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Abstract: This paper presents surrogate modeling as a solution to variation-aware macromodeling, circuit design, and 
device modeling. A scalable and high-fidelity IO buffer macromodel is created by integrating surrogate 
modeling with a physically-based model structure. Circuit performance surrogate models with design and 
variation parameters are efficient for design space exploration and performance yield analysis. Surrogate 
models of the main device characteristics are generated in order to assess the effects of variability in analog 
circuits. Surrogate-based optimization has great potential to speed up complex circuit design. 

1 INTRODUCTION 

The efforts to create high performance analog/mix-
signal circuits are increasing as system complexities 
and uncontrollable variations. It is required to 
capture the effects of variations in circuit modeling 
and design analysis, in order to create a robustly 
behaving design. However, this is a nontrivial task. 
In this paper, we apply surrogate modeling to handle 
the high-dimensional parameters and complex 
responses in variation-aware circuit macromodel, 
design analysis, and device model. We demonstrate 
the benefits of using surrogate modeling in 
enhancing the accuracy, flexibility and efficiency in 
those applications. 

2 SURROGATE-BASED 
MACROMODEL 

Large system design and validation are becoming 
more and more complex, both in terms of CPU 
memory required and simulation time consumed. 
Using macromodels of the sub-circuits is a way to 
reduce the complexity. We demonstrate a new 
methodology of using surrogate modelling in 
developing high-fidelity and flexible macromodels. 
In the new method, an equivalent circuit structure is 
used to capture the static and dynamic circuit 
behaviors, while surrogate modeling is used to 
approximate each element over a range of Process-

Voltage-Temperature (PVT) parameters, so that the 
macromodel is able to dynamically adapt to the PVT 
variations in analysis. 

2.1 Proposed Macromodel Structure 

The new method is applied to develop surrogate-
based Input/Output (IO) buffer macromodel(Zhu and 
Franzon, 2009). The most popular approach to IO 
modelling is to use the traditional table-based input-
output buffer information specification (IBIS) (IO 
Buffer Information Specification, Online). IBIS 
models are simple, portable, IP-protected, and fast in 
simulation. However, they are unable to simulate 
continuous PVT variations and unsuitable for 
statistical analysis. We propose a new type of 
macromodel, called the surrogate IBIS model, to 
solve the problem. Figure 1 shows the proposed 
surrogate IBIS macromodel structure that is 
composed of physically-based equivalent model 
elements. Ipu and Ipd represent the nonlinear output 
current. Time-variant coefficients Kpu and Kpd 
determine the partial turn-on of the pull-up/down 
networks during switching transitions. Cpower and 
Cgnd represent the nonlinear parasitic capacitance 
between the output and the supply rails. Global 
surrogate modeling techniques (Gorissen et al., 2009) 
are used to extract the accurate model elements with 
PVT effects. The goal of the global surrogate 
modeling is to create a model that approximates the 
behavior of the element on the entire domain, so that 
the surrogate model expressions can then be used as 
a full replacement for  the  original  circuit  elements.  
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To achieve high-fidelity, data from t ransistor-level  
SPICE circuit simulations are used for fitting the 
models, and an accuracy target is defined for the 
modeling iterations. The surrogate buffer 
macromodels obtained are portable and they can be 
easily implemented in a variety of modeling 
languages, e.g. Verilog-A.  

 
Figure 1: Structural IO buffer macromodel template with 
surrogate model elements.  

2.2 Macromodel Extraction 

The method is demonstrated on a single-ended 
output buffer circuit shown in Figure 2. The circuit 
is designed in 180 nm CMOS process with a 3.3 V 
normal supply voltage. The threshold voltage 
variations ΔVth in the MOS transistors are 
considered as the main process variations and they 
are assumed vary by ±20%.  The supply voltage Vs is 
assumed to fluctuate within ±30% of the nominal 
supply (3.3 V) and temperature (T) is set in the range 
of 0 to 100 oC. The Circuit simulations were 
performed using HSPICE 2009.03 SP1, and 
modeling construction was performed in MATLAB 
2009b using the SUMO Toolbox version 7.0. 
(Gorissen et al., 2010). 

 
Figure 2: Simplified schematic of the driver circuit. 

Figure 3 (a) shows the transistor-level circuit 
simulations for modelling pull-up output current  

 
Figure 3: Test-benches for extracting model elements: (a) 
pull-up current Ipu  (b) rising/falling transition waveforms 
for Kpu and Kpd (c) illustration of 2EQ/2UK algorithm  (d) 
output capacitance Cgnd and Cpower. 

