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Abstract: We introduce a morphogenesis paradigm for a neural network where neurons are allowed to move au-
tonomously in a topological space to reach suitable reciprocal positions under an informative perspective.
To this end, a neuron is attracted by the mates which are most informative and repelled by those which are
most similar to it. We manage the neuron motion with a Newtonian dynamics in a subspace of a framework
where topological coordinates match with those reckoning the neuron connection weights. As a result, we
have a synergistic plasticity of the network which is ruled by an extended Lagrangian where physics com-
ponents merge with the common error terms. With the focus on a multilayer perceptron, this plasticity is
operated by an extension of the standard back-propagation algorithm which proves robust even in the case of
deep architectures. We use two classic benchmarks to gain some insights on the morphology and plasticity we
are proposing.

1 INTRODUCTION

A couple of factors determining the success of com-
plex biological neural networks, such as our brain,
is represented by a suited mobility of neurons during
the embrional stage along with a selective formation
of synaptic connections out of growing axons (Marı́n
and Lopez-Bendito, 2007). While the second aspect
has been variously considered in artificial neural net-
works, for instance in the ART algorithms (Carpenter
and Grossberg, 2003), the morphogenesis of artificial
neural networks has been mainly intended as the out-
put of evolutionary algorithms which are deputed to
identify its most convenient layout (Stanley and Mi-
ikkulainen, 2002). Rather, in this paper we focus on a
true mobility of the neurons in the topological space
where they are located.

To bypass the complexity of the chemical and
electrochemical phenomena at the basis of the brain
morphology (Marı́n and Rubenstein, 2003), we prefer
to rule the artificial neuron motion through a classical
Newtonian dynamics which is governed by clean and
simple laws. On the one hand, we look for an efficient
assessment of the location of the neurons which pro-
motes the specialization of their computational task
as a part of the overall functionality of the neural net-
work they belong to. In this sense, we borrow from
the old trade unions’ slogan “work less, work all” the
aim of a fair distribution of cognitive and computa-

tional loads on each neuron. On the other hand, w.r.t.
a multilayer perceptron (MLP) architecture, we assign
the concrete realization of this aim to two antagonist
forces within a potential field: i) an attraction force
from the upward layer neurons to the downward layer
ones, which is determined by the masses of any pair
of mates, which in turn we identify with the delta term
of the back-propagation algorithm; and ii) a repul-
sive force between similar neurons in the same layer,
where similarity is appreciated in terms of their vec-
tors of outgoing connection weights. The potentials
associated to these forces plus the induced kinemat-
ics concur on the definition of the Hamiltonian of the
motion (Feynman et al., 1963), which we integrate
with other energetic terms coming from the cognitive
goals of the network: namely, a quadratic error term
plus an entropic term in the realm of feature extrac-
tion algorithms. This extended Hamiltonian consti-
tutes the cost function of a standard back-propagation
algorithm which synergistically adapts weights and
locations of the single neurons.

We check the benefits of this contrivance on a cou-
ple of demanding benchmarks available on the web.
Actually, we do not claim that our training proce-
dure outperforms the best algorithms in the literature.
Rather, we realize the robustness of our results within
a reviving paradigm of a general-purpose learner with
a very essential training strategy. The core of our ex-
perimental analysis is a preliminary characterization
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of the morphogenesis functionality which enriches
the complexity of the training behavior without lead-
ing to chaotic or diverging trends.

The paper is organized as follows. In Section 2
we describe the dynamics of the neurons. Then we
resume the main features of the related learning pro-
cedure in Section 3. We toss the procedure on bench-
marks in Section 4. In the final section we draw some
conclusions and outline future work.

2 A DYNAMICS OF THE
NEURONS

Let us consider anr-layer MLP where all neurons of
a layer are located in a Euclidean (two-dimensional,
by default) spaceX. Moreover let us fix the layout
notation, where subscriptj refers to neurons lying on
layerℓ+1, i, i′ to those located in layerℓ, andℓ runs
through ther layers. We rule the activation of the
generic neuron by:

τ j = f (netj); netj =
νℓ
∑
i=1

wji λ ji τi ; λ ji = e−µdji

(1)
whereτ j is the state of thej-th neuron,wji the weight
of the connection from thei-th neuron (with an addi-
tional dummy connection in the role of neuron thresh-
old), νℓ the number of neurons lying on layerℓ, and
f the activation function. In additionλ ji is a penalty
factor depending on the topological distanced ji be-
tween the two neurons. Namely,d ji = ‖x j − xi‖

1,
wherex j denotes the position of the neuron within its
layer. This factor affects the net-input netj of the j-th
neuron in an unprecedented way by linking the infor-
mation piped through the network to the dynamics of
the neurons. Thus, we complete the description of the
network by specifying the potential field where the
neurons, in the role of particles, are embedded.

