
A MODEL-DRIVEN ARCHITECTURE APPROACH
FOR AGENT-BASED MODELING AND SIMULATION

Alfredo Garro, Francesco Parisi and Wilma Russo
Department of Electronics, Computer and Systems Science (DEIS)

University of Calabria, Via P. Bucci 41C, Rende (CS), 87036, Cosenza, Italy

Keywords: Agent-Based Modeling and Simulation, Model Driven Development, Model Driven Architecture.

Abstract: It is widely agreed that a widespread adoption of the Agent-Based Modeling and Simulation (ABMS)
approach by experts of typical ABMS domains demands for well-defined processes, modeling techniques
and tools able to fully support them in modeling and simulating complex systems. To this end, the paper
proposes a Model-Driven process which conforms to the OMG Model-Driven Architecture (MDA) and
enables the definition of Platform-Independent simulation Models from which Platform-Dependent
simulation Models and the related code can be automatically obtained with significantly reduced
programming and implementation efforts.

1 INTRODUCTION

Agent Based Modeling and Simulation (ABMS)
represents a new and powerful approach for
analyzing and modeling complex systems in a wide
range of application domains (e.g. financial,
economic, social, logistic, chemical, engineering)
(Garro, 2009). In fact, ABMS can fully represent a
system at different levels of complexity through the
use of autonomous, goal-driven and interacting
entities (agents) organized into societies which
exhibit emergent properties. The agent-based model
of a system can then be executed to simulate the
behavior of the complete system so that knowledge
of the behaviors of the entities (micro-level) produce
an understanding of the overall outcome at the
system-level (macro-level).

To date, exploiting the currently available
ABMS platforms (North, 2007), agent-based
simulation models can be obtained using two main
approaches: (i) direct implementation on a specific
ABMS platform: this approach inevitably suffers
from the limitations and particular features of the
chosen platform; (ii) manual adaption of a
conceptual system model, possibly obtained by
exploiting an AOSE (Agent-Oriented Software
Engineering) methodology (Henderson-Sellers,
2005), to a specific ABMS platform: this requires
additional adaptation efforts, the magnitude of which

increases depending on the gap between the
conceptual and implementation models of the
system. In fact, both these approaches require
significant implementation efforts and lead to agent-
based simulation models which are at a low-
abstraction level, strongly platform-dependent, and
therefore not easy to verify, modify and update
(Garro, 2010), (Iba, 2004), (Nebrijo Duarte, 2009).
On the other hand, although there is an increasing
interest in the definition of Platform-Independent
Simulation Models (AMP, 2011), (North, 2007)
which enable the exploitation of more high-level
simulation design abstractions and the automatic
code generation for different target simulation
environments, there is a lack of process able to guide
and support ABMS practitioners in the definition of
these simulation models starting from a conceptual,
and domain-expert-oriented modeling of the system
without taking into account simulation configuration
details.

To address these issues, this paper aims to
extend the benefits of an emerging software
engineering approach, the Model-Driven
Development (MDD) (Atkinson, 2003), to ABMS
practitioners by proposing a Model-Driven approach
for ABMS which conforms to the OMG Model-
Driven Architecture (MDA) (OMG, 2010) and then
allows to (automatically) produce Platform-
Dependent simulation Models starting from a

74
Garro A., Parisi F. and Russo W..
A MODEL-DRIVEN ARCHITECTURE APPROACH FOR AGENT-BASED MODELING AND SIMULATION.
DOI: 10.5220/0003648400740083
In Proceedings of 1st International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH-2011), pages
74-83
ISBN: 978-989-8425-78-2
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

Platform-Independent simulation Model obtained on
the basis of a preliminary Computation Independent
Model. Specifically, Platform-Independent
simulation Models are produced by exploiting the
AMF framework defined in the AMP (Agent-
Modeling Platform) Eclipse Project which currently
represents the only effort able to provide automatic
generation of Platform-Dependent simulation
Models and related code for several ABMS
platforms (AMP, 2011).

