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Abstract: This study performs a systematic analysis of dynamic behavior of cutting process of machine tool with 
unbalance force induced from mass eccentricity of work-piece, nonlinear cutting force and nonlinear 
suspension effect. Phase diagrams, power spectra, bifurcation diagrams and Poincaré section are applied to 
identify the dynamic motions in this study. The simulation results show that the non-periodic dynamic 
responses are very abundant in cutting process of machine tool. The results presented in this study provide 
an understanding of the operating conditions under which undesirable dynamic motion takes place in this 
kind of system and therefore serve as a useful source of reference for engineers in designing and controlling 
such systems. 

1 INTRODUCTION 

Since the mechanisms among tool, workpiece and 
chip are complicated in the cutting process, the 
analytical difficulties are increased in studying 
related academic researches and the complete 
studying is also hard to achieve. There are many 
significant and dramatic investigations are 
performed before. The dynamics analysis of cutting 
based on the model of Hastings, Oxley and 
Stevenson was the most popular model for many 
studies and many studies are based on the 
mathematical model proposed by them (Hastings et 
al., 1971). Grabec presented a series of papers 
discussing chaotic dynamic responses occurring in 
cutting machines and also found some mechanisms 
of chaos in the cutting process (Grabec, 1988). 
Altintas, Eynian and Onozuka investigated the 
influence of vibrations on the cutting forces (Altintas 
et al., 2008). Powalka, Pajor and Berczynski 
presented a special experiment used for cutting force 
identification to eliminate the regenerative 
phenomenon and also to improve the accuracy 
(Powalka et al., 2009). Hamed, Firooz, Mohammad 
and Mohammad proposed a single degree of 
freedom dynamic system including quadratic and 
cubic structural nonlinearities and found abundant 
nonlinear behaviors (Hamed et al., 2010). Therefore, 

we would know that cutting process is a highly 
nonlinear phenomenon and the linearization or 
simplification of analyzing cutting process may 
cause some simulation errors.  

The related literatures are very comprehensive, 
some assumptions or linearization are performed in 
order to simplify the simulation model and 
economize simulation time. The assumptions or 
linearization may lead some dramatic errors 
comparing with real state. In this study, we consider 
the nonlinear dynamic responses in cutting process 
of machine tool with nonlinear suspension effect and 
also take the nonlinear cutting force into 
consideration. The nonlinear dynamic equations are 
solved using the fourth order Runge-Kutta method. 
The dynamic trajectories, power spectrum, Poincaré 
maps and bifurcation diagrams are applied to 
analyze dynamic motions. 

2 MATHEMATICAL MODELING 

Fig. 1 represents the model of metal cutting under 
nonlinear suspension. K1x and K2x are the first and 
second equivalent stiffness coefficients in the 
vertical direction; K1y and K2y are the first and 
second equivalent stiffness coefficients in the 
horizontal direction; Cx and Cy are the damping 
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coefficients of the supported structure in the vertical 
and horizontal directions respectively; Fx and Fy are 
the components of external excited cutting forces; Fy 
is the cutting force dependence on the cutting speed 
and chip thickness; Fx is the thrust force which is 
related to the main cutting force through a related 
frictional coefficient μ (Fx =μFy). The nonlinear parts 
of dynamic equations include nonlinear suspension 
term (hard spring case) and the nonlinear cutting and 
thrust force term. 

 
Figure 1: Model of metal cutting under nonlinear 
suspension. 
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 The fourth order Runge-Kutta method is applied 

to carry out the numerical analysis. These numerical 
data are then used to generate the dynamic 
trajectories, power spectrum, Poincaré maps and 
bifurcation diagrams. 

3 NUMERICAL RESULTS AND 
DISCUSSIONS 

In the present study, the nonlinear dynamics of the 
cutting system shown in Figure 1 are analyzed using 
Poincaré maps, bifurcation diagrams, the Lyapunov 
exponent and the fractal dimension.  

 
Figure 2: Bifurcation diagrams for geometric center of 
cutting system using dimensionless damping ratio, ξ , as 
bifurcation parameter. 

The nonlinear dynamic equations presented in 
Eqs. (3) to (4) for the cutting system with nonlinear 
suspension effects and strongly nonlinear cutting 
force were solved using the fourth order 
Runge-Kutta method. The time step in the iterative 
solution procedure was assigned a value of π/300 
and the termination criterion was specified as an 
error tolerance of less than 0.0001.  

