  F} and a set of rules μ21 = 
{2:F        1:C, 2:E       1:D}. Such a mapping implies 
that for every model à, I1  D  C.  

Despite apparent simplicity of the example, 
while analyzing semantics we still have to consider 
several possibilities: a domain relation r21 might map 
the whole domain of I2 to ΔI1, or only a fragment of 
a domain of I2, or r21 might even be empty, 
resulting in empty interpretation for D. The second 
case is depicted in Fig. 1a with use of Venn 
diagrams: we can mentally visualize that with 
shrinking of r21(E

 I2) the area of D I1 is also reduced. 
To reflect this effect for s-modules, we have to 

simulate the behavior of r21. The constructions of a 
s-module M1 representing possible models of O1 in 
ä proceeds as follows. First, we create a s-module 
with two special concepts: O1 and O2. Second, we 
put under these concepts modules M(O1) and M(O2) 
respectively (if they contain repeating names, we 
have to add prefixes). Subsequently, we enforce the 
bridge rules by using selection. Then, we project the 
signature only to the terms from M(O1). Finally, we 

1: Bird      ሱۛሮ 2:Penguin
1: Nonflying      ሱۛሮ 2:Penguin 

i: C       ሱۛሮ j: D (into bridge rule) 
i: C       ሱۛሮ j: D (onto bridge rule) 
i: a ö j: b (individual correspondence)

à  i: C       ሱۛሮ j: D iff  rij(C
Ii) Œ DIj 

à  i: C       ሱۛሮ j: D iff rij(C
Ii) û DIj 

à  i: a ö j: b iff  rij(a
Ii)  dIj 

     ሱۛሮ    ሱሮ

ANALYSIS OF MAPPING WITHIN S-MODULE FRAMEWORK

269



 

restrict the module to the concept O1 and remove the 
concept from the signature. 

 

Figure 1: Different but equivalent effects of DDL(F) 
mapping (a) and combining s-modules (b). 

The result of the first three steps is depicted in 
Fig. 1b. We can see that the outcome gives a similar 
effect as in the case of DDL. The area r21(Δ I2) is 
represented by the intersection O1  O2. Since the 
interpretation of the intersection may vary in size, 
and may even be empty, all the possible forms of 
r21(ΔI2) are reflected by models of M. The fact that 
r21 is injective and functional is advantageous here: 
each instance of O1  O2 represents one element e of 
ΔI1 and simultaneously one element r21

‒(e) of ΔI2. 
The procedure sketched above can be general-

ized and formalized as follows: 

Definition 2. For a given DKB ä = ({Oi}, {μij}), 
i, j ∈ I, i ≠ j, a converting function c is a function 
that assigns each Oi a s-module. 

Definition 3. A bridge-rule operation βb for a bridge 
rule b and a module M is:   
 for b =   : 
  βb(M) = σα(M), α = γ* Ø i:*(C)  γ* Ø j:*(D)  
 for b =   :  
  βb(M) = σα(M), α = γ* Ø j:*(D)  γ* Ø i:*(C)  
 for b = i: a ö j: b :  
  βb(M) = γi:a Ø j:b(M)  

where by γ(C) we understand a new concept with all 
the names substituted with use of γ.  
A bridge-rule operation βμ for a set of bridge rules 
μ and a module M is a composition of βb, b ∈ μ. 

Definition 4. For given two modules Oi and Oj from 
a DKB ä, such that Oj uses Oi, and a converting fun-
ction c, a s-module integrating Oi and Oj wrt. c is:
 Mij

c = βμij( ρ* Ø i:*(c(Oi)) υΟi M({Oi  })   
  ρ* Ø j:*(M(Oj)) υΟj M({Oj  }) )  

The construction of the integrating s-module 
corresponds to executing the three first steps of the

 described procedure (see also Fig. 1b).  

Definition 5. For a given DKB ä = ({Oi}, {μij}), a 
module Oj, and a converting function c, an integra-
ted s-module for Oj wrt. c is Mj

c = …i ∈ {i: μij ≠ ∅}Mij
c.  

A fully integrated module for Oj wrt. c is FMj
c = 

ρj:* Ø *(πS ‒ Oj(ξΟj(Mj
c))). 

