
PROGRAMMING THE KDD PROCESS USING XQUERY

Andrea Romei and Franco Turini
Computer Science Department, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (PI), Italy

Keywords: Data mining, Query language, Inductive databases, KDD process, Mining constraints, XML, XQuery.

Abstract: XQuake is a language and system for programming data mining processes over native XML databases in the
spirit of inductive databases. It extends XQuery to support KDD tasks. This paper focuses on the features
required in the definition of the steps of the mining process. The main objective is to show the expressiveness
of the language in handling mining operations as an extension of basic XQuery expressions. To this purpose,
the paper offers an extended application in the field of analyzing web logs.

1 INTRODUCTION

Since the introduction of XML as a standard for rep-
resenting semistructured data, the amount of infor-
mation coded according to such standard is steadily
growing. Systems for retrieving information out of
such collections of XML data have been developed,
up to the point that a number of implementations for
handling native XML databases has been proposed1.
XQuery is probably the most widely accepted lan-
guage in this area (W3C, 2010). Many authors main-
tain that the process of data mining can be seen as a
sophisticated way of querying the database, and, as
a consequence, it is a good idea to extend query lan-
guages with features supporting data mining.

According to this point of view the XQuake sys-
tem has been developed as an extension of XQuery
designed to support data mining tasks (Romei and
Turini, 2010). Besides being designed for mining na-
tive XML databases, XQuake takes advantage of the
XML philosophy also for representing the results of
the mining process, according to the PMML standard
(The Data Mining Group, 2011). The uniformity of
the representation of all the levels of information al-
lows the full compliance with the closure principle of
inductive databases.

XQuake provides a good basis for mining XML
data, but it still offers opportunities for extensions.
Two of them are presented in this paper:

• specification of constraints on the mining process;

1See http://www.w3.org/XML/Query/ for an exhaustive
list of XML XQuery implementations.

• the possibility ofprogrammingdifferent data min-
ing processes in an expressive way.

The first issue is addressed by specifying constructs
for binding data to mining models and for knowledge
filtering. The second issue is addressed by extending
the language withmining functions, that exploit typ-
ical functional language constructs, including recur-
sion. The paper aims at highlighting the capability of
the language of specifying mining tasks in an elegant
and expressive way. The basic ideas for the system
architecture are coherent with the design of XQuake
and can be found in (Romei and Turini, 2010).

Section 2 contains a presentation of XQuake and
the proposed extensions by providing its syntax and
its semantics, and by exemplifying its use for coding
typical mining subtasks. Section 3 offers the descrip-
tion of a concrete application by discussing the im-
plementation of a mining process in detail. The last
two sections deal with related work, future work, and
some final consideration.

1.1 Thexmark Database

Through the paper, we adopt an easily accessible
source of XML documents, namelyxmark (Schmidt
et al., 2002). It models an Internet auction site,
defining entities such aspeople, open auctions,
closed auctions, items andcategories. We re-
port below a brief description (and the XML fragment
in fig. 1) for the first three entities.

Specifically, the<people> tag is made up of a se-
quence of<person> elements encoding profiling in-
formation and the history of the visited auctions. The
former has a (eventually empty) list of<interest>

131Romei A. and Turini F..
PROGRAMMING THE KDD PROCESS USING XQUERY.
DOI: 10.5220/0003626501230131
In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval (KDIR-2011), pages 123-131
ISBN: 978-989-8425-79-9
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

elements indicating the item categories interesting for
the user. It also includes other personal information.
The <open auctions> element contains auctions in
progress. Their properties are the initial price, the
bid history along with references to the bidders, a ref-
erence to the item being sold and a reference to the
seller. Each closed auction (tag<closed auction>)
contains the reference to the seller, buyer and item,
the price and date of the closed transaction and the
type of transaction.

From now on, all the examples will refer the
xmark data source, that is stored in BaseX (Holupirek
et al., 2009), i.e. the native XML database of XQuake.
Some highlights on XQuery can be found in (Romei
and Turini, 2011b).