The remainder of this paper is organized as
follows: the proposed MDA-based approach for
ABMS is presented (Section 2) and then exemplified
(Section 3) with reference to a popular problem (the
Demographic Prisoner’s Dilemma) able to represent
several social and economic scenarios. Finally,
conclusions are drawn and future works delineated.

2 AN MDA-BASED APPROACH
FOR ABMS

The Model-Driven Development (MDD) approach
conceives system development in terms of a chain of
model transformations (Atkinson, 2003). The most
mature MDD proposal is the Model-Driven
Architecture (MDA) (OMG, 2010) launched by the
Object Management Group (OMG) which defines
three main abstraction levels of a system and the
resulting model transformations: (i) a Computation
Independent Model (CIM) which describes context,
requirements and organization of a system at a
conceptual level; (ii) a Platform-Independent Model

(PIM) which specifies architectural and behavioral
aspects of the system without referring to any
specific software platform; (iii) Platform-Specific
Models (PSMs) which describe the realization of the
system for specific software platforms and from
which code and other development artifacts can be
straightforwardly derived. Transformations between
models (M1 Layer) are enabled by both the
metamodels (M2 Layer) which they conform to and
the mappings among these metamodels which must
be defined as instances of the meta-metamodel (M3
Layer) represented by the Meta Object Facility
(MOF) (OMG, 2006) (see Figure 1). Thus, given a
source model and the mapping between its
metamodel and the target metamodel, the target
model can be generated.

The MDA proposal can be effectively exploited
in the ABMS domain to obtain platform-
independent agent-based models which are not only
easy to verify, modify and update but also require
significantly reduced programming and
implementation efforts. However, to map the basic
MDA concepts, which have been specifically
conceived for the Software Engineering domain, into
the ABMS counterparts, the following components
must be available: (i) a reference CIM metamodel
for the definition of CIMs which supports the agent-
based conceptual system modeling carried out
through both abstract and domain-expert oriented
concepts; (ii) a PIM metamodel for the definition of
Platform-Independent ABMS Models; (iii) a PSM
metamodel for each target ABMS simulation
platform; (iv) mappings among these metamodels so
to enable ABMS model transformations.

The main effort for the definition of Platform-
Independent ABMS Models, is currently represented

CI M
Metam odel

PIM
Metam odel

PSM'
Metam odel

PSM''
Metam odel

CIM
Model

PI M
Model

PSM'
Mo del

PSM''
Model

<<instance of>>

<<instance of>>

<<ins tance of>>

<<instance of>>

mapping trans formation
<<based on>>

mapping

mapping

transformation

transformation

<<based on>>

Code

<<based on>>

Code

CONCEPTUAL
SYSTEM

MODELING

HIGH LEVEL
DESIGN

DETAILED
DESIGN

IMPLEMENTATION

MOF
Me tam odel

<<
ins

tan
ce

of>
>

<<instan
ce o

f>>

<<instance of>>

<<instance of>>

M3 Layer M2 Layer M1 Layer

M0 Layer
Figure 1: The MDA-based Process.

A MODEL-DRIVEN ARCHITECTURE APPROACH FOR AGENT-BASED MODELING AND SIMULATION

75

by AMF (AMP, 2011) which provides the automatic
generation of PSMs and the related code for three
popular ABMS platforms (AMP, 2011) (North,
2005) (Parker, 2001). Therefore, to enable the
definition of complete Model-Driven ABMS
processes which conform to the MDA-based process
depicted in Figure 1a, a CIM metamodel with the
above highlighted features (Section 2.1), an AMF-
based PIM metamodel (Section 2.2), and the
mapping between the two defined metamodels
(Section 2.3) are provided.

2.1 The CIM Metamodel

The CIM metamodel is defined by adopting a light,
task-based model of agents’ behaviors which
combines the strengths of several well-known task-
based agent models (Bernon, 2004). This metamodel
is quite general and plain, as required by the
abstraction level for which it has been conceived,
but powerful enough for representing, at a
conceptual level, a great variety of systems in typical
ABMS domains (e.g. financial, economic, social,
logistic, physical science, engineering).