With reference to Figure 1, generated by the neu-
rons of two contiguous layers(ℓ,ℓ + 1), on each neu-
ron i of layerℓ we have a couple of forces(A,R):

A= G
mjmi

ζ2
ji

; R= kii ′(l −dii ′)+ (2)

where(x)+ = max{0,x}, representing a gravitational
force between the massesmj ,mi with inter-layer dis-
tanceζ ji , and a repulsive force between neuronsi, i′

at intra-layer distancedii ′ , respectively. As for the for-
mer, we assumeζ ji to be a large constanth resuming
the square root ofG as well. We may figure the lay-
ers lying on parallel planes which are very far each

1With ‖ · ‖i we denote theLi-norm, wherei = 2 is as-
sumed wherever not expressly indicated in the subscript.
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Figure 1: Potential field generated by both attractive upward
neurons (black bullets) and repulsive siblings (gray bullets).
The bullet size is proportional to the strength of the field,
hence either to the neuron mass (black neurons) or to the
outgoing connection weight averaged similarity (gray neu-
rons). Arrows: stream of the potential field; black contour
lines: isopotential curves.

other; in this respectd ji in (1) represents the length
of projection of the vector from thei-th to the j-th
neuron on the downward layer. The right hand side
term in (2) is anl -repulsive force which is 0 ifdii ′ > l .
To conclude the model, we identify the mass of the
neurons with their information content which in our
back-propagation training procedure is represented by
the back-piped error termδ (see Section 3). After nor-
malizing in order to maintain constant the total mass
on each layer, its expression reads:mi =

|δi |
‖δ‖1

. More-
over, the elastic constantkii ′ hinges on how similar the
normed weight vectors are, i.e. on the modulus of the
cosine of the angle between them:

kii ′ =

∣

∣

∣

∣

〈wi ·wi′〉

‖wi‖ · ‖wi′‖

∣

∣

∣

∣

(3)

The dynamics of this system is ruled by the Hamilto-
nian:

H = ξp1P1+ ξp2P2+ ξp3P3 (4)

for suitableξpi s, with

P1 =
1
h ∑

i, j
mimj ; P2 =

1
2 ∑

i,i′
kii ′(l −dii ′)

2
+;

P3 =
1
2 ∑

i
mi‖vi‖

2 (5)

where the latter is connected to the kinetic energy in
correspondence of the neuron velocitiesvis. The mo-
tion driven by this Hamiltonian is ruled by the accel-
eration:
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ai = ξ1∑
j

mjsign(x j − xi)−

ξ2∑
i′

kii ′(l −dii ′)+sign(xi′ − xi) (6)

for properξis. Actually, for simplicity’s sake we em-
bed the mass of the accelerated particle intoξ2. Since
this mass is not a constant, it turns out to be an abuse
which makes us forget some sensitivity terms during
the training of the network. Moreover, in order to
guide the system toward a stable configuration, we
add a viscosity term which is inversely proportional
to the actual velocity, namely−ξ3vi . However we
do not reckon the potential linked to this term within
the Lagrangian addends for analogous simplicity rea-
sons. During the training of the MLP, we consider the
following companion potentials driving the neurons
in the coordinate space reporting the weights of their
outgoing connections, according to (LeCun, 1988):

1. an error function that we identify with the custom-
ary quadratic error on the output layer, hence:

Ec =
1
2 ∑

o
(τo− zo)

2 (7)

with zo target of the network at theo-th output
neuron, and

2. an entropic term devoted to promoting a represen-
tation of the neuron state vector through Boolean
Independent Components (Apolloni et al., 2009)
via the Schur-concave function (Kreutz-Delgado
and Rao, 1998) – the BICA term:

Eb = ln

(

∏
i

τ−τi
i (1− τi)

−(1−τi)

)

(8)

for the state vectorτ lying in the Boolean hyper-
cube (for instance computed by a sigmoidal acti-
vation function).

As a conclusion, we figure the neuron motion within
the whole coordinate space to be ruled by the ex-
tended HamiltonianL constituted by the sum of both
physical and cognitive terms:

H = ξecEc+ ξebEb+ ξp1P1+ ξp2P2+ ξp3P3 (9)

where the links between the two half-spaces are tuned
by: i) the λ ji coefficients in the computation of the
net-input, and ii) the cognitive massesmi of the neu-
rons.