The notion of integrated module generalize the 
described procedure to the case when more modules 
are used. Full integration corresponds to the last two 
steps of the procedure. A fully integrated s-module 
is indeed useful for describing DDL semantics, as 
the following lemma shows. 

Lemma 1. For a DKB ä = ({Oi}, {μij}), i, j ∈ I, 
i ≠ j, expressed in ALC and DDL(F, I), in which O1 
uses all the other modules, and all the other modules 
use none, and a converting function c(Oi) = M(Oi) 
for all i ≠ 1, c(O1) = FM1

c, a module Oi is satisfiable 
(i.e. for some model it has a local interpretation 
which is not a hole) iff c(Oi) ≠ M({  ^}). 

The proof, omitted for brevity, consists of showing 
that a model à with non-empty I1 exists iff there 
exists a model of M1

c.  
The result from Lemma 8 can be generalized to 

any acyclic DKB (i.e. DKB ä for which the relation 
Uä = {(Oi, Oj): μij ≠ ∅} forms a forest). 

Proposition 1. For any acyclic DKB ä = ({Oi}, 
{μij}), i, j ∈ I, i ≠ j, expressed in ALC and 
DDL(F, I), and a converting function c(Oi) defined 
recursively as c(Oi) = M(Oi) for leaves, and c(Oi) = 
FMi

c for other modules, a module Oi is satisfiable iff 
c(Oi) ≠ M({  ^}). 

With use of Lemma 1 the proof is straightforward, 
by induction on each tree of using relation (Lemma 
8 forms the induction base, and gives means for 
proving the induction hypothesis). 

5.2 DDL(F, Nn) with No Cycles 

Here we extend the results from the previous 
subsection towards slightly more expressive DDL, 
by adapting the introduced notion to the case when 
the domain relations are not necessarily injective. 

Once again we start with a motivation example. 
We adapt the “penguin” example (see Ex. 3). DKB 
consists of two modules O1 = {P  }, and O2 = 
{NF  ŸF, B  NF}, and one non-empty bridge rule 
set is: μ21 = {2:NF        1:P, 2:B       1:P}. 

As already mentioned above, the concept P in O1 
may be satisfiable, though for this to happen r21 has 
to map two individuals of ΔI2 to a single individual 

C

C

O1

O1
M

O2

O2

D

D

E

E

F

F

a)

b)

i: C       ሱۛሮ j: D 

i: C       ሱۛሮ j: D 

       ሱۛሮ 
     ሱۛሮ

KEOD 2011 - International Conference on Knowledge Engineering and Ontology Development

270



 

of ΔI1. This situation is depicted in Fig. 2a. 

 

Figure 2: Different but (almost) equivalent effects of 
DDL(F, Nn) mapping (a) and combining s-modules (b). 

The strategy from the previous section is not 
enough to model this situation in the realm of 
s-modules. Although we can overlap the domains of 
the two modules, simple overlapping (like in Fig. 
1b) would render the concept P unsatisfiable. We 
have to somehow model the possibility of mapping 
two individuals into one. 

A solution to this issue is illustrated in Fig. 2b. 
The main idea is to apply the conceptual decom-
position twice to the same domain. It can be done 
with prefixes (omitted in Fig. 2 for readability), 
appropriate s-module operation might look like 
M2.2 = ρ* Ø 2.2.1:*(M(O2))  ρ* Ø 2.2.2:*(M(O2). After the 
transformation, every element of the domain of (any 
model of) M2.2 represents in fact a pair of elements 
of the domain of (some model of) M(O2). 

There are, however, two issues connected with 
this approach. First of all, the constructed module 
represent pairs of the original domains. The same 
approach can be used to triples, quadruples etc., but 
there have to be some known and finite limit to the 
cardinality of the tuples. This is the motivation 
behind introducing a new constraint for DDL, 
namely Nn, n ∈ N, which implies that every domain 
relation rij is at most n-to-one. The discussion in this 
section is thus constrained to DDL(F, Nn). 

Second issue is that elements of the domain of 
M2.2 represent in fact some pairs of elements of the 
original domain, like (e, e), that we do not want to 
include in our considerations. This problem can be 
technically overcome (by exploiting disjoint union 
satisfiability property of ALC introduced by 
Serafini et al. in (2005)), but the discrepancy 
between “double overlapping” and pair of domains 
still exists, and should be dealt with in future 
development of s-module framework (see Sec. 6). 