In particular, the CIM metamodel reported in
Figure 2 is centered on the concept of Agent. An
Agent, which is situated in an Environment
constituted by Resources, is characterized by a
Behavior and a set of Properties. Agents can be
organized into Societies which in turn can be
organized in sub-societies. A Behavior is composed
by a set of Tasks organized according to
Composition Task Rules. Each Task, which can act
on a set of environment’s Resources, is structured as
an UML Activity Diagram which consists of a set of
linked Actions that can be either Control Flow
(pseudo) actions (i.e. start, end, split, join, decision,
merge, sequence) or Computation and Interaction

actions (i.e. outgoing or incoming signals) (OMG,
2009).

2.2 The PIM Metamodel

The PIM metamodel is derived from the AMF
framework (AMP, 2011) as AMF represents the
most significant effort towards the definition of
Platform-Independent simulation Models.
Specifically, these PIM models can be defined
through a hierarchical visual editor and represented
by XML documents (Schauerhuber, 2006) which are
exploited for the generation of PSMs and related
code which currently targets the Ascape (Parker,
2001), Escape (AMP, 2011) and Repast Simphony
simulation platforms (North, 2005).

The derived AMF-based PIM metamodel (see
Figure 3) is centered on the concept of (Simulation)
Context (SContext) which represents an abstract
environment in which (Simulation) Agents (SAgents)
can act. An SAgent is provided with an internal state
consisting of a set of SAttributes, a visualization
style SStyle, and a group of AActs (AGroup) which
constitute its behavior. An AAct is characterized by
an Execution Setting which establishes when its
execution can start, its periodicity and its priority.

SContexts, which are themselves SAgents, can be
organized hierarchically and contain sub-SContexts.
SAgents in an SContext can be organized by using
SProjections which are structures designed to define
and enforce relationships among SAgents in the
SContext. In particular, a SNetwork projection
defines the relationships of both acquaintance and
influence between SAgents whereas SGrid, SSpace,
SGeography and SValue Layer projections define
either the physical space or logical structures in
which the agents can be situated.

Property

Ag ent

instances: int = 1

Behavior Task

0..*

1..*

Activity

A ction
1..*

Control Flow

C omputation

I nteraction

is linked to
0..*

1

Res ource

Society

0..*

0..*

Com position
Task Rule

1..*1

1..*

1..*

0..*
1 1..*

1..*

Environment

1..* 0..* acts on

is s ituated

0..*

1

1

Figure 2: The CIM metamodel.

SIMULTECH 2011 - 1st International Conference on Simulation and Modeling Methodologies, Technologies and
Applications

76

Figure 3: The PIM metamodel.

2.3 From CIM to PIM

With reference to the proposed MDA-based process
(see Figure 1) a target model can be obtained by
transforming a source model on the basis of a
mapping between the respective metamodels which
is provided in terms of both mapping rules among
corresponding concepts and additional guidelines
which enable to obtain instances of concepts of the
target metamodel from instances of concepts of the
source metamodel (OMG, 2003). This section deals
with the mapping between the CIM and the AMF-
based PIM metamodels, proposed in Section 2.1 and
2.2 respectively, and, in particular, concerns with the
definition of a mapping (see Section 2.3.2) enabling
to transform the entities of a CIM model into PIM
entities by taking into account specific aspects of the
AMF-based PIM metamodel (Karow, 2006) (see
Section 2.3.1). The subsequent generation of several
PSMs (and code for the related ABMS platforms)
from the obtained PIM can be then easily carried out
by the visual and Eclipse-based modeling
environment provided by the AMF framework
(AMP, 2011).