Ipu(VS, Vpu, T, ΔVth). The input signal turns on the 
pull-up network and turns off the pull-down network.  
Similarly, the pull-down current model Ipd (VS, Vpd, T, 
ΔVth)  was  extracted  by  turning  on  the  pull-down 
network and turning off the pull-up network. The 
time-variant transition coefficients Kpu and Kpd were 
obtained according to 2EQ/2UK algorithm 
(Muranyi, Online). Figure 3 (b) shows the test to 
obtain the switching output voltage waveforms. 
Figure 3(c)  shows  a  simplified  circuit  to illustrate 
the 2EQ/2UK algorithm. The switching output 
voltage waveforms wfm1 and wfm2 were obtained 
with different terminal voltage Vterm, and the 
unknown coefficients Kpu and Kpd could be derived 
by the equations  

1 1pu pu wfm pd pd wfm out( ) ( ( )) ( ) ( ( )) 0K t I V t K t I V t I− − =

2 2pu pu wfm pd pd wfm out( ) ( ( )) ( ) ( ( )) 0K t I V t K t I V t I− − =  (1) 

 
where 

out out term load( ) /I V V R= − . Ipu and Ipd are the 
output current models.  

The test setup for extracting the output parasitic 
capacitance is shown in Figure 3(d).  An AC signal 
is attached to the output ports and the imaginary 
currents in the power and the ground ports are 
measured. The capacitances Cpower and Cgnd were 
derived using  
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fVπ
−ℑ
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where VCC( )Iℑ and gnd( )Iℑ are the imaginary parts 
of the measured currents,  f  is the frequency of the 
AC source, and VAC is the AC voltage amplitude.  
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2.3 Test Results 

To implement the new model, we modified the 
Verilog-A behavioural version IBIS model (LaBonte 
and Muranyi, Online) and applied the surrogate 
model expressions for the model elements. The 
surrogate models are implemented in the form of 
analog functions.  

The modified IBIS model and transistor level 
model were compared in simulation. The accuracy 
of the macromodel is quantified by computing the 
timing error and the maximum relative voltage error. 
The timing error is defined as the time difference 
between the reference and the macromodel voltage 
responses measured for crossing half of the output 
voltage swing.  The maximum relative voltage error 
is defined as the maximum error between the 
reference and macromodel voltage responses divided 
by the voltage swing.  

The test setup is shown in Figure 4 where the 
driver is connected to a 0.75-m long lossy 
transmission line (RLGC model) with a load resistor. 
The use of transmission line makes reflections a 
very strong concern. The characteristic impedance of 
the transmission line is equal to 50 Ω. The data 
pattern for this study is a 1024 bit long 
pseudorandom bit sequence (PRBS) with 2-ns bit 
time. The lossy transmission line and the loading 
resistor Rload are the same.   

Figure 5 shows the responses at the far-end of the 
transmission line under the nominal PVT condition 
(Vs = 3.3 V, process parameter ΔVth = 0, T  = 27 °C). 
In this case, the maximum timing error is 70 ps 
(3.5% of the bit-time) and the maximum relative 
voltage error is 6.45%. We examine the eye diagram 
of the output in Figure 5. The eye-width (W) is 
measured when the eye-height (H) is equal to 1 V.  
The results under different PVT conditions show 
that the eye-width differences within 0.04 ns (2% of 
the bit-time).  

The proposed macromodel achieves good 
accuracy in the analysis. The macromodels obtained 
show good accuracy in capturing the effects of 
reflections and variations, and their scalability 
makes flexible design analysis possible. 

 
Figure 4: Test setup for model validation. 
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Figure 5: Output voltage at far end of transmission line 
when input 1024 bit-long PRBS (partial). Grey solid line: 
transistor, Black dashed line: macromodel. 

2 CIRCUIT DESIGN SPACE 
EXLPORATION 

Advances in integrated circuit (IC) technologies 
have enabled the single-chip integration of multiple 
analog and digital functions, resulting in complex 
mixed-signal Systems-on-a-Chip (SoCs). Circuit 
designers are confronted with large design spaces 
and many design variables whose relationships need 
to be analyzed. In this situation, tasks such as 
sensitivity analysis, design space exploration and 
visualization become difficult, even if a single 
simulation takes only short time. The analyses are 
getting impractical when some of the circuit 
simulations are computationally expensive and time-
consuming.  

