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Abstract: It is widely agreed that a widespread adoption of the Agent-Based Modeling and Simulation (ABMS) 
approach by experts of typical ABMS domains demands for well-defined processes, modeling techniques 
and tools able to fully support them in modeling and simulating complex systems. To this end, the paper 
proposes a Model-Driven process which conforms to the OMG Model-Driven Architecture (MDA) and 
enables the definition of Platform-Independent simulation Models from which Platform-Dependent 
simulation Models and the related code can be automatically obtained with significantly reduced 
programming and implementation efforts. 

1 INTRODUCTION 

Agent Based Modeling and Simulation (ABMS) 
represents a new and powerful approach for 
analyzing and modeling complex systems in a wide 
range of application domains (e.g. financial, 
economic, social, logistic, chemical, engineering) 
(Garro, 2009). In fact, ABMS can fully represent a 
system at different levels of complexity through the 
use of autonomous, goal-driven and interacting 
entities (agents) organized into societies which 
exhibit emergent properties. The agent-based model 
of a system can then be executed to simulate the 
behavior of the complete system so that knowledge 
of the behaviors of the entities (micro-level) produce 
an understanding of the overall outcome at the 
system-level (macro-level). 

To date, exploiting the currently available 
ABMS platforms (North, 2007), agent-based 
simulation models can be obtained using two main 
approaches: (i) direct implementation on a specific 
ABMS platform: this approach inevitably suffers 
from the limitations and particular features of the 
chosen platform; (ii) manual adaption of a 
conceptual system model, possibly obtained by 
exploiting an AOSE (Agent-Oriented Software 
Engineering) methodology (Henderson-Sellers, 
2005), to a specific ABMS platform: this requires 
additional adaptation efforts, the magnitude of which 

increases depending on the gap between the 
conceptual and implementation models of the 
system. In fact, both these approaches require 
significant implementation efforts and lead to agent-
based simulation models which are at a low-
abstraction level, strongly platform-dependent, and 
therefore not easy to verify, modify and update 
(Garro, 2010), (Iba, 2004), (Nebrijo Duarte, 2009). 
On the other hand, although there is an increasing 
interest in the definition of Platform-Independent 
Simulation Models (AMP, 2011), (North, 2007) 
which enable the exploitation of more high-level 
simulation design abstractions and the automatic 
code generation for different target simulation 
environments, there is a lack of process able to guide 
and support ABMS practitioners in the definition of 
these simulation models starting from a conceptual, 
and domain-expert-oriented modeling of the system 
without taking into account simulation configuration 
details. 

To address these issues, this paper aims to 
extend the benefits of an emerging software 
engineering approach, the Model-Driven 
Development (MDD) (Atkinson, 2003), to ABMS 
practitioners by proposing a Model-Driven approach 
for ABMS which conforms to the OMG Model-
Driven Architecture (MDA) (OMG, 2010) and then 
allows to (automatically) produce Platform-
Dependent simulation Models starting from a 
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Platform-Independent simulation Model obtained on 
the basis of a preliminary Computation Independent 
Model. Specifically, Platform-Independent 
simulation Models are produced by exploiting the 
AMF framework defined in the AMP (Agent-
Modeling Platform) Eclipse Project which currently 
represents the only effort able to provide automatic 
generation of Platform-Dependent simulation 
Models and related code for several ABMS 
platforms (AMP, 2011). 

The remainder of this paper is organized as 
follows: the proposed MDA-based approach for 
ABMS is presented (Section 2) and then exemplified 
(Section 3) with reference to a popular problem (the 
Demographic Prisoner’s Dilemma) able to represent 
several social and economic scenarios. Finally, 
conclusions are drawn and future works delineated. 