2.3.1 Main Aspects of an AMF-based PIM

Some main aspects have to be considered in the
definition of an AMF-based PIM; in this section, the
focus is on those which are relevant since they affect
the simulation execution of the derived PSMs and
which, in particular, concern the proper definition of
the Execution Setting of an AAct, and the
exploitation of SAttributes to enable communication
among SAgents (see Figure 3).
An AMF-based PIM is defined according to a time-
stepped driven simulation approach (the simulation
time is incremented in fixed steps) (North, 2007), in

which, at each simulation step t, a set of AAct
instances which can be executed and their execution
order are defined. Specifically, in a step t: (i) for
each AAct, belonging to the AGroup of an SAgent
SA, the number of its instances depends on the
number of SA instances; (ii) the AAct Execution
Settings determine the AAct instances to be executed
and their execution order. In particular, the
Execution Setting of an AAct is characterized by the
tuple <startingTime, period, priority> where: (i)
startingTime is the first simulation step at which the
instances of the AAct are to be executed; (ii) for
each instance of the AAct, period is the number of
simulation steps which must elapse between two
subsequent executions; (iii) in a simulation step the
priority value affects the execution order of the
enabled AActs instances (an AAct is enabled at the
simulation step t if t is equal to the AAct
startingTime which is incremented by a multiple of
its period).

As in a simulation step t all enabled AAct
instances (regardless of whether they belong to a
specific SAgent instance) belong to the same set,
Enabled(t), from which the AActs are scheduled for
execution on the basis of their priority (see Figure
4), the AAct Execution Settings have to be properly
defined to guarantee right execution order between
AAct instances of not only the same SAgent
instance (intra-agent AAct interleaving) but also
different SAgent instances (inter-agent AAct
interleaving). Moreover, as for AActs of the
AInitialize and ARule types starting Time and period
are both fixed to 0 and 1 respectively whereas no
fixed settings are associated to ASchedule AActs, in
defining the AAct Execution Settings, the different
AAct types should be also considered (see Figure 3).

With respect to the communication among
SAgents, since the SAttributes of an SAgent can be
freely accessed by all the instances of the SAgent,

SContext SA gent AGroup AAct

Execution Setting
1 1

AScheduleAR uleA Inizialize

SPro jection
0..*

0..* 1..*

SStyle

1

1

0..*

1

SSpaceSNetworkSGrid SGeography SValueLayer

0..*

SAttribute

A MODEL-DRIVEN ARCHITECTURE APPROACH FOR AGENT-BASED MODELING AND SIMULATION

77

and the SAttributes of an SContext by all the
instances of all the SAgents in the SContext,
communication among instances of the same SAgent
(intra-agent communication) can exploit SAgent
SAttributes whereas communication among
instances of different SAgents (inter-agent
communication) can be enabled by SContext
SAttributes.

Finally, the design of SAgent communications
should take into account how random choices among
the enabled AAct (see Figure 4) affect the values of
the SAttributes on which the communication is
based.

2.3.2 Mapping between the CIM and PIM
Metamodels

CIM to PIM model transformations require the
definition of mapping rules among concepts of the
source and target metamodels along with additional
guidelines for managing transformations which, due
to the different abstraction level between the
concepts of the reference metamodels, cannot be
completely automated (Karow, 2006).

The transformation of a CIM into a PIM starts by
transforming each Society into a Simulation Context
(SContext) and any enclosed Society into a
(sub)SContext of the corresponding enclosing
Society. SAttributes of each SContext are, then,
originated by the Properties of the corresponding
Society. The next step consists in transforming each
Agent belonging to a Society into an SAgent of the
corresponding SContext, generating the SAgent
SAttributes on the basis of the Agent Properties, and
introducing the SAgent AGroup which groups the
AActs constituting its behavior.

On the basis of the set of Resources, which
compose the Environment in which Agents are
situated, a set of SProjections, whose types
(SNetwork, SGrid, SSpace, SGeography,
SValueLayer) depend on the characteristics of the

mapped Resources, are then introduced in the
corresponding SContext.

