QUERYING AND MINING SPATIOTEMPORAL ASSOCIATION RULES

Hana Alouaoui, Sami Yassine Turki

LTSIRS Laboratory of Remote Sensing and Information Systems with Spatial Reference
ENIT National Engineering School of Tunis, Tunis El Manar University, Tunis, Tunisia

Sami Faiz

LTSIRS Laboratory of Remote Sensing and Information Systems with Spatial Reference
ENIT National Engineering School of Tunis, Tunis El Manar University, Tunis, Tunisia

Keywords: Spatiotemporal database, Topological relationships, Spatiotemporal data mining, Data mining query language.

Abstract: This paper presents an approach for mining spatiotemporal association rules. The proposed method is based on the computation of neighborhood relationships between geographic objects during a time interval. This kind of information is extracted from spatiotemporal database by the means of special mining queries enriched by time management parameters. The resulting spatiotemporal predicates are then processed by classical data mining tools in order to generate spatiotemporal association rules.

1 INTRODUCTION

Extracting interesting and useful patterns from spatial and temporal sets is more difficult than extracting corresponding patterns from traditional data due to the complexity of spatial and temporal data types and spatial relationships changing over the time.

Our contribution is to process the spatiotemporal components by computing neighborhood relationships between geographic objects during a time interval. This step is achieved by data mining queries enriched by time management tools. Then data mining techniques are applied on the resulting spatiotemporal predicates in order to mine spatiotemporal association rules.

In the next section we make an overview of the existing data mining query languages, the section 3 describes our proposed approach of spatiotemporal association rules mining. Finally, in the section 4 we summarize the main conclusions of this paper and point out directions for current and future work.

2 STATE OF THE ART: QUERY LANGUAGES AND KNOWLEDGE DISCOVERY IN DATABASES

The high availability of huge databases - rich in hidden information beyond human’s ability to retrieve manually- and the prominent necessity of information and knowledge extraction from such data, have demanded valuable efforts from the scientific community. Finding tools and techniques aiming to analyze these huge data repositories is a subject dealt by the field of Knowledge Discovery in Databases (KDD) (Fayyad et al., 1996).

There have been a number of contributions dealing with different aspects of this problem by proposing structured languages for KDD specification. These languages follow SQL patterns and provide techniques for data preprocessing such as accessing, cleaning, transforming, deriving and mining data (Boulicaut and Masson, 2005).

These languages can integrate background knowledge, like concept hierarchies and can define thresholds (eg: support, confidence; in the case of...
association rules extraction) in order to extract just
the most interesting patterns (Boulucaut and Masson,
2005). A Data Mining Query Language DMQL has
been proposed in (Han et al., 1996) for mining
association rules using concept hierarchies (Han,
1995) as background knowledge. However, there is
just one practical application of DMQL found in the
DBMiner (Dbminer, 2000) where it is used as a task
description resource.

Another work was proposed by (Meo et al.,
1996) is based on a new operator, named MINE
RULE, designed as an extension of the SQL
language in order to discover association rules.

Other languages have been built on the principles
of relational databases (Imielinski and Virmani,
1999), (Wang and Zaniolo, 2003), (Marcelino et al.,
2004). They follow the SQL patterns with resources
for accessing, cleaning, transforming, deriving and
mining data, beyond knowledge manipulation.

A further important field that needs to get a big
attention is the knowledge discovery from spatial
databases. Complex data types, intrinsic relations
between spatial components and non-spatial
components as well as relationships between data
themselves make the spatial data mining more
difficult. This explains the small number of data
mining query languages that have been proposed for
spatial data. The GMQL (Geographic Mining Query
Language) proposed by (Han et al., 1997) is an
extension of DMQL to support spatial data mining.

Another approach based on the transformation of
a spatial database into an inductive database was
proposed by (Malerba et al., 2004). The proposed
language needs a complex data preprocessing tasks
in order to formulate the queries.

A spatiotemporal data mining query language
was proposed in (Chen and Zaniolo, 2000). The
SQLST sees reality as instantaneous sequences of
moving objects (Manco et al., 2008), (Bogorny et
al., 2008), (Erlend and Mads, 2010) and is limited to
mine knowledge from trajectories evolving in space
and time. This language is built on the basis of a
temporal data mining query language proposed by
(Chen and Petrounias, 1998).

All of these languages dealt with traditional,
temporal, or spatial data. They treated separately the
space and the time. The proposed languages merging
space and time aspects were simply limited to the
trajectory of moving objects. To the best of our
knowledge no data mining query language has been
proposed in order to cope with the discrete evolution
of spatial data over the time. Our problematic is to
mine knowledge from discrete evolving objects like
parcels or river changing of shape during large time
intervals. Our proposed queries are settled on a
combination of GMQL and time features.

3 THE PROPOSED APPROACH
FOR MINING
SPATIOTEMPORAL
ASSOCIATION RULES

Our approach aims to extract spatiotemporal
association rules. In order to achieve this objective
two phases should be accomplished; processing the
spatiotemporal components and applying data
mining techniques. Processing the spatiotemporal
components phase is focused on the enrichment of
the spatial association rules extraction with time
concept integration. This means that the mining of
spatial predicates (spatial relationships between
geographic entities such as: close, far, contains,
within,...) will be done during time intervals. In
order to accomplish this phase special queries
merging data mining and time management tools
were applied. The extracted spatiotemporal
predicates will be considered as the item-sets treated
by the data mining algorithm Apriori (Agrawal and
Srikant, 1994) in order to mine spatiotemporal
association rules.