<people>
<person id="person27">
<phone>+39....</phone>
<profile income="96497.12">

<interest category="category11"/>...
<education>High School</education>
<gender>male</gender>
<business>Yes</business>
<age>29</age>

</profile>
<watches>

<watch open_auction="open_auction29"/>...
</watches>
</person>...
</people>
...
<open_auctions>
<open_auction id="open_auction29">
<initial>26.60</initial>
<bidder>

<date>03/28/1998</date>
<personref person="person17"/>
<increase>3.00</increase>

</bidder>...
<current>220.10</current>
<itemref item="item255"/>
<seller person="person1361"/>
</open_auction>...
</open_auctions>
...
<closed_auctions>
<closed_auction id="closed_auction9">
<seller person="person964"/>
<buyer person="person1650"/>
<itemref item="item232"/>
<price>162.44</price>
<date>01/23/1999</date>
<quantity>1</quantity>
<type>Regular</type>...
</closed_auction>...
</closed_auction>...

Figure 1: Three XML fragments ofxmark.

2 XQuake EXTENDED

The section is organized as follows. We first present
the syntax and the meaning of six clauses, that are
used as a basis to construct mining operators. Then,
such operators are introduced through simple exam-
ples. Finally, we show how to specify special mining
functions.

2.1 Mining Constructs

Each mining operator is made up of a combination of
base constructs. As shown in Figure 2, six operators
have been considered as guidelines for the design of
XQuake. Specifically, they serve to locate XML data
and PMML models, to bind new data to an extracted
set of patterns and to specify mining constraints or the
format of the output result. After presenting a simple
running example, we describe each construct in turn.

Figure 2: Syntax of the six basic clauses. Thefor data
clause (a). Thelet clause (b). Thefor PMML clause (c).
Theusing clause (d). Thehaving clause (e). Thereturn
clause (f).

2.1.1 Running Example

To take confidence with the language philosophy, we
introduce a “classical” example taken from the induc-
tive database theory. Specifically, we aim at“mining
association rules from a dataset; on such a result, we
find all the given instances that satisfy2 the rules; fi-
nally, we induce a classification tree from those in-
stances”. XQuake offers three operators to solve this
task.

Below, a set of association rules is extracted to
find frequent correlations among the bidders in all

2By definition, a transaction satisfies an association rule
I1 . . . In → In+1 . . . Im if every itemIi for i ∈ [1,m] occurs in
the transaction.

KDIR 2011 - International Conference on Knowledge Discovery and Information Retrieval

132

the open auctions. The output model contains pat-
terns like{Mark} → {John}, which states that when
Mark appeared as bidder, alsoJohn was a bidder with
a certain support and confidence. A condition re-
quires that the size of the extracted rules is equal to
2 (i.e. exactly one item in the body and one item in
the head of the rule).
for data $auc in doc("xmark")//open_auction
let group $pers := $auc/bidder//@person
having xquake:rule-size() = 2
return default

In the above query, the set of involved transactions
(i.e. the <open auction> elements) is specified
through thefor data clause. Items of each trans-
action (i.e. the person identifiers for each<bidder>
element) are defined in thelet group clause. Both
the having andreturn clauses operate on the out-
put result. The former is evaluated for each rule. It
uses therule-size() built-in function, defined in
the reservedxquake namespace, to get the size of that
rule and to implement the constraint. Notice that the
parameter ofrule-size() is implicitly an associa-
tion rule. As soon as constraints are evaluated, the
return clause is evaluated once to return a PMML
document. Assume that the output rules are stored in
my-rules.xml.