At this point, AActs associated to each SAgent
are to be defined on the basis of the behavior of the
corresponding Agent which is composed by a set of
Tasks organized according to Composition Task
Rules. This transformation is not direct as requires to
take into account the specific aspects of both an
AMF-based PIM (see Section 2.3.1) and the
simulation scenarios to be represented. In particular,
due to different communication mechanisms
provided by CIM and PIM metamodels, the former
based on incoming and outgoing signals (see Section
2.1) and the latter on shared SAttributes (see Section
2.3.1), Tasks which involve Actions of the
interaction type can be grouped into a single AAct
whose Execution Setting is defined on the basis of
the Composition Task Rules associate to the grouped
Tasks (see Section 3.2 for an example). Moreover,
both AAct Execution Settings and related AAct
types (AInizialize, ARule, ASchedule) must be set not
only to ensure compliance with the Composition
Rules of the corresponding Tasks but also to
guarantee intra and inter-agent AAct interleavings
(see Section 2.3.1) which adhere to the simulation
scenarios under consideration (see Section 3.2).
Finally, Actions which constituted the Tasks mapped
into an AAct have to be properly realized by
exploiting the wide set of predefined functions
provide by AMF (AMP, 2011).
Although the transformation of a CIM to PIM
cannot be completely carried out automatically as it
requires to deal with the above discussed issues, a
QVT/R-based representation (OMG, 2010)
(Taentzer, 2005) of the discussed mapping has been
also obtained to enable an automatic generation of a
basic PIM structure to be manually refined. As an
example, in Figure 5 the rule for transforming an
Agent into an SAgent is reported by using the
QVT/R graphical notation (OMG, 2008).

ActScheduling (t) {
 AAI = Enabled(t); /* Enabled(t) returns the set of enabled AAct instances at t */
 while (not empty AAI) {
 MPE = maxPriorityEnabled(AAI) ; /* maxPriorityEnabled(AAI) returns a set
 consisting of the AAct instances with maximum priority in AAI */
 AAI = AAI - MPE;

 while (not empty MPE) {
 aa = randomGet(MPE); /* randomGet(MPE) returns an AAct instance randomly
 chosen in (and removed from) MPE */

 execute (aa);
 }
 }
}

Figure 4: Execution of an AMF-based simulation step.

SIMULTECH 2011 - 1st International Conference on Simulation and Modeling Methodologies, Technologies and
Applications

78

a: A gent

 instances = x

<<domain>>
s a: SAgent

sat: SAttribute

 at name = pn
atvalue = av

<<domain>>
c im : CIMM pim : PIMM

C E

when

where

CIMtoPIM(cim, pim)

PropertyToSAttribute(p, sat)
BehaviorToAGroup(b, ag)

AgentToSAgent

b: Behavior ag: AGroupp: Property

pname = pn
pvalue = pv

Figure 5: A Mapping Rule expressed by using the QVT/R graphical notation.

3 EXPLOITING THE PROPOSED
MDA-BASED PROCESS

In this section, the MDA-based process for ABMS
proposed in the previous sections is exemplified
with reference to the well-known Demographic
Prisoner’s Dilemma which was introduced by
Epstein in 1998 (Dorofeenko, 2002) and is able to
represent several social and economic complex
scenarios in which interesting issues regard the
identification of starting configurations and
conditions that allow initial populations to reach
stable configurations (in terms of both density and
geographic distribution). Specifically, in these
scenarios k players are spatially distributed over an
n-dimensional toroidal grid. Each player is able to
move to empty cells in its von Neumann
neighborhood of range 1 (feasible cells), is
characterized by a fixed pure strategy (c for
cooperate or d for defect) and is endowed with a
level of wealth w which will be decremented or
incremented depending of the payoff earned by the
player in each round of the Prisoner’s Dilemma
game played during its life against its neighbors
(Dorofeenko, 2002). The player dies when its wealth
level w becomes negative, whereas, when w exceeds
a threshold level wb, an offspring can be produced
with wealth level w0 deducted from the parent and
plays using the same strategy as the parent unless a
mutation (with a given rate m) occurs. A player also
dies if its age exceeds a value agemax which was
randomly fixed when the player was created.

3.1 The CIM Model

For the Demographic Prisoner’s Dilemma, the CIM
model envisages a DPDGame Society of k Player
Agents which are situated in an Environment which
includes a Grid Resource constituted by an n-
dimensional toroidal grid. Main Properties of the
DPDGame Society are Prisoner’s Dilemma payoffs,
initial and threshold wealth levels (w0, wb), and
mutation rate (m), and those of the Player Agent are
its wealth level w, age, and strategy. The Behavior
of the Player Agent is obtained by composing the set
of Tasks reported in Table 1 according to the
Composition Task Rules shown in Table 2;
corresponding UML Activity diagrams are reported
in Figure 6.