2 AN MDA-BASED APPROACH 
FOR ABMS 

The Model-Driven Development (MDD) approach 
conceives system development in terms of a chain of 
model transformations (Atkinson, 2003). The most 
mature MDD proposal is the Model-Driven 
Architecture (MDA) (OMG, 2010) launched by the 
Object Management Group (OMG) which defines 
three main abstraction levels of a system and the 
resulting model transformations: (i) a Computation 
Independent Model (CIM) which describes context, 
requirements and organization of a system at a 
conceptual level; (ii) a Platform-Independent Model 

(PIM) which specifies architectural and behavioral 
aspects of the system without referring to any 
specific software platform; (iii) Platform-Specific 
Models (PSMs) which describe the realization of the 
system for specific software platforms and from 
which code and other development artifacts can be 
straightforwardly derived. Transformations between 
models (M1 Layer) are enabled by both the 
metamodels (M2 Layer) which they conform to and 
the mappings among these metamodels which must 
be defined as instances of the meta-metamodel (M3 
Layer) represented by the Meta Object Facility 
(MOF) (OMG, 2006) (see Figure 1). Thus, given a 
source model and the mapping between its 
metamodel and the target metamodel, the target 
model can be generated. 

The MDA proposal can be effectively exploited 
in the ABMS domain to obtain platform-
independent agent-based models which are not only 
easy to verify, modify and update but also require 
significantly reduced programming and 
implementation efforts. However, to map the basic 
MDA concepts, which have been specifically 
conceived for the Software Engineering domain, into 
the ABMS counterparts, the following components 
must be available: (i) a reference CIM metamodel 
for the definition of CIMs which supports the agent-
based conceptual system modeling carried out 
through both abstract and domain-expert oriented 
concepts; (ii) a PIM metamodel for the definition of 
Platform-Independent ABMS Models; (iii) a PSM 
metamodel for each target ABMS simulation 
platform; (iv) mappings among these metamodels so 
to enable ABMS model transformations. 

The main effort for the definition of Platform-
Independent ABMS Models, is currently represented 
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Figure 1: The MDA-based Process. 
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by AMF (AMP, 2011) which provides the automatic 
generation of PSMs and the related code for three 
popular ABMS platforms (AMP, 2011) (North, 
2005) (Parker, 2001). Therefore, to enable the 
definition of complete Model-Driven ABMS 
processes which conform to the MDA-based process 
depicted in Figure 1a, a CIM metamodel with the 
above highlighted features (Section 2.1), an AMF-
based PIM metamodel (Section 2.2), and the 
mapping between the two defined metamodels 
(Section 2.3) are provided. 

2.1 The CIM Metamodel 

The CIM metamodel is defined by adopting a light, 
task-based model of agents’ behaviors which 
combines the strengths of several well-known task-
based agent models (Bernon, 2004). This metamodel 
is quite general and plain, as required by the 
abstraction level for which it has been conceived, 
but powerful enough for representing, at a 
conceptual level, a great variety of systems in typical 
ABMS domains (e.g. financial, economic, social, 
logistic, physical science, engineering). 

In particular, the CIM metamodel reported in 
Figure 2 is centered on the concept of Agent. An 
Agent, which is situated in an Environment 
constituted by Resources, is characterized by a 
Behavior and a set of Properties. Agents can be 
organized into Societies which in turn can be 
organized in sub-societies. A Behavior is composed 
by a set of Tasks organized according to 
Composition Task Rules. Each Task, which can act 
on a set of environment’s Resources, is structured as 
an UML Activity Diagram which consists of a set of 
linked Actions that can be either Control Flow 
(pseudo) actions (i.e. start, end, split, join, decision, 
merge, sequence) or Computation and Interaction 

actions (i.e. outgoing or incoming signals) (OMG, 
2009). 

2.2 The PIM Metamodel 

The PIM metamodel is derived from the AMF 
framework (AMP, 2011) as AMF represents the 
most significant effort towards the definition of 
Platform-Independent simulation Models. 
Specifically, these PIM models can be defined 
through a hierarchical visual editor and represented 
by XML documents (Schauerhuber, 2006) which are 
exploited for the generation of PSMs and related 
code which currently targets the Ascape (Parker, 
2001), Escape (AMP, 2011) and Repast Simphony 
simulation platforms (North, 2005). 

The derived AMF-based PIM metamodel (see 
Figure 3) is centered on the concept of (Simulation) 
Context (SContext) which represents an abstract 
environment in which (Simulation) Agents (SAgents) 
can act. An SAgent is provided with an internal state 
consisting of a set of SAttributes, a visualization 
style SStyle, and a group of AActs (AGroup) which 
constitute its behavior. An AAct is characterized by 
an Execution Setting which establishes when its 
execution can start, its periodicity and its priority. 