 

  
Figure 3: Simulation results obtained for cutting system 
with ξ =0.015 (x). 

ICINCO 2011 - 8th International Conference on Informatics in Control, Automation and Robotics

502



 

  
Figure 4: Simulation results obtained for cutting system 
with ξ =0.015 (y). 

 

  
Figure 5: Simulation results obtained for cutting system 
with ξ =0.025 (x). 

 

  
Figure 6: Simulation results obtained for cutting system 
with ξ =0.025 (y). 

In practical cutting systems, dimensionless damping 
coefficient ξ  is commonly used as a control 
parameter. Accordingly, the dynamic behavior of the 
current cutting system was examined using the 
dimensionless damping coefficient ξ  as a 
bifurcation control parameter. Figure 2 presents the 
bifurcation diagrams for the cutting system 
displacement against the dimensionless damping 
coefficient ξ . The bifurcation diagrams show that 
the geometric center of cutting system performs 

non-synchronous motions in horizontal and vertical 
directions. The strongly non-periodic or even chaotic 
motions occurring at lower dimensionless damping 
coefficient and convergent its non-periodic dynamic 
responses to be periodic motions and the vibration 
amplitude also decreased at higher values in the 
horizontal direction, i.e. 0.0575ξ > . The above 
simulation result is seemed to be satisfied natural 
phenomenon. Though in the meantime, the dynamic 
responses of the cutting system in the vertical 
direction behave strongly different comparing with 
horizontal cases. As damping coefficient increases, 
the dynamic motions still perform non-periodic 
response and even for higher values ( 0.0575ξ > ). 
Thus we found very interesting non-synchronous 
motions in vertical and horizontal directions 
especially at higher damping coefficients. As we 
know, we may think the cutting system or other 
vibrating machine system would become steady at 
higher damping coefficient but actually the 
suspension of this system is highly nonlinear 
(Naturally or technically speaking, the suspension of 
those machine systems should be nonlinear case). 
Thus we may not seem they to be synchronous 
behaviors in the vertical and horizontal directions of 
the cutting systems and it may provide some 
interesting or considerable information to analyze or 
control these kind of systems. Figures 3 to 6 are the 
phase diagrams, power spectra, Poincaré Map, 
Lyapunov exponent and fractal dimension of the 
cutting system found chaotic motions at 

0.015 0.025andξ =  in vertical and horizontal 
directions. It also shows that the dynamic responses 
are synchronous in vertical and horizontal directions 
from observing simulation results, firstly. Secondly, 
Phase diagrams show disordered dynamic behaviors; 
power spectra reveal numerous excitation 
frequencies; the return points in the Poincaré maps 
form geometrically fractal structures; the maximum 
Lyapunov exponent is positive; the fractal 
dimensions are found to be non-integer. Thus we 
may conclude that the dynamic motions perform 
chaotic motions at the above control parameters with 
the simulation results are corresponding with one 
another. The dimensionless rotating speed s is also 
an important control parameters to analyze dynamic 
responses of rotating machines. Figure 7 present the 
bifurcation diagrams for the dimensionless 
displacement in the vertical and horizontal direction 
of the cutting system using the dimensionless 
rotating speed s as a bifurcation parameter. It can be 
observed that the cutting system behaves periodic 
motions at low rotating speeds and exhibits 
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non-periodic or even chaotic motions at high values 
of the dimensionless rotating speed. Besides, we also 
found that they are synchronous in the vertical and 
horizontal directions. 

 
Figure 7: Bifurcation diagrams for geometric center of 
cutting system using dimensionless rotating speed, s, as 
bifurcation parameter. 

4 CONCLUSIONS  

This work shows that chaotic behavior exists in the 
cutting system with nonlinear suspension and 
nonlinear cutting force. Some interesting and useful 
simulation results are also found in this study. 
Specially, we found that dynamic responses behave 
non-synchronous in the vertical and horizontal 
directions with the increasing of the value of 
dimensionless damping coefficient. It is well known 
that if a nonlinear dynamic system behavior is 
chaotic, the resulting broad band vibration with 
comparatively large vibrational amplitude will 
enhance the probability of fatigue failure. In order to 
increase the working life of cutting system or 
enhance the performance of cutting system, it is 
important not to operate the whole system at chaotic 
motions. Therefore, this study may aid the 
theoretical understanding of nonlinear systems of 
cutting machine tool and escape the undesired 
dynamic responses for machining. 
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