3.2 The PIM Model

In this section, the transformation from the defined
CIM to a PIM is detailed with reference to a
simulation scenario where all players are required to
play exactly one round in a simulation step.
The transformation from the CIM to a PIM is
enabled by the mapping between the CIM and PIM
metamodels defined in Section 2.3.2 which
originate: the DPDGame SContex from the
DPDGame Society, the Player SAgent from the
Player Agent, the GameSpace SProjection from the
Grid Resource, the Acts (with their related Execution
Settings) associated to the Player SAgent from the
Tasks and associated Composition Task Rules
composing the Behavior of the Player.

In Table 3 the Acts derived for the Player
SAgent along with the associated Tasks (see Table 1
and 2) and Execution Settings are reported. As the

A MODEL-DRIVEN ARCHITECTURE APPROACH FOR AGENT-BASED MODELING AND SIMULATION

79

Table 1: Identified Tasks.

Task Id Task Name Description
T1 Walk The player can move to a feasible cell of the Grid.
T2 Challenge If the von Neumann neighborhood (of range 1) of the player is

not empty the player communicates its strategy to its randomly
selected opponent player.

T3 Update Age The player age is incremented by 1.
T4 Fission If the player’s wealth level w is greater than the threshold wb a

new child player can be created in a feasible cell of its parent and
endowed with w0 and the same strategy of the parent (unless a
mutation with rate m occurs). The wealth level of the parent
player is decremented by w0.

T5 Die If the wealth level of the player is negative or its age is greater
than agemax the player is removed from the Grid.

T6 Accept Dare When the strategy of an opponent player is provided the player
strategy is communicated to the opponent and the earned payoff is
added to the player’s wealth level.

T7 Update Wealth
Level

If the strategy of an opponent player is provided the earned payoff
is added to the player’s wealth level

Select an available cell in the
von Neumann neighborhood

of range 1

Move to the
selected cell

[else]

[available
cell found]

Die

[else]

[wealth <0 ||
age > max age]

(T1) Walk (T5) Die

Select an opponent p layer
in th von Neumann

neighborhood of range 1

[else]

[opponent
player found]

Send my Strategy
to the opponent player

Receive the Strategy
of an opponent player

Update
Wealth Level

Send my Strategy
to the opponent player

(T2) Challenge (T6) Accept Dare

Increment age
by one

Receive the Strategy

of an opponent player

Update
Wealth Level

(T3) Update Age (T7) Update Wealth Level

Select an available cell in
the von Neumann

neighborhood of range 1

Create a new
Player Agent

Set the wealth level of the
new agent to the initial

wealth level w0

Decrements my wealth
level of w0

Compute a random value v
belonging to the interval [0,1]

Set the s trategy
of the created
agent to mine

Mutate strategy of
the created agent

[else]

[wealth level greater than
repruduction threshold]

[available
 cell found]

[else]

[v<=mutation rate]

[else]

(T4) Fission

Figure 6: The UML activity diagrams of the Player Agent tasks.

AMF communication mechanism among instances
of an SAgent is based on access to the SAttributes of
the SAgent (see Section 2.3.1), a single AAct (Play
Neighbor) is derived from tasks T2, T6 and T7

which carried out this kind of communication.
Execution Settings of the AActs in Table 3 are
characterized by both startingTime and period equal
to one to guarantee that all the Player SAgents

SIMULTECH 2011 - 1st International Conference on Simulation and Modeling Methodologies, Technologies and
Applications

80

Table 2: Composition Task Rules.

Task Id Set of Enabling Tasks
T1 -
T2 {T1}
T3 {T1}
T4 {T7}
T5 {T3, T4}
T6 {T2}
T7 {T6}

Table 3: Group of Acts (AGroup) for the Player Agent.

