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Abstract: The development of autonomous Unmanned Aerial Vehicles (UAVs) is of high interest to many 
governmental and military organizations around the world. An essential aspect of UAV autonomy is the 
ability for automatic path planning. In this paper, we use the genetic algorithm (GA) and the particle swarm 
optimization algorithm (PSO) to cope with the complexity of the problem and compute feasible and quasi-
optimal trajectories for fixed wing UAVs in a complex 3D environment while considering the dynamic 
properties of the vehicle. The characteristics of the optimal path are represented in the form of a multi-
objective cost function that we developed. The paths produced are composed of line segments, circular arcs 
and vertical helices. We reduce the execution time of our solutions by using the “single-program, multiple-
data” parallel programming paradigm and we achieve real-time performance on standard COTS multi-core 
CPUs. After achieving a quasi-linear speedup of 7.3 on 8 cores and an execution time of 10 s for both 
algorithms, we conclude that by using a parallel implementation on standard multicore CPUs, real-time path 
planning for UAVs is possible. Moreover, our rigorous comparison of the two algorithms shows, with 
statistical significance, that the GA produces superior trajectories to the PSO. 

1 INTRODUCTION 

The path planner is an element of the UAV control 
module (Chen et al., 2009). It allows the UAV to 
autonomously compute the best path from a start 
point to an end point. Whereas commercial airlines 
fly constant prescribed trajectories, UAVs in 
operational areas have to travel constantly changing 
trajectories that depend on the particular terrain and 
conditions prevailing at the time of their flight. 

In the past, the best path has been associated with 
the shortest path and deterministic search algorithms 
were used to find the very shortest path. The 
definition of the problem has since evolved and the 
best path is now associated with the path that 
minimizes the distance travelled, the average 
altitude, the fuel consumption, the radar exposure, 
etc. These are a few examples of the factors to be 
considered and clearly show that the complexity of 
the problem has grown. To cope with this 
complexity, researchers have slowly moved from 
using deterministic algorithms to using non-
deterministic algorithms (Masehian and 
Sedighizadeh, 2007). 

In this paper, we use two non-deterministic 
algorithms to develop an operational path planning 
module for fixed wing UAVs. Our research work 
presents three important contributions. Firstly, we 
propose a comprehensive cost function which 
includes both the optimization and the feasibility 
criteria. This allows us to use a generic optimization 
algorithm (without modification) as the search 
algorithm. In our case, we use the GA and the PSO, 
but these could easily be replaced by other 
algorithms. Secondly, we present a technique to 
parallelize both the GA and the PSO while 
minimizing the communication between the 
processes in order to achieve a near linear speedup 
and fully exploit the computing power of today’s 
multicore CPUs. Finally, we offer a statistically 
significant comparison between the quality of the 
trajectories generated by our GA-based and PSO-
based path planners. Both algorithms have recently 
been widely used for UAV path planning 
(Pehlivanoglu, 2011), (Macharet et al., 2010), (Fu 
and Gao, 2010), (Xia Li et al., 2010), (Bao et al., 
2010), (Yangguang Fu et al., 2009) and (Foo et al., 
2009). However, to our knowledge, there exists no 
rigorous comparison between the two algorithms 

162 Roberge V., Tarbouchi M. and Labonté G..
PARALLEL IMPLEMENTATION AND COMPARISON OF TWO UAV PATH PLANNING ALGORITHMS.
DOI: 10.5220/0003663501620167
In Proceedings of the International Conference on Evolutionary Computation Theory and Applications (ECTA-2011), pages 162-167
ISBN: 978-989-8425-83-6
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



 

when applied to this particular problem. The results 
we present in this paper provide clear insight as to 
which of the two optimization algorithms is 
preferable for UAV path planning in complex 3D 
environments. 

2 REPRESENTATION 

The first step of path planning is to discretize the 
world space into a representation that will be 
meaningful to the path planning algorithm. This 
representation is closely related to a search 
algorithm and some algorithms will only perform 
well when coupled with a specific environment 
representation. An overview of the performance of 
different representations used with different 
algorithms is presented in (Sariff and Buniyamin 
2006). In our implementation (see Figure 1), we use 
an approximate cell decomposition of the terrain 
using a 2D grid where each element of the matrix 
represents the elevation of the terrain. This 
representation allows us to use digital elevation 
maps freely available from the GeoBase (Anon n.d.) 
repository with no further processing. Our 
representation of the environment also allows for the 
definition of cylindrical danger zones (or no-fly 
zones) to be kept in a separate matrix where each 
row represents the coordinates and the diameter of 
the cylinder. Complex no-fly zones can be built by 
partially juxtaposing multiple cylinders. The 
trajectories generated by the optimization algorithm 
are composed of line segments and encoded in a 
matrix where each row represents the (x, y, z) 
coordinates of a waypoint. The trajectories are flown 
at constant speed and can also be represented as a 
function of time. 