3.1 Spatial Association Rules
Extraction

The spatial association rules are extensions of
association rules with spatial features. Associations
highlighted include the proprieties of neighbor
objects and their neighborhood relationship
(Zeitouni and Yeh, 1999). The generated rules have
the form: \(X \rightarrow Y \) where \(X \) and \(Y \) are sets of spatial
and non spatial predicates. Thus, the spatial
association rules have the following form (1):

\[
P_1 \cap ... \cap P_m \rightarrow Q_1 ... \cap Q_n \quad S(\%) \quad C(\%) \quad (1)
\]
Where at least one of \(P_i \) or \(Q_i \) is spatial. A rule is always provided with two measures: support (s %) and confidence (c %). The support is percentage of transactions that satisfy \(X \) and \(Y \) among all transactions from the transaction base.

The confidence is the percentage of transactions that verify the conclusion of a rule among those that satisfy the premise data (Turki and Faïz, 2009).

The determination of the SAR goes through 3 phases (Bogorny, 2006):

- Calculation of spatial predicates (spatial relationships between geographic entities). (Han et al., 1997); (Koperski, 1999); (Koperski and Han, 1995).
- Generation of frequent itemsets: an itemset is frequent if at least its support is equal to a minimum threshold (minsup).
- The extraction of spatial association rules.

We noted that the step 2 and 3 of the process of data mining have received great importance in the literature and were considered as the major problems and were designated by frequent pattern mining and association rule mining. The first step of spatial relationships calculation is the largest typically because the effectiveness and efficiency of the extracted rules is based on these relationships. These spatial relations are the main characteristic of spatial data and must be taken into account in the process of knowledge extraction and this is the primary characteristic that distinguishes spatial data mining and classic data mining (Koperski, 1999); (Bogorny, 2006).

3.2 The Proposed Query

We have 3 Classes (tables); Road, Town and Oued (which means a kind of rivers existing in the north of Africa).

The Town is our target object or (reference object), the road and the river are its neighbors or relevant task objects.

The time is stored as an attribute in the table and we adopted the notion of valid time.

The information in the data base is up-to-date with the technique of attribute versioning; the new values or states of an object are stored with the new interval of validity. The relationships between the objects are defined on the basis of distance parameters given by domain experts (e.g: Besides (Distance > 0m and <= 50m))

Example of the proposed query:

```
We have two time intervals I1 and I2; I1 ([01-01-2000, 31-12-2004]) and I2 ([01-01-2005, 31-12-2009])

Q1: Mine spatio-temporal associations describing Town with respect to Topology (T.geo, O.geo), Topology (T.geo, RD.geo), Tvalidtime, Ovalidtime, Rdvalidtime From Town T, Oued O, Road RD Where distance (T.geo, O.geo) <= "2km" AND distance (T.geo, RD.geo) <="500 m" VALID IN [01-01-2000, 31-12-2004]

The results of these queries are collected and organized in a knowledge base containing information related to dependencies between spatial objects computed during time intervals.

Other neighborhood relationships are computed and describe some prohibited relations between the spatial objects.

Example: the relation (ouedContains) is a vulnerable situation because if an oued (river) covers an urban zone may possibly cause an inundation.

### 3.3 Mining Spatiotemporal Association Rules

The computed spatiotemporal predicates were used in the mining of spatiotemporal association rules leading to decide about the possibility of natural risk occurrence.

A set of STAR (Spatiotemporal Association Rules) was generated. For example, the following association rule is derived from the spatiotemporal data set.

```
oued_touches_I1=yes oued_crosses_I2=yes => ouedContains_I2=yes (40%, 90%)
```

This rule shows the temporal evolution of the river (oued) that was near of the town ((oued_touches), (distance > 50m and <=200m)) at the time interval (I1) then it crossed it (oued_crosses) at (I2). As a result of this shape change a prohibited relationship ((ouedContains), (distance < 0m)) appeared which can be explained by an inundation risk occurrence.

The values 40% and 90% indicate respectively the support and the confidence of the rule.

The most meaningful rules will be stored as learning examples and will be processed by a learning system (e.g. neural network) in order to identify unknown future risks. This will be the object of our future work.
4 CONCLUSIONS AND FUTURE WORK

In this paper we highlight the necessity to incorporate the temporal measures in studying the evolution of geographical objects over the time.

In order to achieve this objective we proposed an approach aiming to extract knowledge from a spatiotemporal database by the means of spatiotemporal mining queries merging both data mining and time management concepts.

As future work, the most meaningful rules will be processed by a learning system (e.g. neural network) in order to identify unknown future risks.

We will also evaluate the possibility to implement our approach in a wider range of risk prediction applications including appropriate input parameters suitable for the study region and the kind of risk to predict.

REFERENCES


Fayyad, U., Piatesky-Shapiro, G., Smyth, P., 1996. From Data Mining to Knowledge Discovery: An Overview. Advances in KDD and Data Mining, AAAI.