Global surrogate modeling (Gorissen et al., 2009) 
could be a valuable asset to assist the circuit design 
analysis at an early stage. The method is a data-
driven approximation which is to capture the global 
behavior of the circuit by only considering the input 
and output behavior. In our experiments, the 
surrogate models for the circuit performance (e.g. S-
parameter, gain, power consumption, noise figure, 
etc) are constructed with design variables (e.g. 
transistor size, bias voltage, current, etc.) as input 
parameters. Transistor-level circuit simulations and 
performance measurements were setup for obtaining 
the modeling data. Adaptive sampling strategies can 
be used to make the sampling process interactive 
and efficient.  An automatic flow is developed for 
the performance surrogate modeling (Figure 6). 

Once the global surrogate model is constructed, it 
will help to speed up the sensitivity analysis, to 
assist the visualization of the design space, and to 
gain insight into the circuit behaviors.  The models 
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are reusable so that the designers can vary the 
specifications and constraints, and quickly see the 
changes in the feasible design space.  

 
Figure 6: Adaptive surrogate-modeling flow with SPICE 
circuit simulations. 

3 YIELD-AWARE CIRCUIT 
DESIGN 

As IC technologies scale down to 65 nm and 
beyond, it is more challenging to create reliable and 
robust designs in the presence of large process (P) 
and environmental variations (e.g. supply voltage 
(V), temperature(T)) (Semiconductor Industry 
Associate). Without considering PVT fluctuations, 
the optimal circuit design would possibly minimize 
the cost functions by pushing many performance 
constraints to their boundaries, and comes up a 
design that is very sensitive to the variations. 
Therefore, we need to not only search for the 
optimal case at the nominal conditions, but also 
carefully treat the circuit robustness in the presence 
of variations.  However, the fulfillment of all these 
requirements introduces more complications in 
circuit designs.  

Yield is defined as the number of dies per wafer 
that meet all predefined performance metrics. Monte 
Carlo analysis is an important technique used for 
yield estimation. However, this method requires a 
large number of sampling points to achieve 
sufficient accuracy and therefore it is very time-
consuming.  

We use performance models with variation 
information for quick yield analysis.  

( , )P S D V=  (3) 

Where D  represents the design parameters, and 
V represents the variation parameters.  

The constructed performance models quantize the 

dependence among the device-level variations, 
design parameters, and the circuit-level performance 
so that it can be applied to estimate the performance 
yield.  

One application of the variation-aware 
performance model is to obtain the yield-aware 
Pareto fronts which is best trade-offs of the overall 
circuit performance and the yield. In addition to 
searching for the general Pareto-optimal designs, 
performance yield at those design points is evaluated 
by using the variation-aware performance model. As 
a result, the yield-aware Pareto fronts can be 
generated.  An illustration is shown in Figure 7. P1 
and P2 are the performance to trade-off, and the 
curves are the Pareto fronts with different yield 
levels. The yield-aware Pareto fronts of sub-blocks 
could be further used in the yield-aware system 
design.   

 
Figure 7: Illustration of Pareto fronts with different yield 
levels.  

4 SURROGATE-BASED DEVICE 
MODELING 

Scaling of device sizes induced high variability of 
transistor parameters. There are two major reasons 
for this. Firstly, quantum mechanics-based 
phenomena such as the drain induced barrier 
lowering (DIBL) or gate tunnelling which were 
negligible in long-channel devices become more 
significant.  Additional physics-based effects 
increased the dependence of many circuit design 
quantities including the drain current, Ids, and device 
transconductance, gm, on the transistor process 
parameters such as the oxide thickness, tox. 
Furthermore, the tolerance of semiconductor 
manufacturing components did not scale down as the 
transistor sizes shrink (Orshansky et al., 2008). As a 
consequence, the amount of uncertainty in the 
design quantities remained constant while device 
sizes become smaller leading to higher percentages 
of variability with respect to the nominal values of 
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the transistor process parameters.  The experimental 
data revealed that the traditional process corner 
analysis might not reflect the real distribution of the 
critical transistor parameters such as the threshold 
voltage Vth (Saha, 2010) while the Monte Carlo 
analysis become more computationally intensive 
with increasing number of variability factors.  