3 TRAINING THE NETWORK

In our framework morphogenesis is the follow-out
of learning. The functional solution of the Hamilto-
nian equations deriving from (9) leads to a Newtonian

dynamics in an extended potential field. Rather, its
parametric minimization identifies the systemground
statewhich according to quantum mechanics denotes
the most stable of the system equilibrium configura-
tions (Dirac, 1982). Actually, the framing of neural
networks into the quantum physics scenario has been
variously challenged in recent years (Ezhov and Ven-
tura, 2000). However these efforts mainly concern the
quantum computing field, hence enhanced computing
capabilities of the neurons. Here we consider conven-
tional computations and classical mechanics. Rather,
superpositionaspects concern the various endpoints
of learning trajectories. Many of them may prove in-
teresting (say, stretching valuable intuitions). But a
few, possibly one, attain stability with a near to zero
entropy – a condition which we strengthen through
the additional viscosity term. In turn, we use back-
propagation as an effective minimization method to
move toward the ground state and reread the entire
goal in terms of a MLP training problem.

In comparison to the many new strategies consid-
ered to cope with difficult learning problems, such
as kernel methods (Danafar et al., 2010), restricted
Boltzmann machines (Hinton et al., 2006) and so
on, we assume that most of the goals they pursue
are implicitly resumed by the components of our ex-
tended Hamiltonian in terms of: i) emerging struc-
tures among data, ii) feature selection, iii) group-
ing of specialized branches of the network, and iv)
wise shaking of their state to be unstuck from local
minima. The technicalities of implementing back-
propagation in our framework concern simply an ac-
curate reckoning of the derivatives of the cost func-
tion along the layers. The excerpt of this is reported
in Table 1.

Summing up, we run the two (forward and back-
ward) phases of the training procedure as usual. But
we must be particularly careful about updating not
only the state vector, but also the positions of the neu-
rons during the forward phase on the basis of the ac-
celerations determined by the potential field.

4 NUMERICAL EXPERIMENTS

We are left with both a synergistic physics-cognitive
contrivance to move neurons in an MLP and a bet
that this motion helps learning even in the most
highly demanding instances of deep neural net-
works (Larochelle et al., 2009). So what we get is
not a mere layout shaking but a truly efficient neural
network morphogenesis.

To check this functionality, we train two 5-layer
MLPs as in Figures 2(a) and (c) on two benchmarks
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Table 1: Gradient expressions for the backward phase from the second to the last layer down.

err.

∂(Ec+Eb)

∂w ji
=

(

1−
w ji

d ji
(x j −xi)

∂xi

∂w ji

)

τiλ ji δ j ;
(10)

δ j = f ′(netj)

(

−γ ln

(

τ j

1− τ j

)

+∑
k

δkλk jwk j

)

; γ =
ξeb

ξec

pot.

∂P1

∂w ji
=mj

sign(δi)

‖δ‖1
(1−mi ) f ′(neti)δ j (11)

∂P2

∂w ji
=∑

i′

1
2
(l −dii ′ )

2
+

∂kii ′

∂w ji
+

kii ′

dii ′
(l −dii ′)+(xi′ −xi)

∂xi

∂w ji
(12)

∂P3

∂w ji
=

1
2
‖vi‖

2 sign(δi)

‖δ‖1
(1−mi) f ′(neti)δ j +mivi

∂vi

∂w ji
(13)

dyn.

∂a(n)i

∂w ji
=−ξ2

(

∑
i′
((l −dii ′ )+)sign(xi′ −xi)

∂kii ′

∂w ji
−∑

i′
kii ′sign(xi′ −xi)

∂dii ′

∂w ji

)

(14)

∂kii ′

∂w ji
= sign

(

〈wi ·wi′〉

‖wi‖ · ‖wi′‖

)w ji ′‖wi‖ · ‖wi′‖−〈wi ·wi′〉w ji
‖wi′‖
‖wi‖

(‖wi‖ · ‖wi′‖)
2 (15)

that are representative of a regression and a classifica-
tion demanding task, respectively. They are:

1. The Pumadyn benchmark pumadyn8-nm (Corke,
1996). It consists of 8,192 samples, each consti-
tuted by 8 inputs and one output which are related
by a complex nonlinear equation plus a moderate
noise, which we process through a 8×100×80×
36×1 architecture. Neurons are distributed on the
crosses of a square grid centered in(0,0) in each
layer, with a 100 long edge.