In the following we adapt the notions from the 
previous section to the case of DDL(F, Nn). 

Definition 6. A n-bridge-rule operation βb
n for a 

bridge rule b, a module M and given n is: 

 for b = : 
  βb(M) = σα(M), where α is defined below:   
  α = +k ∈ [1..n] +l ∈ [1..k] γ* Ø i.k.l:*(C)  γ* Ø j:*(D)  

 for b =  : 
  βb(M) = σα(M), where α is defined below:   
  α = γ* Ø j:*(D)  +k ∈ [1..n] +l ∈ [1..k]  γ* Ø i.k.l:*(C)  
 for b = i: a ö j: b:  
  βb(M) = »k ∈ 1..n γi.k.1:* Ø j:b(M) 

A n-bridge-rule operation βμ
n for a set of bridge 

rules μ, a module M and given n is a composition of 
βb

n for every b ∈ μ. 

Definition 7. For given two modules Oi and Oj from 
a DKB ä, such that Oj uses Oi, and a converting 
function c, let M be defined as follows: 
 M = M({Oi.k Oi.l  ^: k, l ∈ [1..n], k ≠ l}) 
a s-module n-integrating Oi and Oj wrt. c is:  
 nMij

c = βμij
n( ρ* Ø j:*(M(Oj)) υΟj M({Oj  })   

  …k, l ∈ [1..n], k ≠ l (ρ* Ø i.k.l:*(c(Oi)) υΟi.k.l M ) ) 

The pairwisely disjoint concepts Oj.k represent 
k-tuples of elements of the original domain. 

Definition 8. For a given DKB ä = ({Oi}, {μij}), a 
module Oj, a converting function c, and a number n 
an n-integrated s-module for Oj wrt. c is nMj

c = 
…i ∈ {i: μij ≠ ∅}

nMij
c. A fully n-integrated module for Oj 

wrt. c is FnMj
c = ρj:* Ø *(πS ‒ Oj(ξΟj(

nMj
c))). 

Once again we show that fully integrated modules 
are equisatisfiable with corresponding modules from 
DKB. 

Lemma 2. For a DKB ä = ({Oi}, {μij}), i, j ∈ I, 
i ≠ j, expressed in ALC and DDL(F, Nn), in which 
O1 uses all the other modules, and all the other 
modules use none, and a converting function 
c(Oi) = M(Oi) for all i ≠ 1, c(O1) = FnM1

c, a module 
Oi is satisfiable iff c(Oi) ≠ M({  ^}). 

The proof, which we omit for brevity, shows that 
a model à with non-empty I1 exists iff there exists a 
model of nM1

c. Again, we can generalize the results 
of the lemma to a case of any acyclic DKB. 

Proposition 2. For any acyclic DKB ä = ({Oi}, 
{μij}), i, j ∈ I, i ≠ j, expressed in ALC and 
DDL(F, Nn), and a converting function c(Oi) defined 
recursively as c(Oi) = M(Oi) for leaves, and c(Oi) = 
FnMi

c for other modules, a module Oi is satisfiable 
iff c(Oi) ≠ M({  ^}). 

Proof (sketch): Analogously like in proof for Prop. 
1, but with use of Lemma 13. 

P

O1

M

O2

O2O1

B

B

P

NF

NF

NF
F B

F

F

a)

b)

f
e

p

i: C      ሱۛሮ j: D

i: C      ሱۛሮ j: D

ANALYSIS OF MAPPING WITHIN S-MODULE FRAMEWORK

271



 

5.3 Decidability 

The discussion from the previous points gives us 
also means for creating a procedure for deciding 
satisfiability of modules in a DKB. 

The decidability result from Th. 1 combined with 
Prop. 2 allows for immediate stating that DDL(F, 
Nn) is decidable for acyclic DKBs. However, we can 
extend this result a bit by including the DKBs which 
can contain cycles. 

A basic idea behind such extention is simple: we 
proceed iteratively with determining c(Oi) for each 
module, assuming that in first iteration c1(Oi) = 
M(Oi) and then, in the next k-th iteration taking 
ck(Oi) = FnMi

ck ‒ 1(Oi). As Serafini and Tamilin show 
in (2007), the fixpoint will finally be reached, which 
can be detected by adapted procedure for checking 
whether an ontology is a conservative extension of 
another (Lutz,  Walther and Wolter, show in (2007) 
that this problem for ALC is decidable). 