The response surface of design quantities which 
become more complex with the presence of extreme 
process variations can be accurately captured by 
surrogate modelling. Surrogate modelling aims to 
express the output quantity in terms of a few input 
parameters by evaluating a limited number of 
samples. These samples are employed by the basis 
functions which establish the response surface of the 
desired output. Coefficients of the basis functions 
should be optimized to minimize the modelling 
error. This approach has been applied to the problem 
of Ids modelling in order to assess the effects of 
variability in analogue circuit building blocks, in 
particular, the differential amplifiers (Yelten et al.,to 
be published). In this paper, the modelling of gm of 
n-channel transistors will be discussed.  

gm is an important quantity for analogue circuits, 
particularly in determining the AC performance of 
amplifiers, mixers and voltage controlled oscillators. 
The modelling here is based on 65 nm device 
technology (IBM 10SF design kit) and uses six 
process parameters (tox, intrinsic threshold voltage 
Vth,0, intrinsic  drain-source resistance Rds,0, intrinsic 
mobility µ0, channel length variation ΔLeff, and 
channel doping Nch) as input to the model in addition 
to the terminal voltages of the transistor (gate-source 
voltage Vgs, drain-source voltage Vds , and bulk-
source voltage Vbs) and the temperature T. The 
choice of these process parameters is based on their 
physical origin which ensures a weak correlation 
between each parameter. BSIM model Ids equations 
are analytically differentiated to yield gm such that: 

.m ds gsg I V= ∂ ∂  (4) 

The gm expression is validated by extensive 
SPICE circuit simulations over the process corners 
and at temperature extremes so that it can be used to 
evaluate the samples, each composed of the ten 
elements described above. Although an analytic 
equation for gm is used in this work, the modelling 
methodology is general and can employ simulations 
or measurement results given that they have the 
same input and output parameters.  

Kriging basis functions are used to construct the 
surrogate model with the necessary coefficients 
being optimized using the MATLAB toolbox Design 
and Analysis of Computer Experiments (DACE) 

(Lophaven et al., URL). The device width is 
assumed to be 10 µm. The finalized model is tested 
for accuracy using the root relative square error 
(RRSE) metric where RRSE can be given as: 

( ) ( )( )

( ) ( )

2
mod
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2

1 1
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In (5), NT is the number of test samples. The gm 
model is constructed using a total number of 2560 
input samples, and tested with NT =6400 samples 
other than the input samples. The resulting model 
yields an RRSE of 3.96% indicating to a high level 
of accuracy.  

The model can be used to observe the changes in 
gm with respect to its input parameters. Examples of 
this are provided in Figure 8. The graphs provide 
critical insight to the designer about the fundamental 
relations and trade-offs between the chosen process 
parameters, terminal voltages and temperature. 

5 SURROGATE-BASED CIRCUIT 
OPTIMIZATION 

Simulation-based circuit optimization creates a good 
opportunity for surrogate modeling, as the process 
requires a great number of iterative evaluations of 
objective functions. In optimization process, 
surrogate models are used to guide the search 
instead of achieving the global accuracy.  

In the surrogate-based optimization process, 
generally there are two types of simulation models, a 
low-fidelity and a high-fidelity model. In our circuit 
design problems, the transistor-level circuit 
simulation is used for high-fidelity model while the 
built surrogate model is used for low-fidelity model. 
The general surrogate-based optimization process is 
shown in Figure 9 (Queipo et al., 2005).  

We are interested in exploring Gaussian process 
based model (e.g. Kriging model) as an 
approximation method since Kriging model is able 
to provide estimation of the uncertainty in the 
prediction. Adaptive sampling methods (e.g. 
expected improvement (Forrester et al.,2008)) can 
be used to balance between the exploration 
(improving the general accuracy of the surrogate 
model) and exploitation (improving the accuracy of 
the surrogate model in the local optimum area) 
during optimization. An alternative method, space 
mapping (Koziel et al., 2008), maps the input/output  
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(a) 

 
(b) 

 
(c) 

Figure 8: 3D graphs showing the trade-offs between the 
different inputs on the modelled gm. 

space of a low-fidelity model to the input/output 
space of the high-fidelity model. These methods 
would be able to significantly improve the 
optimization efficiency when physically  
computational cheap low-fidelity models are 
available.   

6 SUMMARY 

This work presents the applications of surrogate 
modelling  in  variation-aware  circuit  modeling and 

 
Figure 9: General surrogate-based optimization flow.  

design analysis. Surrogate modeling enhances the 
accuracy and flexibility of IO macromodel, assets 
the design exploration and optimization with, and 
generates device model with critical variability 
parameters. The surrogate-based method 
demonstrates great benefits of reducing the complex 
and cost in variation-aware modeling and circuit 
design.  
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