 

Figure 1: Trajectory in a 3D environment. 

3 COST FUNCTION 

As previously stated, searching for the best path is 
often associated with searching for the shortest path. 
This is the case when solving the Traveling 
Salesperson Problem (TSP), which consists of 
finding the shortest path that visits all the given 
cities only once. In the case of UAV path planning, 
the optimal path is more complex and includes many 
different characteristics. To take into account these 
desired characteristics, a cost function is used and 
the path planning algorithm becomes a search for a 
path that will minimize the cost function. The cost of 
a path decreases with the degree to which the desired 
characteristics are being fulfilled. A path that fulfills 
all the characteristics to a high degree would result 
in a low cost. We define our cost function as 
follows: ܨ௦௧ = ௧ܥ + ௧௧௨ௗܥ + +ௗ ௭௦ܥ ௪ܥ + +௦ܥ ௨ܥ +  ௦௧ܥ

(1)

where Clength penalizes longer paths, Caltitude penalizes 
paths with a higher average altitude, Cdanger zones 
penalizes paths going through danger zones, Cpower 
penalizes paths requiring more power than the 
maximum available power of the UAV, Ccollision 
penalizes paths colliding with the ground, Cfuel 
penalizes paths requiring more fuel than available in 
the UAVs and finally, Csmoothing penalizes paths that 
cannot be smoothed using circular arcs. All terms 
are normalized on the interval [0, 1]. Clength, Caltitude 
and Cdanger zones are optimization criteria and are used 
to improve the quality of the trajectory whereas 
Cpower, Ccollision, Cfuel and Csmoothing are feasibility 
criteria that must be satisfied for the final trajectory 
to be valid. In order to separate viable and non-
viable trajectories, we add a penalty constant to each 
feasibility constraint not satisfied. 

4 GENETIC ALGORITHM 

The GA is a population based non-deterministic 
optimization method that was developed by John 
Holland in the 1960s and first published in 1975 
(Holland, 1975). Based on the genetic theory of 
Darwin evolution, the GA simulates the evolution of 
a population of solutions to optimize a problem. 
Similarly to living organisms adapting to their 
environment over the generations, the solutions in 
the GA adapt to a fitness function over an iterative 
process using biology-like operators such as the 
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crossovers of chromosomes, the mutations of genes 
and the inversions of genes. In this work, the GA 
simulates the evolution of a population of 
trajectories adapting to the cost function defined in 
the previous section. Our implementation uses 
stochastic universal sampling as the selection 
method, single point crossover as the reproduction 
mechanism and addition, deletion and modification 
as genetic operators (Yu and Gen, 2010). We also 
used the concept of elitism when replacing the old 
generation with the new one in order to improve 
conversion. The flowchart of the GA is shown in 
Figure 2 and the different genetic operators used, in 
Figure 3. 
 

 

Figure 2: Flow chart of the genetic algorithm. 

 

Figure 3: GA operators. 

5 PARTICLE SWARM 
OPTIMIZATION 

The PSO is a population based non-deterministic 
optimization method that was proposed by Kennedy 
and Eberhart in 1995 (Kennedy & Eberhart 1995). 
The algorithm simulates the movement of a swarm 
of particles in a multidimensional search space 
progressing towards an optimal solution. The 
position of each particle represents a candidate 
solution (a complete trajectory encoded in a single 
vector) and is randomly initiated. At every step of 
the iterative process, the velocity of each particle is 
individually updated based on the previous velocity 
of the particle, the best position ever occupied by the 
particle (personal influence) and the best position 
ever occupied by any particle of the swarm (social 
influence). As outlined in (Clerc 2005), the 
equations used to compute the velocity and position 
of a single particle at iteration ݐ are as follows: ࢜௧ାଵ = ௧࢜߱ + ܿଵ࢘ଵ.∗ ௧࢈) − (௧࢞ + ܿଶ࢘ଶ.∗ ௧ࢍ) − (௧࢞ ௧ାଵ࢞(2) = ௧࢞ + ௧ାଵ (3)࢜

where variables in bold are vectors; v is the velocity 
of the particle; x is its position; b is the best position 
previously occupied by the particle; g is the best 
position previously occupied by any particle of the 
swarm; r1 and r2 are vectors of random values 
between 0 and 1; and ω, c1 and c2 are the inertia, the 
personal influence and the social influence 
parameters. Still based on (Clerc, 2005), the flow 
diagram of the PSO is displayed in Figure 4. 