AAct AAct Execution Setting Tasks
Random Walk <1,1, a> T1
Play Neighbor <1,1, b>, with b<a T2, T6, T7
Update Age <1,1, c>, with c<a T3
Fission <1,1, d>, with d<c & d<b T4
Die <1,1, e>, with e<d T5

(a) DPDGame model in AMF (b) Random Walk and Update Age AActs

Figure 7: The AMF-based PIM model of the DPDGame.

perform all their AActs in each simulation step, and
priorities are set on the basis of the Compositions
Task Rules (see Table 2).
On the basis of the type of AActs in Table 3, which
can be either ARule or ASchedule (see Section
2.3.1), several PIM definitions can be obtained. In
Figure 7.a an example of a PIM model
representation, obtained by exploiting the visual and
Eclipse-based modelling environment provided by
AMF, is reported in which Random Walk, Fission
and Die AActs are set to the ARule type, whereas
Play Neighbor and Update Age AActs are set to the
ASchedule type. Moreover, an AAct of the
AInizialize type (Inizialize) has been introduced for
setting up the SAttributes of the DPDGame
SContext and the Player SAgent. In Figure 7.b the
definition of the Random Walk and Update Age
AActs is reported where the actions associated to

each AAct are defined by exploiting the wide set of
functions provided by AMF.

Starting from this definition of the PIM model,
AMF is able to automatically generate the PSM
models and the related code for the ABMS platforms
which are currently supported: Repast Simphon
(North, 2005), Ascape (Parker, 2001) and Escape
(AMP, 2011). The simulation of the system can then
be executed in a target simulation environment
andsimulation results can be thoroughly analyzed by
exploiting several analysis tools (as Matlab, R,
VisAd, iReport, Jung) which can be directly invoked
from the environment.

4 CONCLUSIONS

It is widely agreed that significant benefits can be

A MODEL-DRIVEN ARCHITECTURE APPROACH FOR AGENT-BASED MODELING AND SIMULATION

81

obtained by exploiting the Agent-Based Modeling
and Simulation (ABMS) approach in several
application domains (e.g. financial, economic,
social, logistic, physical science, chemical,
engineering). However, to promote widespread
adoption of the ABMS, well-defined processes,
modeling techniques, and tools which are able to
fully support domain-experts (with often limited
programming expertise) are currently lacking.
In this context, the paper has aimed to extend the
benefits of the emerging software engineering
Model-Driven approach in the ABMS context by
proposing an OMG MDA-based process which
enables ABMS practitioners to obtain platform-
independent agent-based models which are easy to
verify (as they conform to meta-models), modify
and update (as they are mainly constituted by visual
diagrams based on the UML notation) with
significantly reduced programming and
implementation efforts (as the simulation code is
automatically generated from the defined models).
Although there are interesting proposals which
exploit Model-Driven approaches for developing
agent-based conceptual and simulation models, the
proposal differs from all others as it fully complies
with MDA so providing an effective platform
independent approach for ABMS.

Starting from the visual modeling environment
offered by the AMP Eclipse Project, which has
provided the reference framework (AMF) for the
definition of Platform-Independent and Platform-
Specific simulation Models as well as code
generation, an integrated ABMS environment can be
obtained for supporting both the conceptual
modeling of the system (in terms of Computation
Independent Models) and model transformations
enabled by the defined meta-models and related
mapping. Ongoing research efforts are underway
devoted to the definition and extensive
experimentation of a full-fledged ABMS
methodology which, by exploiting the MDA-based
approach, is able to seamlessly guide domain experts
from the analysis of a complex system to its agent-
based modeling and simulation.

REFERENCES

The AMP project, http://www.eclipse.org/amp/.
Atkinson, C., Kühne, T., 2003. Model-driven

development: A metamodeling foundation. IEEE
Software, 20(5):36-41.

Bernon, C., Cossentino, M., Gleizes, M. P., Turci, and P.,
Zambonelli, F., 2004. A Study of some Multi-agent

Meta-Models. Agent Oriented Software Engineering
V, revised selected papers. LNCS, Volume 3382,
Springer.

Dorofeenko, V., Shorish, J., 2002. Dynamical Modeling of
the Demographic Prisoner's Di-lemma. Computing in
Economics and Finance, Society for Computational
Economics.