2. The MNIST benchmark (LeCun et al., 1998). It
consists of a training and a test set of 60,000 and
10,000 examples, respectively, of handwritten in-
stances of the ten digits. Each example contains a
28×28 grid of 256-valued gray shades. We pro-
cess it with a 196×120×80×36×10 architecture,
where: i) the input neurons are reduced by1/4

w.r.t. the image pixels by simply mediating con-
tiguous pixels, ii) the 10 output neurons lie over
a circle of ray 50, thus referring to a unary rep-
resentation where a single neuron is assigned to
answer 1 and the others 0 on each digit, and iii)
the neurons of the remaining layers are on a grid
as above.

Without exceedingly stressing the network capabili-
ties (we rely on around 20,000 weight updates with
a batch size equal to 20, and a moderate effort to
tune the parameters per each benchmark), we drive
the training process toward local minima in a good
position, though not the best, when compared to the
results available in the literature.

Namely, as for the regression task, we get the
mean squared errors (MSEs) in Table 2 within the
Delve testing framework (Rasmussen et al., 1996).
They locate our method in an intermediate position

Table 2: Regression performances on pumadyn8-nm for dif-
ferent training set sizes.

tr. set size 64 128 256 512 1024

MSE mean 5.255 2.245 1.818 1.283 1.213

std. (0.541) (0.154) (0.957) (0.036) (0.034)

w.r.t. typical competitors, losing out against sophis-
ticated algorithms that rely either on special imple-
mentations of back-propagation (such as those bas-
ing on ensembles or validation sets) or on other train-
ing rationale (such as kernel SVM (Danafar et al.,
2010)). In turn the addition of both BICA term and
neuron mobility constitutes a real benefit in respect
to the standard back-propagation. We highlight the
learning improvement in Figure 3 where we train the
same network by exploiting these different facilities.
In any case, the graphs denote both a stable behavior
of the training algorithm and unbiased shifts between
desired and computed outputs.

Analogously, the confusion matrix in Table 3 de-
scribes the performances in MNIST classification,
while the course of the test error on the single digits
is reported in Figure 4.

We get an error rate equal to 3.2%, that is poorer
when compared to the best performances on this task
which attest at around one order less (Ciresan et al.,
2010). Nevertheless we are able to classify digits
which would prove ambiguous even to a human eye in
spite of the rough compression of the input (see Fig-
ure 5). Moreover, the MSE descent of the ten digits
in Figure 4 denotes a residual training capability that
could be achieved in a longer training session. We re-
mark that, to train the network, we use a batch size of
20 examples randomly drawn from the 60,000 long
training set, whereas the error reported in Figure 4 is
measured on 200newexamples. Thus the curves con-
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Figure 2: Initial (a) and final (b) network layouts for Pumadyn dataset. Initial layout (c) and 2-nd, 3-rd (left and right half
section resp.) layer neuron trajectories from starting (gray bullets) to ending position (black bullets) for MNIST dataset.

Table 3: Confusion matrix of the MNIST classifier.

0 1 2 3 4 5 6 7 8 9 % err
0 964 0 2 2 0 2 4 3 2 1 1.63
1 0 1119 2 4 0 2 4 0 4 0 1.41
2 6 0 997 2 2 2 4 11 8 0 3.39
3 0 0 5 982 0 7 0 6 6 4 2.77
4 1 0 2 0 946 2 7 2 1 21 3.67
5 5 1 1 10 0 859 7 1 5 3 3.70
6 5 3 1 0 3 10 933 0 3 0 2.61
7 1 5 14 5 2 1 0 988 3 9 3.89
8 4 1 2 8 3 3 8 4 938 3 3.70
9 5 6 0 11 12 8 1 11 7 948 6.05
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Figure 3: Errors on regressing Pumadyn. (a) Course of
training MSE with weight updates’ number (wun) for the re-
gression problem. Same architecture different training algo-
rithms: light gray curve→ standard back-propagation, dark
gray curve→ back-propagation enriched with the BICA
term, black curve→ our mob-neu algorithm. (b-d) network
outputs with target patterns (stp), respectively after thethree
training options: black curve→ target values sorted within
the test set, gray curve→ the corresponding values com-
puted by the network.
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Figure 4: Course of the single digits testing errors with the
number of weight updates.

cern a generalization error whose smooth course does
not suffer by the changes on the set over which it is
evaluated.