 
Figure 4: Flowchart of the particle swarm optimization. 
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6 PATH SMOOTHING 

Consistent with solutions proposed in the literature 
(Labonté, 2009), (Hasircioglu et al., 2008), 
(Anderson et al., 2005), our solution generates a path 
composed of line segments. This would be sufficient 
for multi-directional ground robots, but inadequate 
for a fixed-wing UAV. To remove all discontinuities 
in the velocity, we smooth the final path by 
connecting the line segments with simple circular 
arcs (when the power available is sufficient) or 
circles on a horizontal plateau (when the power 
available is not sufficient to fly a simple circular arc) 
based on (Labonté, 2009), (Anderson et al., 2005), 
(Bottasso et al., 2008) and as shown on Figure 5. 
Our final stage module also replaces any line 
segment requiring more power than available with a 
vertical helix as in (Labonté, 2009). Although 
smoothing of the path is performed after the 
optimization process, the feasibility of this operation 
is verified in our cost function to ensure the 
smoothing of the final trajectory is always possible. 
 

 

Figure 5: Circular constructions used to smooth the final 
trajectory and remove all discontinuity in the velocity (left 
diagram shows a simple circular arc and the right diagram 
shows a connection using 2 circular arcs and a circle on an 
horizontal plane). 

7 PARALLEL 
IMPLEMENTATION 

We have now discussed all the elements required to 
build a complete path planning module for UAVs. 
Although the generated trajectories are feasible and 
nearly optimal, the computation time remains too 
long for real-time applications. To address this 
problem, we developed parallel versions of our GA 
and PSO using the “Single-program, multiple-data” 
parallel programming paradigm. Our 
implementation was done in MATLAB. It minimises 
the communication between the processes and 
allows full use of today’s multicore CPUs. The 

flowchart of our parallel GA is shown in Figure 10. 
Although drawn for 2 processes, our implementation 
allows any number of processes. Our parallel 
version of the PSO is not shown in this paper but 
follows the same principle. The execution time and 
the speedup of our parallel GA were measured on a 
system equipped with two Intel Xeon E5310 quad-
core processors using the parameters in Table 1 and 
are plotted in Figure 6 and Figure 7. The execution 
time and the speedup of our parallel PSO are not 
presented here, but are almost identical. 

Table 1: Algorithm parameter values. 

Parameters Values 

Terrain resolution 500 x 500

Number of waypoints per trajectories 8

Number of gen. (AG) or ite. (PSO) 100, 200 and 300

Number of chromo. (AG) or part (PSO) 128 and 256

Mutation rate (AG) 10 %

Elitism rate (AG) 10 %

ω (PSO) 0.7298

c1 (PSO) 1.4960

c2 (PSO) 1.4960

 
Figure 6: Execution time of our parallel GA for different 
work sizes. 

 
Figure 7: Speedup achieved by our parallel GA for 
different work sizes. 

8 COMPARISON OF THE GA 
AND THE PSO 

Finally, we compare the performance of the GA and 
the PSO using 40 different scenarios from two 
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fictitious terrain elevation maps and six real terrain 
elevation maps (see Figure 8 and Figure 9). The 
digital elevation maps for the six real terrains were 
taken from the GeoBase repository (Anon n.d.). The 
average costs of 60 trajectories generated using our 
parallel GA and parallel PSO are compared using 
the T-test with 5% significance to conclude that: 
 The GA produced trajectories significantly better 
than those generated by the PSO for 25 of the 40 
scenarios; 
 the PSO produced trajectories significantly better 
than those generated by the GA for 3 of the 40 
scenarios; and 
 the GA and the PSO produced trajectory of similar 
quality for 12 of the 40 scenarios. 

Based on these results, we conclude that the GA is 
preferable to the PSO when solving the path 
planning problem for UAVs in a fixed computation 
time of 10 s on multicore COTS processors. 

 
Figure 8: 3D visualisation of the computed path (fictitious 
map, 25 km2, altitude ranging from 0 to 250 m ASL). 

 
Figure 9: 3D visualisation of the computed path (Banff, 
Alberta, CA, 1 360 km2, 1 290 to 3 079 m ASL). 

9 CONCLUSIONS 

This paper presents a path planning solution for 
UAVs which considers the dynamic properties of the 
UAV and the complexity of a real 3D environment. 
We used two non-deterministic algorithms, the GA 
and the PSO, to attack this complexity and produce 
solutions in a relatively short computation time. We 
further reduced the execution time by developing 
parallel versions of our algorithms. After achieving a 
quasi-linear speedup of 7.3 on 8 cores and an 
execution time of 10 s for both algorithms, we 
conclude that by using a parallel implementation on 
standard multicore CPUs, real-time path planning 
for UAVs is possible. Moreover, our rigorous 
comparison of the two algorithms shows, with 
statistical significance, that the GA produces 
superior trajectories to the PSO. 
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Figure 10: Flowchart of our parallel genetic algorithm. 
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