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Abstract: This paper proposes a bio-inspired framework for adapting software agents on distributed systems. It is unique
to other existing approaches for software adaptation because it introduces the notions of differentiation, dedif-
ferentiation, and cellular division in cellular slime molds, e.g., dictyostelium discoideum, into real distributed
systems. When an agent delegates a function to another agent coordinating with it, if the former has the func-
tion, this function becomes less-developed and the latter’s function becomes well-developed. The framework
was constructed as a general-purpose middleware system and allowed us to define agents as Java objects. We
present several evaluations of the framework in a distributed system instead of any simulation-based systems.

1 INTRODUCTION

Cellular differentiation is the mechanism by which
cells in a multicellular organism become specialized
to perform specific functions in a variety of tissues
and organs. Different kinds of cell behaviors can be
observed during embryogenesis: cells double, change
in shape, and attach at and migrate to various sites.
We construct a framework for building and operating
distributed applications with the notion of cellular dif-
ferentiation and division in cellular slime molds, e.g.,
dictyostelium discoideum and mycelium. It is almost
impossible to exactly know the functions that each
of the components should provide, since distributed
systems are dynamic and may partially have malfunc-
tioned, e.g., network partitioning. The framework en-
ables software components, called agents, to differen-
tiate their functions according to their roles in whole
applications and resource availability, as just like
cells. It involves treating the undertaking/delegation
of functions in agents from/to other agents as their dif-
ferentiation factors. When an agent delegates a func-
tion to another agent, if the former has the function,
its function becomes less-developed and the latter’s
function becomes well-developed. When agents have
many requests from other agents, they create their

2 RELATED WORK

The notion of self-organization is rapidly gaining im-
portance in the area of distributed systems. We dis-
cuss several related studies on software adaptation in
distributed systems.

One of the most typical self-organization ap-
proaches to distributed systems is swarm intelligence
(Bonabeau et al., 1999; Dorigo and Stutzle, 2004).
Although there is no centralized control structure dic-
tating how individual agents should behave, interac-
tions between simple agents with static rules often
lead to the emergence of intelligent global behav-
ior. There have been many attempts to apply self-
organization into distributed systems, e.g., a myconet
model for peer-to-peer network (Snyder et al., 2007),
and a cost-sensitive graph structure for coordinated
replica placement (Herrman, 2007). Most existing
approaches only focus on their target problems or ap-
plications but are not general purpose, whereas dis-
tributed systems have a general-purpose infrastruc-
ture. Our software adaptation approach should be
independent of applications. Furthermore, most ex-
isting self-organization approaches explicitly or im-
plicitly assume a large population of agents or boids.
However, since the size and structure of real dis-
tributed systems have been designed and optimized
to the needs of their applications, the systems have no
room to execute such large numbers of agents.

One of the most typical approaches to self-
organization is genetic programming (Koza, 1992).
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The fitness of every individual program in the popula-
tion need to be evaluated in each generation and mul-
tiple individuals are stochastically selected from the
current population based on their fitness. However,
since distributed systems may have an effect on the
real world and be used for mission-critical processing,
there is no chance of ascertaining the fitness of ran-
domly generated programs. Our framework should
be conservative rather than emergent in the sense that
adaptation caused by the framework must be within
our prior expectation for reasons of reliability and
availability.

Many simulation-based approaches for self-
organization for distributed systems have been ex-
plored. However, there is a serious gap between
real distributed systems and those that are simulation-
based. In fact, a real distributed system is just a com-
plex system so that it is difficult to model or simulate
the system itself.1

There have been several attempts to support soft-
ware adaptation in the literatures on self-organizing
properties, autonomic computing, and software en-
gineering. Autonomic computing was initiated by
IBM and has encouraged research on providing self-
organizing properties to systems. Several existing
studies primarily support middleware or higher lay-
ers as models and system architecture in a distributed
computing setting like ours. Bigus et al. (Bigus
et al., 2002) proposed an agent-based toolkit for au-
tonomic systems, where each agent has a closed-loop
controller as part of the whole hierarchy of distributed
control. The toolkit was intended to customize groups
of agents but not the functions inside agents. Jaeger et
al. (Jaeger et al., 2007) introduced the notion of self-
organization to ORB and a publish/subscribe system.
Holvoet et al. (Holvoet et al., 2009) supported self-
organizing coordination between agents. These exist-
ing studies could select and invoke software compo-
nents according to their context, but they could not
adapt software components themselves. Georgiadis
et al. (Georgiadis et al., 2002) presented connection-
based architecture for self-organizing software com-
ponents on a distributed system. Like other soft-
ware component architectures, they intended to cus-
tomize their systems by changing connections be-
tween components instead of internal behaviors inside
components. Like ours, Cheng at al. (Cheng et al.,
2006) presented an adaptive selection mechanism for
servers by enabling selection policies, but they did not
customize the servers themselves. They also needed
to execute different servers simultaneously.