In the next XQuake fragment, we filter out a set
of instances (i.e. the sequence of<closed auction>
elements) that do not satisfy at least ten association
rules inmy-rules.xml. To test whether an item (i.e.
a person identifier) occurs in a transaction, we check
whether that person has been either buyer or seller
in the closed auction. Now, thereturn statement is
evaluated for each input data. The result, stored in
my-tuples.xml, is a sequence of<inst> tags, each
encoding a<closed auction> if it satisfies the con-
straint.
for data $d in doc("xmark")//closed_auction
using model $r in doc("my-rules")/PMML
bind $pers := $d/[seller|buyer]//@person
return <inst>{if (xquake:rule-satisfy($r) > 9)

then $d else () }</inst>

Finally, a dummy PMML classification tree is in-
duced frommy-tuples.xml. It is built on the price
and quantity properties of each closed auction to pre-
dict the type of the auction (i.e. regular or featured).
for data $auc in doc("my-tuples")
let active $price := $auc//price
let active $qty := $auc//quantity
let predicted $type := $auc//type
return default

As a general comment, we have supposed in this
simple example to store the result of a step to be used
as input in the next step. Moreover, we have not yet
specified neither the kind of knowledge to extract, nor

the mining algorithm to use in the query fragments. In
sect. 2.3 we cover these aspects, and a more elegant
way to combine mining results is presented.

2.1.2 Constructs for Locating XML Data

The first step in specifying a data mining task is the
selection of the relevant data as input of the analysis.
Relevant XML elements and attributes are selected by
means of the clauses depicted in fig. 2 (a),(b).

The syntax of thefor data expression (fig. 2 (a))
is similar to thefor clause of XQuery. It sets-up an
iteration over the sequence returned by the expression
after thein keyword. Each item of the sequence is
bound to a variable that can be used in the rest of the
expression. The optionalat clause allows for a po-
sitional variable, which is bound to an integer repre-
senting the iteration number.

The let clause (fig. 2 (b)) is used to bind a
variable to a mining field. The keyword after the
let refers to the role of such an attribute in the
mining activity of interest. More specifically, the
active keyword specifies that the field is used as
input to the mining task:predicted specifies that
it is a predicted attribute (e.g. in a classification
task),supplementary states that it holds additional
descriptive information, and finally,group groups
atomic values (e.g. in an association or sequence anal-
ysis). Mining fields in input to the mining tasks are
required to be atomic (e.g. string, numeric or date),
except for a supplementary field that, in principle, can
assume any complex XML type. It can be used to hold
background knowledge information useful to evalu-
ate constraints. Active fields also admit a special (and
optional) syntax to express an atomic sequence of an
explicit size in alet active specification. This fa-
cility is particularly useful when a large number of
XML fields are used in the analysis.

2.1.3 Constructs for Locating PMML Models
and Binding New Data

A similar syntax may be used to locate (parts of) a
(new or extracted) pattern, represented via PMML. As
shown in fig. 2 (c), a variable is bound to each item
of the sequence resulting from the evaluation of the
expression that follows thein clause. Unlike afor
data clause, each item of the sequence is now a single
mining model or a set of homogeneous patterns (i.e.
either a set of classification tree or frequent itemsets
or association rules) sharing the sameminingschema3.

3The mining schema lists the fields used by the model
specifying their usage type, outlier treatment, missing val-
ues replacement policy and so on.

PROGRAMMING THE KDD PROCESS USING XQUERY

133

The kind of knowledge is specified by means of a
special keyword following thefor pmml expression.
Importantly, since the structure of a PMML model
is fixed, the user has to specify only the root of the
model(s) (i.e. the<PMML> element(s)).