SContexts, which are themselves SAgents, can be 
organized hierarchically and contain sub-SContexts. 
SAgents in an SContext can be organized by using 
SProjections which are structures designed to define 
and enforce relationships among SAgents in the 
SContext. In particular, a SNetwork projection 
defines the relationships of both acquaintance and 
influence between SAgents whereas SGrid, SSpace, 
SGeography and SValue Layer projections define 
either the physical space or logical structures in 
which the agents can be situated. 
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Figure 2: The CIM metamodel.

SIMULTECH 2011 - 1st International Conference on Simulation and Modeling Methodologies, Technologies and
Applications 

76



 
Figure 3: The PIM metamodel. 

2.3 From CIM to PIM  

With reference to the proposed MDA-based process 
(see Figure 1) a target model can be obtained by 
transforming a source model on the basis of a 
mapping between the respective metamodels which 
is provided in terms of both mapping rules among 
corresponding concepts and additional guidelines 
which enable to obtain instances of concepts of the 
target metamodel from instances of concepts of the 
source metamodel (OMG, 2003). This section deals 
with the mapping between the CIM and the AMF-
based PIM metamodels, proposed in Section 2.1 and 
2.2 respectively, and, in particular, concerns with the 
definition of a mapping (see Section 2.3.2) enabling 
to transform the entities of a CIM model into PIM 
entities by taking into account specific aspects of the 
AMF-based PIM metamodel (Karow, 2006) (see 
Section 2.3.1). The subsequent generation of several 
PSMs (and code for the related ABMS platforms) 
from the obtained PIM can be then easily carried out 
by the visual and Eclipse-based modeling 
environment provided by the AMF framework 
(AMP, 2011). 

2.3.1 Main Aspects of an AMF-based PIM 

Some main aspects have to be considered in the 
definition of an AMF-based PIM; in this section, the 
focus is on those which are relevant since they affect 
the simulation execution of the derived PSMs and 
which, in particular, concern the proper definition of 
the Execution Setting of an AAct, and the 
exploitation of SAttributes to enable communication 
among SAgents (see Figure 3). 
An AMF-based PIM is defined according to a time-
stepped driven simulation approach (the simulation 
time is incremented in fixed steps) (North, 2007), in 

which, at each simulation step t, a set of AAct 
instances which can be executed and their execution 
order are defined. Specifically, in a step t: (i) for 
each AAct, belonging to the AGroup of an SAgent 
SA, the number of its instances depends on the 
number of SA instances; (ii) the AAct Execution 
Settings determine the AAct instances to be executed 
and their execution order. In particular, the 
Execution Setting of an AAct is characterized by the 
tuple <startingTime, period, priority> where: (i) 
startingTime is the first simulation step at which the 
instances of the AAct are to be executed; (ii) for 
each instance of the AAct, period is the number of 
simulation steps which must elapse between two 
subsequent executions; (iii) in a simulation step the 
priority value affects the execution order of the 
enabled AActs instances (an AAct is enabled at the 
simulation step t if t is equal to the AAct 
startingTime which is incremented by a multiple of 
its period). 

As in a simulation step t all enabled AAct 
instances (regardless of whether they belong to a 
specific SAgent instance) belong to the same set, 
Enabled(t), from which the AActs are scheduled for 
execution on the basis of their priority (see Figure 
4), the AAct Execution Settings have to be properly 
defined to guarantee right execution order between 
AAct instances of not only the same SAgent 
instance (intra-agent AAct interleaving) but also 
different SAgent instances (inter-agent AAct 
interleaving). Moreover, as for AActs of the 
AInitialize and ARule types starting Time and period 
are both fixed to 0 and 1 respectively whereas no 
fixed settings are associated to ASchedule AActs, in 
defining the AAct Execution Settings, the different 
AAct types should be also considered (see Figure 3). 