1We do not intend to deny simulation-based approaches. Nev-
ertheless, we need a basic model, including parameters, forreal
distributed systems before simulating such systems.

We proposed a nature-inspired approach to dy-
namically deploying agents at computers in our previ-
ous papers (Satoh, 2007; Satoh, 2008). The approach
enabled each agent to describe its own deployment as
a relationship between its location and another agent’s
location. However, the approach had no mechanism
for differentiating or adapting agents themselves.

3 BASIC APPROACH

This paper introduces the notion of (de)differentiation
into a distributed system as a mechanism for adapting
software components, which may be running on dif-
ferent computers connected through a network.

Differentiation. When dictyostelium discoideum
cells aggregate, they can be differentiated into two
types: prespore cells and prestalk cells. Each cell tries
to become a prespore cell and periodically secretes
cAMP to other cells. If a cell can receive more than a
specified amount of cAMP from other cells, it can be-
come a prespore cell. There are three rules. 1) cAMP
chemotaxically leads other cells to prestalk cells. 2)
A cell that is becoming a prespore cell can secrete a
large amount of cAMP to other cells. 3) When a cell
receives more cAMP from other cells, it can secrete
less cAMP to other cells.

Each agent has one or more functions with
weights, where each weight corresponds to the
amount of cAMP and indicates the superiority of its
function. Each agent initially intends to progress all
its functions and periodically multicastsrestraining
messages to other agents federated with it. Restrain-
ing messages lead other agents to degenerate their
functions specified in the messages and to decrease
the superiority of the functions. As a result, agents
complement other agents in the sense that each agent
can provide some functions to other agents and dele-
gate other functions to other agents that can provide
the functions.

Dedifferentiation. Agents may lose their functions
due to differentiation as well as be busy or failed. The
approach also offers a mechanism to recover from
such problems based on dedifferentiation, which a
mechanism for regressing specialized cells to sim-
pler, more embryonic, unspecialized forms. As in the
dedifferentiation process, if there are no other agents
that are sending restraining messages to an agent, the
agent can perform its dedifferentiation process and
strengthen their less-developed or inactive functions
again.
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Remarks. Each specialized cell type in an organ-
ism expresses a subset of all the genes that constitute
the genome of that species. Each cell type is defined
by its particular pattern of regulated gene expression.
With a few exceptions, differentiation does not in-
volves change in the DNA sequence itself. That is to
say, different cells may have different physical char-
acteristics, but they have almost the same gene and
this is largely due to highly-controlled modifications
in their gene expression. Each agent can explicitly
preserve programs for defining all its functions after
it has been differentiated.

4 DESIGN AND
IMPLEMENTATION

The framework was constructed as a general-purpose
middleware system and allowed us to define agents
as Java objects. The whole system consists of two
parts: runtime systems and agents. The former is a
middleware system for running at computers and the
latter is a self-contained and autonomous entity.

4.1 Agent

Each agent consists more than one application-
specific function, calledbehaviorpart, and its state,
calledbodypart, with information for differentiation,
calledattributepart. Thebodypart is responsible for
maintaining program variables shared by its behaviors
parts. When it receives a request message from the
external system or other agents, it dispatches the mes-
sage to the behavior part that can handle the message.
The attribute part maintains descriptive information
with regard to the agent, including its own identifier.

4.2 Differentiation

Behaviors in a agent, which are delegated from other
agents more times, are well developed, whereas other
behaviors, which are delegated from other agents less
times, in the cell are less developed. Finally, the agent
only provides the former behaviors and delegates the
latter behaviors to other agents. Each agent (k-th) as-
signs its own maximum to the total of the weights of
all its behaviors. The agent has behaviorsbk

1, . . . ,b
k
n,

wk
i is the weight of behaviorbk

i . Wk
i is the maximum

of the weight of behaviorbk
i . The maximum of the

total of the weights of its behaviors ink-th agent must
to be less thanWk. (Wk ≥ ∑n

i=1 wk
i ), wherewk

j −1 is 0

if wk
j is 0. TheWk may depend on agents. In fact,Wk

corresponds to the upper limit of the ability of each
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Figure 1: Differentiation mechanism for agent.

agent and may depend on the performance of the un-
derlying system, including the processor. Our mech-
anism consists of two phases. The first-step phase in-
volves the progression of behaviors.