Often, new data has to be used in a model context.
Consider, for example, the case in which a confusion
matrix is constructed from a predictive model in clas-
sifying a test set, or, vice-versa, association rules are
used to determine which instances violate them. The
using clause of fig. 2 (d) accomplishes both tasks. A
keyword after theusing distinguishes between “eval-
uating a model over a dataset” (we say in this case
thatthe data is bound to the model) and “evaluating a
dataset over a model” (i.e.the model is bound to the
data). The using data and using model clauses
are used in the first and second case, respectively. In
the former, the idea is to set-up an iteration over a
sequence to bind each item to a variable. Such a vari-
able can be used in the followingbind expression.
Here, each (non supplementary) field belonging to the
mining schema of given mining models is bound to
new data, by evaluating the expressions after the as-
signment symbol. Such binding is by name and type,
i.e. each variable of thebind clausemustcoincide, in
name and type, with a field of the mining schema. The
using model clause is similar, but it specifies mining
models after thein keyword and it binds such models
to new given data in thebind statement.

2.1.4 Constructs for Constraints and Output
Specification

We offer a simple and elegant way to express con-
straints useful to filter an inferred mining model. As
shown in fig. 2 (e), a simple XQuery predicate fol-
lowing the keywordhaving is used. We define a li-
brary of built-in functions to refer (the main parts of)
such output inside the XQuery predicate. This solu-
tion has two main advantages. First, it avoids spe-
cialized constructs and constraints are expressed more
declaratively. Second, the user has to know only the
signature and meaning of the external built-in func-
tions to apply constraints. As an example, to filter out
uninteresting itemsets, a built-in library offers special
functions to get their size, support and other interest-
ing measures, the complete list of the items belonging
to the itemset as well as the background knowledge
related to these items.

A similar strategy is used to offer to the user the
capability of defining its own output, both for data and
mining models. The basic idea is to use built-in func-
tions inside an XQuery expression (fig. 2 (f)), that en-
capsulate the main parts of the result. However, since
the output may have a very complex structure (e.g. in

the case of mining models), a default output can be
specified by means of thereturn default clause,
which is a PMML document for mining models.

2.2 Mining Operators

In this section we integrate the running example of
sect. 2.1.1 with additional examples of the mining
operators, according to the aformentioned specifica-
tion. Preprocessing, model extraction, filtering and
deploying tasks are shown.

2.2.1 Preprocessing

Several preprocessing and data preparation tasks for
sorting, selecting and filtering XML data can be di-
rectly obtained throughout the use of XQuery con-
structs. However, since the data preprocessing is
a time consuming phase, ad-hoc constructs have to
be designed for cleaning, discretization, aggregation,
sampling and many others.

The syntax of a preprocessing operator admits a
for data clause followed by a combination oflet
clauses (whose number and order depend on the kind
of task), and by areturn clause. In the following
example, the value of the<price> element in each
<closed auction> is discretized. The result is en-
coded in a sequence of<p> XML tags.

for data $auc in doc("xmark")//closed_auction
let predicted $price := $auc/price
return <p>{xquake:discr($price)}</p>

Notice the usage of the built-in functiondiscr(.) in
the return clause, that returns the discretized value
of its numeric argument.

2.2.2 Model Extraction

Mining models are directly inferred from XML data.
The specification of a model extraction operator in-
cludes afor data statement, to specify input XML
nodes, followed by a combination oflet clauses, to
specify the field (active, predicted or group) as in-
put to the algorithm or the background information.
The latter can be used, for example, to specify, by
means of an optionalhaving clause, domain-based
constraints on the output model. Areturn statement
closes the statement.

As an example, we can extend the first query of
the running example by introducing a more complex
constraint to reduce the number of generated rules.
Below, the query also specifies that, in each rule, ev-
ery person in the antecedent bought at least two items
in the closed auction history.

KDIR 2011 - International Conference on Knowledge Discovery and Information Retrieval

134

for data $auc in doc("xmark")//open_auction
let group $pers := $auc/bidder//@person
let supplementary $count-buy := count(
for $i in doc("xmark")//closed_auction
where $i/buyer/@person eq $xquake:item
return $i)

having every $j in xquake:body-context()
satisfies $j > 1

return default

Here, after selecting the transactions (i.e. the auc-
tions) and the items (i.e. the person’s identifiers),
the count-buy variable holds, for each distinct per-
son, the number of items bought by that person.
To this purpose, a join of the person identifier (re-
ferred by the special variable$xquake:item) and the
set of <closed auction> elements has been used.
For each mined association rule, the built-in func-
tion body-context() in the having clause returns
the context information (i.e. a sequence of int values)
related to the body items of that rule.