With respect to the communication among 
SAgents, since the SAttributes of an SAgent can be 
freely accessed by all the instances of the SAgent, 
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and the SAttributes of an SContext by all the 
instances of all the SAgents in the SContext, 
communication among instances of the same SAgent 
(intra-agent communication) can exploit SAgent 
SAttributes whereas communication among 
instances of different SAgents (inter-agent 
communication) can be enabled by SContext 
SAttributes. 

Finally, the design of SAgent communications 
should take into account how random choices among 
the enabled AAct (see Figure 4) affect the values of 
the SAttributes on which the communication is 
based. 

2.3.2 Mapping between the CIM and PIM 
Metamodels 

CIM to PIM model transformations require the 
definition of mapping rules among concepts of the 
source and target metamodels along with additional 
guidelines for managing transformations which, due 
to the different abstraction level between the 
concepts of the reference metamodels, cannot be 
completely automated (Karow, 2006). 

The transformation of a CIM into a PIM starts by 
transforming each Society into a Simulation Context 
(SContext) and any enclosed Society into a 
(sub)SContext of the corresponding enclosing 
Society. SAttributes of each SContext are, then, 
originated by the Properties of the corresponding 
Society. The next step consists in transforming each 
Agent belonging to a Society into an SAgent of the 
corresponding SContext, generating the SAgent 
SAttributes on the basis of the Agent Properties, and 
introducing the SAgent AGroup which groups the 
AActs constituting its behavior. 

On the basis of the set of Resources, which 
compose the Environment in which Agents are 
situated, a set of SProjections, whose types 
(SNetwork, SGrid, SSpace, SGeography, 
SValueLayer) depend on the characteristics of the 

mapped Resources, are then introduced in the 
corresponding SContext. 

At this point, AActs associated to each SAgent 
are to be defined on the basis of the behavior of the 
corresponding Agent which is composed by a set of 
Tasks organized according to Composition Task 
Rules. This transformation is not direct as requires to 
take into account the specific aspects of both an 
AMF-based PIM (see Section 2.3.1) and the 
simulation scenarios to be represented. In particular, 
due to different communication mechanisms 
provided by CIM and PIM metamodels, the former 
based on incoming and outgoing signals (see Section 
2.1) and the latter on shared SAttributes (see Section 
2.3.1), Tasks which involve Actions of the 
interaction type can be grouped into a single AAct 
whose Execution Setting is defined on the basis of 
the Composition Task Rules associate to the grouped 
Tasks (see Section 3.2 for an example). Moreover, 
both AAct Execution Settings and related AAct 
types (AInizialize, ARule, ASchedule) must be set not 
only to ensure compliance with the Composition 
Rules of the corresponding Tasks but also to 
guarantee intra and inter-agent AAct interleavings 
(see Section 2.3.1) which adhere to the simulation 
scenarios under consideration (see Section 3.2). 
Finally, Actions which constituted the Tasks mapped 
into an AAct have to be properly realized by 
exploiting the wide set of predefined functions 
provide by AMF (AMP, 2011). 
Although the transformation of a CIM to PIM 
cannot be completely carried out automatically as it 
requires to deal with the above discussed issues, a 
QVT/R-based representation (OMG, 2010) 
(Taentzer, 2005) of the discussed mapping has been 
also obtained to enable an automatic generation of a 
basic PIM structure to be manually refined. As an 
example, in Figure 5 the rule for transforming an 
Agent into an SAgent is reported by using the 
QVT/R graphical notation (OMG, 2008). 

 

 
ActScheduling (t) { 
   AAI = Enabled(t); /* Enabled(t) returns the set of enabled AAct instances at t */ 
   while (not empty AAI) { 
          MPE = maxPriorityEnabled(AAI) ; /* maxPriorityEnabled(AAI) returns a set  
                                                                  consisting of the AAct instances with maximum priority in AAI */ 
          AAI = AAI - MPE; 

                while (not empty MPE) { 
    aa = randomGet(MPE); /* randomGet(MPE) returns an AAct instance randomly  
                                             chosen in (and removed from) MPE */   

       execute (aa); 
         } 
   } 
} 

Figure 4: Execution of an AMF-based simulation step. 
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Figure 5: A Mapping Rule expressed by using the QVT/R graphical notation. 