Step 1. When an agent (k-th agent) receives a request
message from another agent, it selects the behav-
ior (bk

i ) that can handle the message from its be-
havior part and dispatches the message to the se-
lected behavior (Figure 1 (a)).

Step 2. It executes the behavior (bk
i ) and returns the

result.

Step 3. It increases the weight of the behaviorwk
i .

Step 4. It multicasts a restraining message with the
signature of the behavior, its identifier (k), and the
behavior’s weight (wk

i ) to other agents (Figure 1
(b)).

Note that, when behaviors are invoked by their agents,
their weights are not increased. The key idea behind
this approach is to distinguish between internal and
external requests. If the total of the weights of the
agent’s behaviors,∑wk

i , is equal to their maximal to-
tal weightWk, it decreases one of the minimal (and
positive) weights (wk

j is replaced bywk
j − 1 where

wk
j = min(wk

1, . . . ,w
k
n) andwk

j ≥ 0). The above phase
corresponds to the degeneration of agents. Restrain-
ing messages correspond to cAMP in differentiation.2

2When the runtime system multicasts information about the
signature of a behavior in restraining messages, the signature is en-
coded into a hash code by using Java’ serial versioning mechanism
and transmitted as the code.
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The second-step phase supports the retrogression of
behaviors.

Step 1. When an agent (k-th agent) receives a re-
straining message with regard tob j

i from another
agent (j-th) , it looks for the behaviors (bk

m, . . .b
k
l )

that can satisfy the signature specified in the re-
ceiving message.

Step 2. If it has such behaviors, it decreases their
weights (wk

m, . . .w
k
l ) in its first database and up-

dates the weight (wj
i ) in its second database (Fig-

ure 1 (c)).

Step 3. If the weights (wk
m, . . . ,w

k
l ) are under a spec-

ified value, e.g., 0, the behaviors (bk
m, . . .b

k
l ) are

inactivated.

When an agent wants to execute a behavior, even if
it has the behavior, it needs to select one of the be-
haviors according to the values of their weights. This
involves three steps.

Step 1. When an agent (k-th agent) wants to execute
a behaviorbi , it looks up the weight (wk

i ) of the
same or compatible behavior from its first and
database and the weights (wj

i , . . . ,w
m
i ) of such be-

haviors (b j
i , . . . ,b

m
i ) from the second database.3

Step 2. If multiple agents, including itself, can pro-
vide the wanted behavior, it selects one of the
agents according to selection functionφk, which
maps fromwk

i andwj
i , . . . ,w

m
i to bl

i , wherel is k or
j, . . . ,m.

Step 3. It delegates the selected agent to execute the
behavior and waits for the result from the agent.

The approach permits agents to use their own evalu-
ation functions,φ, because the selection of behaviors
often depends on their applications. Although there is
no universal selection function for mapping from be-
haviors’ weights to at most one appropriate behavior
like a variety of creatures, we provide several func-
tions. For example, one of the simplest evaluation
functions makes the agent that wants to execute a be-
havior select the behavior whose weight has the high-
est value and signature matches the wanting behav-
ior if its first and second databases recognizes one or
more agents that provide the same behavior, including
itself. Since each agent records the time behaviors are
invoked and are received the results, it selects behav-
iors provided in other agents according to the average
or worst response time in the previous processing.

3The agent (k-th) may have more than one same or com-
patible behavior.

4.3 Dedifferentiation

Each agent (j-th) periodically multicasts messages,
calledheartbeat messages, for behavior (b j

i ), which
is still activated with its identifier (j) via the run-
time system. This involves one of either the following
cases.

Case 1. When an agent (k-th) receives a heartbeat
message with regard to behavior (b j

i ) from another
agent (j-th), it keeps the weight (wj

i ) of the behav-
ior (b j

i ) in its second database.

Case 2. When an agent (k-th) does not receive any
heartbeat messages with regard to behavior (b j

i )
from another agent (j-th) for a specified time, it
automatically decreases the weight (wj

i ) of the be-
havior (b j

i ) in its second database, and resets the
weight (wk

i ) of the behavior (bk
i ) to be initial value

or increases the weight (wk
i ) in its first database

(Figure 1 (d)).

Note that the behaviorbk
i is provided byk-th agent

and the behaviorb j
i is provided by j-th agent. The

weights of behaviors provided by other agents are au-
tomatically decreased without any heartbeat messages
from the agents. Therefore, when an agent terminates
or fails, other agents decrease the weights of the be-
haviors provided from the agent and then if they have
the same or compatible behaviors, they can activate
the behaviors, which may be inactivated.