2.2.3 Model Filtering, Application and
Evaluation

The extracted knowledge can be filtered according to
a condition, that, in principle, can be applied to every
model. The general syntax begins with the clausefor
pmml, in which one has to specify the kind of model,
followed by ahaving and return clause. Similar
operators are used to apply an extracted model on new
data, to predict features, to select data accordingly to
the knowledge stored in the model, or to evaluate the
model itself. In these cases, ausing clause is used to
bind data to the knowledge.

As an example, consider the third query of the run-
ning example and let suppose that we have induced a
set of trees, stored inmy-trees.xml. Below, their
mining schema is shown:

<MiningSchema>
<MiningField name="price" usage="active"/>
<MiningField name="qty" usage="active"/>
<MiningField name="type" usage="predicted"/>
</MiningSchema>...

Here, the PMML<MiningSchema> lists the fields
(i.e. name and usage) which a user has to provide
in order to apply the model. The first query below
filters out those trees having a training confidence
lower than 50% fortype = "regular" in the root
node, where the path expression in thelet clause re-
turns the PMML<ScoreDistribution> element of
the root node (see (The Data Mining Group, 2011)).

for pmml tree $t in doc("my-trees")/PMML
having let $d := $t//Node/ScoreDistribution

[@value eq "regular"]
return $d/@confidence > 0.5

return $t

Given new XML data compliant with the mining
schema above, the next two queries return the set of
PMML confusion matrixes (one for each tree) con-
structed on such data and the predicted values of the
target field, respectively.

for pmml tree $t in doc("my-trees")/PMML
using data $d in doc("xmark")//closed_auction
bind $price := $d/price,

$qty := $d/quantity
$type := $d/type

return <tree>{xquake:conf-matrix()}</tree>

for data $d in doc("xmark")//closed_auction
using model $t in doc("my-trees")/PMML
bind $price := $d/price,

$qty := $d/quantity
$type := $d/type

return <classes>{xquake:class($t)}</classes>

Observe that the two queries above have a similar syn-
tax, but different semantics. The first one evaluates
the expression in thereturn clause for each input
tree. At each iteration, it sets-up a cycle over the
data sequence to construct the confusion matrix and
to compute the evaluation metrics. The second one
returns a<classes> element for each item of the in-
put data sequence. Each<classes> tag encapsulates
the predicted values, so that its size coincides with the
number of input trees. Given a set of association pat-
terns (resp. rules), similar operators can be used to get
the contingency tables of each itemset (resp. rule), or
to predict the instances that violate/satisfy those item-
sets (resp. rules).

2.3 Putting it all Togheter

At this point, one should note that in the simple
queries above, we haven’t yet defined neither the kind
of knowledge mined, nor the mining algorithm used,
nor, and more importantly, how to deploy a min-
ing operator inside a KDD process. From this latter
perspective, two important aspects have to be mod-
elled: iteration and interaction. The KDD is an in-
teractive, iterative and multi-step process in the sense
that, at any stage, the user should have the possibil-
ity to choose different algorithms/parameters, to eval-
uate a condition that selects a “then” branch or an
“else” branch, or to iteratively repeat some step to
achieve better results. Also, a language supporting a
KDD process should include constructs encouraging
the reuse of (parts of) the process previously defined
to easily integrate this sub-query (i.e., sub-process)
inside a more complex one.