This leads us to the following conclusion: 

Proposition 3. For a given DKB ä = ({Oi}, {μij}), 
i, j ∈ I, i ≠ j, an recursive procedure for converting 
modules in the following way: c1(Oi) = M(Oi), ck(Oi) 
= FnMi

ck ‒ 1(Oi), repeated until ck(Oi) is a conservative 
extension of ck ‒ 1(Oi) for all i ∈ I, is a terminating, 
sound and complete procedure for deciding satisfia-
bility of modules for ALC and DDL(F, Nn). 

6 CONCLUSIONS 

In this section we summarize the main observations 
and contributions of the paper and relate them to 
other studies. 

From the point of view of DDL, the results 
allows us to show some insight in the relation 
between mapping and importing (Homola and 
Serafini, 2010). Here we show how different kinds 
of mappings relate to specific kinds of importing 
(especially “putting under”). Further work will allow 
us to include also E-Connection (Kutz,  Lutz, 
Wolter, and Zakharyaschev, 2004) and P-DL (Bao, 
Voutsadakis, Slutzki, and Honavar, 2009), two other 
major methods of modularization. 

The other result is an alternative way of proving 
decidability of DDL(F, Nn) for ALC. Though at the 
current stage of research it does not extend the 
results already available in literature, it shows the 
practical application of the results from Th. 1. The 
further development might result in a set of 
techniques for proving decidability for a wide range 
of modularization methods. 

From the perspective of s-module framework the 
presented discussion provides interesting hints about 
its further development. The s-module framework 
cannot easily handle situations in which we want to 
refer to a tuple of elements of a domain. Sec. 5.3 
suggests it may be useful to extend the framework 
by some kind of treatment for limits (i.e. the ability 
to determine bounds for an arbitrary set of modules). 

Finally, the paper presents some extensions to 
the framework of s-modules: definition of s-module 
space, restriction operator, and a slightly extended 
result for decidability (cf. Sec. 3). 

ACKNOWLEDGEMENTS 

This work is partially supported by the Polish 
National Centre for Research and Development  
under Grant No. SP/I/1/77065/10 by the strategic 
scientific research and experimental development 
program: „Interdisciplinary System for Interactive 
Scientific and Scientific-Technical Information”. 

REFERENCES 

Bao, J., Voutsadakis, G., Slutzki, G. & Honavar, V. 
(2009). Package-Based Description Logics. In: 
Modular Ontologies. Springer: Berlin Heidelberg.  

Borgida, A. & Serafini, L. (2003). Distributed Description 
Logics: Assimilating Information from Peer Sources. 
J. Data Semantics, 1, 153-184. 

Grau, B. C., Parsia, B., & Sirin, E. (2004). Working with 
Multiple Ontologies on the Semantic Web. In: The 
Semantic Web – ISWC 2004 (pp. 620-634).  

Goczyla, K., Waloszek, A. & Waloszek, W. (2009a). 
S-modules - Approach to Capture Semantics of 
Modularized DL Knowledge Bases. Proc. of KEOD 
2009 (pp. 117-122). 

Goczyla, K., Waloszek, A. & Waloszek, W. (2009b) A 
Semantic Algebra for Modularized Description Logics 
Knowledge Bases. Proc. of DL 2009. 

Homola, M. & Serafini, L. (2010). Towards Formal 
Comparison of Ontology Linking, Mapping and 
Importing. Proc. of DL2010. 

Kutz, O., Lutz, C., Wolter, F. & Zakharyaschev, M. 
(2004). E-connections of abstract description systems. 
Artificial Intelligence, 156(1), 1-73.  

Lutz, C., Walther, D. & Wolter, F. (2007). Conservative 
extensions in expressive description logics. Proc. of 
IJCAI-2007, 453-459. doi:10.1.1.117.2884. 

Serafini, L., Borgida, A. & Tamilin, A. (2005). Aspects of 
Distributed and Modular Ontology Reasoning. In 
Proc. of IJCAI 2005, pp. 570-575. 

Serafini, L. & Tamilin, A. (2007). Aspects of Distributed 
and Modular Ontology Reasoning. Technical report. 

KEOD 2011 - International Conference on Knowledge Engineering and Ontology Development

272