After sending a request message is sent to another
agent, if the agent waits for the result to arrive longer
than a specified time, it selects one of the agents
that can handle the message from its first and second
databases and requests the selected agent. If there are
no agents that can provide the behavior that can han-
dle the behavior quickly, it promotes other agents that
have the behavior in less-developed form (and itself if
it has the behavior).

5 EVALUATION

Although the current implementation was not con-
structed for performance, we evaluated that of sev-
eral basic operations in a distributed system where
eight computers (Intel Core 2 Duo 1.83 GHz with
MacOS X 10.6 and J2SE version 6) were connected
through a giga-ethernet. The cost of transmitting a
heartbeat or restraining message through UDP multi-
casting was 11 ms. The cost of transmitting a request
message between two computers was 22 ms through
TCP. These costs were estimated from the measure-
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ments of round-trip times between computers. We as-
sumed in the following experiments that each agent
issued heartbeat messages to other agents every 100
ms through UDP multicasting.

5.1 Experiments: Differentiation

The first experiment was carried out to evaluate the
basic ability of agents to differentiate themselves
through interactions in a reliable network. Each agent
had three behaviors, called A, B, and C. The A be-
havior periodically issued messages to invoke its B
and C behaviors or those of other agents every 200
ms and the B and C behaviors were null behaviors.
Each agent that wanted to execute a behavior, i.e.,
B or C, selected a behavior whose weight had the
highest value if its database recognized one or more
agents that provided the same or compatible behav-
ior, including itself. When it invokes behavior B or C
and the weights of its and others behaviors were the
same, it randomly selected one of the behaviors. We
assumed in this experiment that the weights of the B
and C behaviors of each agent would initially be five
and the maximum of the weight of each behavior and
the total maximumWk of weights would be ten.

Figure 2 presents the results we obtained from the
experiment. Both diagrams have a timeline in min-
utes on the x-axis and the weights of behavior B in
each agent on the y-axis. Differentiation started af-
ter 200 ms, because each agent knows the presence
of other agents by receiving heartbeat messages from
them. Figure 2 (a) details the results obtained from
our differentiation between two agents. Their weights
were not initially varied and then they forked into
progression and regression sides. Figure 2 (b) shows
the detailed results of our differentiation between four
agents and Figure 2 (c) shows those of that between
eight agents. The results in (b) and (c) fluctuated more
and then converged faster than those in (a), because
the weights of behaviors in four are increased or de-
creased more than those in two agents. Although the
time of differentiation depended on the period of in-
voking behaviors, it was independent of the number of
agents. This is important to prove that this approach
is scalable.

Our parameters for (de)differentiation were basi-
cally independent of the performance and capabilities
of the underlying systems. For example, the weights
of behaviors are used for relatively specifying the pro-
gression/repression of these behaviors.

5.2 Experiments: Dedifferentiation

The second experiment was carried out to evaluate
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the ability of the agents to adapt to two types of fail-
ures in a distributed system. The first corresponded
to the termination of an agent and the second to the
partition of a network. We assumed in the following
experiment that three differentiated agents would be
running on different computers and each agent had
four behaviors, called A, B, C, and D, where the A
behavior invokes other behaviors every 200 ms. The
maximum of each behavior was ten and the agents’
total maximum of weights was twenty. The initial
weights of their behaviors(wi

B,w
i
C,w

i
D) in i-th agent

were(10,0,0) in the first,(0,10,0) in the second, and
(0,0,10) in the third.
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6 CONCLUSIONS

This paper proposed a framework for adapting soft-
ware agents on distributed systems. It is unique to
other existing software adaptations in introducing the
notions of (de)differentiation and cellular division in
cellular slime molds, e.g., dictyostelium discoideum,
into software agents. When an agent delegates a func-
tion to another agent, if the former has the function,
its function becomes less-developed and the latter’s
function becomes well-developed. When agents have
many requests from other agents, they create their
daughter agents. The framework was constructed as
a middleware system on real distributed systems in-
stead of any simulation-based systems. Agents can
be composed from Java objects.

In concluding, we would like to identify further is-
sues that need to be resolved. We did not intend to use
any simulation-based approaches, because the perfor-
mance of software adaptation on distributed systems
greatly depends on the systems and the demands of
their applications. It is almost impossible to simulate
such systems accurately. After we evaluate software
adaptation with this framework on real distributed
systems, we plan to construct a simulation system
based on the results. Our software adaptation mech-
anism depends on selection functions, but from our
evaluations we knew that there was no universal func-
tion. Nevertheless, we plan to refine and extend selec-
tion functions.
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