To make the KDD process modular and reusable,
XQuake adds to XQuery the capability of defining
specialmining user-defined functionswhose body is

PROGRAMMING THE KDD PROCESS USING XQUERY

135

made up of a mining operator. Below, an example of
mining function declaration is shown:

declare mining function
my-nmspace:my-fun($my-param as xs:int) {

< mining operator >
};

As for standard functions and variables, user-
defined mining functions can be called either from
almost any place in a query or in an external min-
ing module. For example, they can be invoked in-
side aFLWOR, conditional, switch or quantified ex-
pression, as well as in mining functions themselves.
The syntax of a mining function call is the same of
any other function, except for the first argument that
is an algorithm specification with relative parameters.
For example, to call the function above by using the
apriori algorithm with a minimum support and con-
fidence of 10%, one mights use:

my-nmspace:my-fun(rules:apriori(0.10,0.10), 1)

The rules namespace indicates the kind of knowl-
edge to be mined, in this case association rules. Cur-
rently, XQuake supports discretization,discr, sam-
pling, sampl, the generation of frequent itemsets,
itemsets, rules rules, classification treestrees
and their filtering, evaluation and usage.

3 APPLICATION SCENARIO

This section reports a concrete usages of XQuake.
The goal is to present a simple (but also taken from
our real-experience in data mining) KDD process to
show how XQuake is particularly suitable for support-
ing an inductive database framework. An additional
example of KDD process based on frequent itemsets
can be found in (Romei and Turini, 2011b).

In xmark, about 50% of the users provide a profile
with personal information (see the<profile> tag in
the first XML fragment of fig. 1). Also, they spec-
ify their categories of interest (e.g. music or sport
auctions) during the registration process. Among the
registered users, only a subset provides personal in-
formation on the age (about 45%). The idea is to use
the other personal information to predict that missing
information. To this purpose, we aim at extracting a
classification tree able to discriminate age based both
on the other personal information and on the specified
interests. The knowledge of the missing information
of the registered user will allow to offer, at time of
accessing, personalized banners, promotions or news.
The overall process is schematized in fig. 3.

[Discretization]. In order to use a classification al-
gorithm, theage information is discretized into three

Figure 3: A sample KDD process based on classification.

distinct intervals,young, mid andold. The overall
data is then partitioned into two samples for training
and testing. At this stage, we do not use a sampling al-
gorithm, but rather the users are selected among those
having provided a phone number (about 50%) and
the others. The use of the phone information offers
a quite randomized partition.

[Bagging Classification].Accuracy can be increased
via abagging classification. More specifically, a clas-
sifier is trained on a sample of instances takenwith a
replacementstrategy from the training set. This task
is repeatedk times and, at each iteration, the sam-
ple size is equal to the size of the original training
set. The output is a set ofk inducers:T = {t1, . . . , tk}.
Then,T is filtered according to a condition. Specifi-
cally, for eachti , i ∈ [1,k], these conditions must hold:
(i) the overall number of nodes ofti is below a cer-
tain threshold,α, and (ii) the accuracy of each leaf
that classifies asyoung in ti is greater than a parame-
ter, β. The result of this phase is a new set of induc-
ers,T

′
= {t1, . . . , th}, with h≤ k. Notice that the first

condition above tries to reduce the complexity of the
trees avoiding those subject tooverfitting. The second
one permits to consider only those trees that are more
precise in predicting young users. The survived clas-
sifiers are composed to generate a bagged classifier,
tT ′ , that returns the class that has been predicted most

often by means of a voting method amongti ∈ T
′
.

[Evaluation]. Once the composed tree,tT′ , has been
constructed, it can be applied to a test set to evaluate
its performance in terms of an accuracy error. If the
resulting accuracy is greater than a given threshold,
γ, thentT ′ is returned. Otherwise, the filtering task

is repeated onT
′

by using a more stringent value of
theα parameter, to the aim of filtering out additional
trees with an high number of nodes. The survived

KDIR 2011 - International Conference on Knowledge Discovery and Information Retrieval

136

treesT
′′
= {t1, . . . , t j}, with j ≤ h are composed and

the procedure is repeated until the condition on the
accuracy is fulfilled orT

′′
= /0.