A first positive conclusion of this preliminary
analysis is that our machinery, which we callmob-
neu, can achieve acceptable results: i) without stress-
ing any specialization (by the way, the tuning param-
eters are very similar in both experiments), and ii)
without taking much time (around 1 hour on a well-
dressed workstation equipped with a Nvidia Tesla
c2050 graphical processor with 448 cores (NVIDIA
Corporation, 2010)). Moreover, we bypass, with-
out any tangible effort, the local minima traps com-
monly met during the training of deep neural net-
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Figure 6: Dendritic structure in the production of digits: (a) ‘3’, and (b) ‘4’, covering layersℓ from 3 to 5. (c) Cliques of
highly correlated 2-nd layer neurons on the same digits.

0 ® 6 3 ® 8 5 ® 6 6 ® 4

0 ® 0 3 ® 3 5 ® 5 6 ® 6

Figure 5: Examples of incorrectly and correctly classified
hardly handwritten digits.

works, such as the convergence to a unique output
value, a high sensibility to different initial configura-
tions, and a poor significance of delta-terms in lower
layers (Larochelle et al., 2009).

What is the relevance of the neuron dynamics in
these benefits? Figures 2(b) and (d) show respectively
the final layout of the Pumadyn network and the tra-
jectories of the 2-nd and 3-rd layer neurons in the
MNIST experiment. We may observe some notably
layout changes in search of a generally symmetric lo-
cation of downward neurons w.r.t. upward ones, plus
some special features denoting inner encodings. The
latter is precisely a focus of our research. At the mo-
ment, we propose a couple of early considerations.
Thus, in Figures 6(a-b) we capture the typical den-
dritic structure of the most correlated and active nodes
reacting to the features of a digit. Namely, here we
represent only the nodes whose output is significantly
far from 0 with high frequency during the processing
of the test set. Then we establish a link between those
neurons, belonging to contiguous layers, which are
highly correlated during the processing of a specific
digit. An analogous analysis on intra-layer neurons

highlights cliques of neurons jointly highly correlated
in correspondence of the same digit, as shown in Fig-
ure 6(c).

Are these structures relevant? As mentioned in
Section 2, the liaison between the physics and the
cognitive parts of the system is represented by the
penalty factorλ ji . Its function is to topologically spe-
cialize the role of the neurons so that the connection
weights decay with the distance between connected
neurons. Thus, an early operational challenge we may
venture is the isolation of a sub-network which main-
tains only informative connections. This goal leads us
to the wide family of pruning algorithms commonly
employed in the literature. In this instance as well, we
may assume that the kinetic morphogenesis we have
implemented, andλ ji coefficients in particular, con-
tribute to the emergence of the sub-network as made
up simply of effective connection weights (wji times
λ ji ) that are tangibly far from 0. For instance, we ex-
perimented that: i) the slimming of the network by
pruning the connections between neurons located at
a distance longer than 20 –with a reduction of 18%
of connections – did not tangibly degrade the regres-
sion accuracy on Pumadyn dataset, at least in a few
instances that we checked; and ii) retraining the net-
work after pruning 50% of the MNIST architecture
did moderately increase the classification error rate
from 3.26 to 8%.

5 CONCLUSIONS

In this paper we gained some insights and questions
about a new neural network paradigm. The key mo-

NCTA 2011 - International Conference on Neural Computation Theory and Applications

104



tivation for continuing its exploration stands in the
search of a ground state which takes into account the
agent mobility as a further facility of the neurons. Ac-
tually, artificial neural networks paradigm borns ex-
actly in view of emulating an analogous paradigm
which proved to be very efficient in nature. Nowadays
we may envisage in social networks an extension of
this paradigm as a social phenomenon which roots a
great part of the ethological system evolution (Easley
and Kleinberg, 2010). In turn, this may be consid-
ered a macro-scale companion of the neuromorphol-
ogy process ruling the early stage of our live. Thus,
we try to transfer one of the main features of both phe-
nomena, namely the agents’ mobility (either actual or
virtual within the web) as a complement to the infor-
mation piping capability of the network connecting
them.

There is a lot of issues related to the task of com-
bining motion with cognitive phenomena. On the one
hand, in a very ambitious perspective we could con-
sider learning as another form of mobility in a proper
subspace, so as to state a link in terms of potential
fields of the same order scientists stated in the past
between thermodynamic and informative entropy. On
the other hand, we may draw from the granular com-
puting province (Apolloni et al., 2008) the analogous
of the Boltzmann constant (Fermi, 1956) in terms of
links between physical and cognitive aspects. In this
paper, besides the notion of neuron cognitive masses,
we stated this link through theλ coefficients. In turn,
they play a clear role of membership function of the
downward-layer neurons to the cognitive basin of the
upward-layer neurons. We will further elaborate on
these aspects in a future work.
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