3 EXPLOITING THE PROPOSED 
MDA-BASED PROCESS 

In this section, the MDA-based process for ABMS 
proposed in the previous sections is exemplified 
with reference to the well-known Demographic 
Prisoner’s Dilemma which was introduced by 
Epstein in 1998 (Dorofeenko, 2002) and is able to 
represent several social and economic complex 
scenarios in which interesting issues regard the 
identification of starting configurations and 
conditions that allow initial populations to reach 
stable configurations (in terms of both density and 
geographic distribution). Specifically, in these 
scenarios k players are spatially distributed over an 
n-dimensional toroidal grid. Each player is able to 
move to empty cells in its von Neumann 
neighborhood of range 1 (feasible cells), is 
characterized by a fixed pure strategy (c for 
cooperate or d for defect) and is endowed with a 
level of wealth w which will be decremented or 
incremented depending of the payoff earned by the 
player in each round of the Prisoner’s Dilemma 
game played during its life against its neighbors 
(Dorofeenko, 2002). The player dies when its wealth 
level w becomes negative, whereas, when w exceeds 
a threshold level wb, an offspring can be produced 
with wealth level w0 deducted from the parent and 
plays using the same strategy as the parent unless a 
mutation (with a given rate m) occurs. A player also 
dies if its age exceeds a value agemax which was 
randomly fixed when the player was created. 

3.1 The CIM Model 

For the Demographic Prisoner’s Dilemma, the CIM 
model envisages a DPDGame Society of k Player 
Agents which are situated in an Environment which 
includes a Grid Resource constituted by an n-
dimensional toroidal grid. Main Properties of the 
DPDGame Society are Prisoner’s Dilemma payoffs, 
initial and threshold wealth levels (w0, wb), and 
mutation rate (m), and those of the Player Agent are 
its wealth level w, age, and strategy. The Behavior 
of the Player Agent is obtained by composing the set 
of Tasks reported in Table 1 according to the 
Composition Task Rules shown in Table 2; 
corresponding UML Activity diagrams are reported 
in Figure 6. 

3.2 The PIM Model 

In this section, the transformation from the defined 
CIM to a PIM is detailed with reference to a 
simulation scenario where all players are required to 
play exactly one round in a simulation step. 
The transformation from the CIM to a PIM is 
enabled by the mapping between the CIM and PIM 
metamodels defined in Section 2.3.2 which 
originate: the DPDGame SContex from the 
DPDGame Society, the Player SAgent from the 
Player Agent, the GameSpace SProjection from the 
Grid Resource, the Acts (with their related Execution 
Settings) associated to the Player SAgent from the 
Tasks and associated Composition Task Rules 
composing the Behavior of the Player. 

In Table 3 the Acts derived for the Player 
SAgent along with the associated Tasks (see Table 1 
and 2) and Execution Settings are reported. As the 
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Table 1: Identified Tasks. 

Task Id  Task Name Description 
T1 Walk The player can move to a feasible cell of the Grid. 
T2 Challenge   If  the von Neumann neighborhood (of range 1) of the player is

not empty the player communicates its strategy to its randomly 
selected opponent player. 

T3 Update Age The player age is incremented by 1. 
T4 Fission If the player’s wealth level w is greater than the threshold wb a 

new child player can be created in a feasible cell of its parent and 
endowed with w0 and the same strategy of the parent  (unless a 
mutation with rate m occurs). The wealth level of the parent 
player is decremented by w0. 

T5 Die If the wealth level of the player is negative or its age is greater
than agemax the player is removed from the Grid. 

T6 Accept Dare When the strategy of an opponent player is provided the player 
strategy is communicated to the opponent and the earned payoff is 
added to the player’s wealth level.  

T7 Update Wealth 
Level 

If the strategy of an opponent player is provided the earned payoff 
is added to the player’s wealth level 

 

Select an available cell in the
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of range 1
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selected cell
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Figure 6: The UML activity diagrams of the Player Agent tasks.

AMF communication mechanism among instances 
of an SAgent is based on access to the SAttributes of 
the SAgent (see Section 2.3.1), a single AAct (Play 
Neighbor) is derived from tasks T2, T6 and T7 

which carried out this kind of communication. 
Execution Settings of the AActs in Table 3 are 
characterized by both startingTime and period equal 
to one to guarantee that all the Player SAgents  
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Table 2: Composition Task Rules. 