The KDD process just described can be imple-
mented in XQuake as reported in fig. 4. In the
registered-users module a set of mining and
XQuery functions is defined.

The discretizer() function discretizes the
<age> XML element for each person having specified
a value for the age. In the result, we append, to each
<profile> element, a<age-discr> tag containing
that discretized value. Thesampler(.) function gets
as input a sequence of<person> elements and it uses
the built-in functionnum-times-in-sample($i) to
get the number of times the current item (i.e. person)
of the sequence belongs to the sample of index$i (we
recall that we have a single sample with index 1 and
a replacement strategy is used). Below, a fragment of
the output is shown:

<person>
<profile income="96497.12">

<interest category="category11"/>...
...
<age>29</age>

</profile>
<age-discr>young</age-discr>

</person>...

Theinducer(.) function extracts a classification
tree given a sequence of<person> elements (i.e. the
training set). Active fields of the task are the sub-
element<business>, <education> as well as the
top-five interests specified by each user. For the sake
of brevity, we suppose a user-defined XQuery func-
tion select-interests($p, $n) (not shown in fig.
4) is defined. Given an XML<person> element,$p,
and the number of required categories,$n, that func-
tion returns a sequence of boolean values of size$n.
Each boolean value indicates whether the person$p
has an interest on theith category, withi ∈ [1,n].

The filtering module is implemented in the
filter(.) function. It yields a sequence of PMML
trees and theα andβ parameters. It also uses a built-in
function, namelyxquake:tree-leaves($t), in the
having clause, to get the list of leaves as PMML ele-
ments.

Finally, the composition, classification and eval-
uation are performed by means of the function
bagging(.). It takes a set of PMML trees and a
test set as a sequence of (discretized)<person> el-
ements. Then, it sets-up an iteration in which, for
each<person>, the predicted values of the<age> el-
ement are collected for each classification tree. This
is achieved via theclassifier(.) mining function

that returns a sequence of predicted classes (contain-
ing one value for each tree) for each item of the input
sequence. Such single predictions are used to predict
the target attribute, according to a majority strategy
(XQuery functionmajority-class(.) not shown in
fig. 4). A sequence of misclassified values is returned,
as shown in the following XML fragment:

<mis>mid young</mis>
<mis>old young</mis>
<mis>old mid</mis>...

The overall process is assessed throughout an
XQuery program. It yields as parameters the number
of iterations,k, and theα, β andγ thresholds. Also, it
uses the recursive XQuery function,tester(.), to
filter, compose and evaluate the induced trees until
the condition on the accuracy is respected or no more
trees survive to the filter. This is an elegant way to
simulate iterations depending on a condition.

4 RELATED WORK

The explotation of XML as a flexible and extensible
instrument for IDBs has been studied in (Euler et al.,
2006; Romei et al., 2006; Meo and Psaila, 2006).

RapidMiner (Euler et al., 2006) is an environment
for KDD and machine learning in which experiments
are described via XML documents. While the graph-
ical user interface supports interactive design, the un-
derlying XML representation enables automated ap-
plications after the prototyping phase.

KDDML (Romei et al., 2006) and XDM (Meo and
Psaila, 2006) are the most related works. In both,
the KDD process is modeled as an XML document
and the description of an operator application is en-
coded by means of an XML element. They integrate
XQuery expressions into the mining process. For in-
stance, XDM encodes XPath expressions into XML
attributes to select sources for the mining, whilst KD-
DML uses an XQuery expression to evaluate a con-
dition. XQuake does not use XML for the process
representation, but rather it directly extends XQuery
to achieve a better expressiveness in representing the
KDD process.

Mining XML data are used in an instrumental
way in (Baralis et al., 2007), to construct summarized
representations of XML data. The authors propose
to extract association rules from XML databases as
the basis for a pattern based representation of XML
datasets. The idea is to use the patterns to answer
queries on the datasets.