Garro, A., Russo, W., 2009. Exploiting the easyABMS
methodology in the logistics domain. Proceedings of
the Int’l Workshop on Multi-Agent Systems and
Simulation (MAS&S’09) as part of the Multi-Agent
Logics, Languages, and Organisations Federated
Workshops (MALLOW 2009), Turin, Italy, September
7-11, 2009.

A. Garro, W. Russo. easyABMS: a domain-expert
oriented methodology for Agent Based Modeling and
Simulation. Simulation Modelling Practice and
Theory, Vol. 18, pp. 1453-1467, 2010, Elsevier B.V.,
Amsterdam, The Netherlands.

Hahn, C., Madrigal-Mora, C., and Fischer, K., 2007.
Interoperability through a Platform-Independent
Model for Agents. Enterprise Interoperability II, New
Challenges and Approaches. Springer London.

Henderson-Sellers B., Giorgini P. (editors), 2005. Agent-
oriented methodologies. Idea Group Publishing,
Hershey, PA.

Iba, T., Matsuzawa, Y. and Aoyama, N., 2004. From
Conceptual Models to Simulation Models: Model
Driven Development of Agent-Based Simulations. In
Proc. of the 9th Workshop on Economics and
Heterogeneous Interacting Agents. Kyoto, Japan.

Karow, M., Gehlert, A., 2006. On the Transition from
Computation Independent to Platform Independent
Models. In Proc. of the 12th Americas Conference on
Information Systems, Acapulco, Mexico, August 2006.

Nebrijo Duarte, J.,de Lara, J., 2009. ODiM: A Model-
Driven Approach To Agent-Based Simulation. In
proc. of the 23rd European Conference on Modelling
and Simulation, Madrid, Spain, June 9th - 12th, 2009.

North, M. J., Howe, T.R., Collier, N.T. and Vos, J.R.,
2005. Repast Simphony Runtime System. In Proc. of
the Agent 2005 Conference on Generative Social
Processes, Models, and Mechanisms, Chicago, IL.

North, M. J., Macal, C. M., 2007. Managing Business
Complexity: Discovering Strategic Solutions with
Agent-Based Modeling and Simulation. Oxford
University Press.

Object Management Group (OMG). Model Driven
Architecture (MDA) Guide Version 1.0.1, 2003.
Available at http://www.omg.org/cgi-bin/doc?omg/03-
06-01.

Object Management Group (OMG). Meta Object Facility
(MOF) Specifications (version 2.0, 2006). Available at
http://www.omg.org/spec/MOF/2.0/.

Object Management Group (OMG). MOF
Query/Views/Transformations (QVT) Specifications
(version 1.0, 2008). Available at
http://www.omg.org/spec/QVT/1.0/.

Object Management Group (OMG). Unified Modeling
 Language (UML) Specifications (version 2.2, 2009).

SIMULTECH 2011 - 1st International Conference on Simulation and Modeling Methodologies, Technologies and
Applications

82

Available at http://www.omg.org/spec/UML/2.2/.
Object Management Group (OMG). Model Driven

Architecture (MDA) Specifications, 2010. Available at
http://www.omg.org/mda/specs.htm.

Parker, M. T., 2001. What is Ascape and Why Should You
Care?. J. Artificial Societies and Social Simulation
4(1).

Schauerhuber, A., Wimmer, M., and Kapsammer, E.,
2006. Bridging existing Web modeling languages to
model-driven engineering: a metamodel for WebML.
In proc. of the sixth international conference on Web
engineering (ICWE’06). Palo Alto, CA, ACM press.

Taentzer, G., Ehrig, K., Guerra, E., Lara (de), J., Lengyel,
L., Levendovszky, T., Prange, U., Varró, D., and
Varró-Gyapay, S., 2005. Model Transformation by
Graph Transformation: A Comparative Study. In Proc.
of the ACM/IEEE 8th International Conference on
Model Driven Engineering Languages and Systems,
Montego Bay, Jamaica, 2005.

A MODEL-DRIVEN ARCHITECTURE APPROACH FOR AGENT-BASED MODELING AND SIMULATION

83