Task Id Set of Enabling Tasks 
T1 - 
T2 {T1} 
T3 {T1} 
T4 {T7} 
T5 {T3, T4} 
T6 {T2} 
T7 {T6} 

Table 3: Group of Acts (AGroup) for the Player Agent. 

AAct AAct Execution Setting Tasks 
Random Walk <1,1, a> T1 
Play Neighbor <1,1, b>, with b<a T2, T6, T7 
Update Age <1,1, c>, with c<a  T3 
Fission <1,1, d>, with d<c & d<b T4 
Die <1,1, e>, with e<d T5 

 

  
(a) DPDGame model in AMF (b) Random Walk and Update Age AActs 

Figure 7: The AMF-based PIM model of the DPDGame.  

perform all their AActs in each simulation step, and 
priorities are set on the basis of the Compositions 
Task Rules (see Table 2). 
On the basis of the type of AActs in Table 3, which 
can be either ARule or ASchedule (see Section 
2.3.1), several PIM definitions can be obtained. In 
Figure 7.a an example of a PIM model 
representation, obtained by exploiting the visual and 
Eclipse-based modelling environment provided by 
AMF, is reported in which Random Walk, Fission 
and Die AActs are set to the ARule type, whereas 
Play Neighbor and Update Age AActs are set to the 
ASchedule type. Moreover, an AAct of the 
AInizialize type (Inizialize) has been introduced for 
setting up the SAttributes of the DPDGame 
SContext and the Player SAgent. In Figure 7.b the 
definition of the Random Walk and Update Age 
AActs is reported where the actions associated to 

each AAct are defined by exploiting the wide set of 
functions provided by AMF. 

Starting from this definition of the PIM model, 
AMF is able to automatically generate the PSM 
models and the related code for the ABMS platforms 
which are currently supported: Repast Simphon 
(North, 2005), Ascape (Parker, 2001) and Escape 
(AMP, 2011). The simulation of the system can then 
be executed in a target simulation environment 
andsimulation results can be thoroughly analyzed by 
exploiting several analysis tools (as Matlab, R, 
VisAd, iReport, Jung) which can be directly invoked 
from the environment. 

4 CONCLUSIONS 

It  is  widely  agreed that significant benefits can be  
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obtained by exploiting the Agent-Based Modeling 
and Simulation (ABMS) approach in several 
application domains (e.g. financial, economic, 
social, logistic, physical science, chemical, 
engineering). However, to promote widespread 
adoption of the ABMS, well-defined processes, 
modeling techniques, and tools which are able to 
fully support domain-experts (with often limited 
programming expertise) are currently lacking. 
In this context, the paper has aimed to extend the 
benefits of the emerging software engineering 
Model-Driven approach in the ABMS context by 
proposing an OMG MDA-based process which 
enables ABMS practitioners to obtain platform-
independent agent-based models which are easy to 
verify (as they conform to meta-models), modify 
and update (as they are mainly constituted by visual 
diagrams based on the UML notation) with 
significantly reduced programming and 
implementation efforts (as the simulation code is 
automatically generated from the defined models). 
Although there are interesting proposals which 
exploit Model-Driven approaches for developing 
agent-based conceptual and simulation models, the 
proposal differs from all others as it fully complies 
with MDA so providing an effective platform 
independent approach for ABMS. 

Starting from the visual modeling environment 
offered by the AMP Eclipse Project, which has 
provided the reference framework (AMF) for the 
definition of Platform-Independent and Platform-
Specific simulation Models as well as code 
generation, an integrated ABMS environment can be 
obtained for supporting both the conceptual 
modeling of the system (in terms of Computation 
Independent Models) and model transformations 
enabled by the defined meta-models and related 
mapping. Ongoing research efforts are underway 
devoted to the definition and extensive 
experimentation of a full-fledged ABMS 
methodology which, by exploiting the MDA-based 
approach, is able to seamlessly guide domain experts 
from the analysis of a complex system to its agent-
based modeling and simulation. 
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