Finally, we mention (Blockeel et al., 2008) as
far as the definition of a relational-based inductive
database.

PROGRAMMING THE KDD PROCESS USING XQUERY

137

mining module namespace reg = "registered-users";

declare mining function reg:discretizer() {
for data $pers in doc("xmark")/site/people/person[not(empty(profile/age))]
let predicted $age := $pers/profile/age
return <pers> {

($pers, <age-discr>{xquake:discr($age)}</age-discr>)
} </pers>

};

declare mining function reg:sampler($dataset as node()*) {
for data $person in $dataset
return (for $i in (1 to xquake:num-times-in-sample(1)) return $person)

};

declare mining function reg:inducer($training-set as node()*) {
for data $person in $training-set
let active $education := $person//profile/education
let active $is-business := $person//profile/business
let active<5> $interests := reg:select-interests($person, 5)
let supplementary $age = $person//age-discr
return default

};

declare mining function reg:filter($trees as node()*, $alpha, $beta) {
for pmml tree $t in $trees
having (count($t//Node) <= $alpha) and

(every $i in xquake:tree-leaves()
satisfies $i/@value eq "young" and $i/@confidence > $beta)

return $t
};

declare function reg:bagging($trees, $test-set) {
for $pers in $test-set
let $pred := reg:majority-class(reg:classifier(trees:apply(), $trees, $person))
return if ($pred != $pers/age-discr)

then <mis>{($pers/age-discr,$pred)}</mis> else ()
};

declare mining function reg:classifier($trees, $test-set) {
for data $person in $test-set using model $t in $trees/PMML
bind $education := $person//profile/education,

$is-business := $person//profile/business,
$interests := reg:select-interests($person, 5),
$age = $person//age-discr

return default
};

declare function reg:tester($trees, $test-set, $alpha, $beta, $gamma) {
let $trees := reg:filter(trees:filter(), $trees, $alpha, $beta)
return if ((count(reg:bagging($trees, $test-set)) <= $gamma) or (empty($trees)))

then $trees else reg:tester($trees, $test-set, $alpha - 5, $beta, $gamma)
};

Figure 4: Theregistered-user mining module implementing the KDD process of fig. 3.

For a recent and complete review on inductive
databases see (Romei and Turini, 2011a).

5 CONCLUSIONS

XQuake is a new implementation of an inductive
database system over XML data. The scenario pre-

KDIR 2011 - International Conference on Knowledge Discovery and Information Retrieval

138

Table 1: Summarization of the XQuake language.

Inductive Database requirement XQuake perspective
Data and model storage Native XML Database (models represented via PMML)

KDD process representation XQuery program + special mining functions
KDD process parametrization Parametrization of XQuery functions

Closure principle Achieved by means of the XQuery closure
Constraints & interesting measures XQuery expression + built-in function library

Output specification XQuery expression (optional) + built-in function library
Data binding Based on the PMML mining schema

sented in this paper offers an idea of its potentialities
and advantages. First, XML data is mined where it
is, in a native XML database. Second, great attention
has been paid to the closure principle: the examples
highlight the ability of combining the results of the
knowledge extraction in order to evaluate certain in-
dicators, to compose preprocessing, data mining and
post-processing, and to use background knowledge to
filter models. Finally, the KDD process has now an
integrated view and it can be easily made modular and
parametric. Tab. 1 summarizes the main features of
XQuake, according to the inductive database princi-
ples.

Since our project aims at a completely general
solution for XML data mining, there are further ex-
tensions that need an in-depth investigation. An on
going work is the integration of both further knowl-
edge (specifically, sequential patterns) and a rich li-
brary of mining algorithms. Also, we are working
on providing the formal semantics of XQuake. Fu-
ture work can go in two (often orthogonal) directions:
(i) the exploitation of ontologies to represent meta-
data (on the expressiveness side), and (ii) the study of
query rewriting techniques for optimization purposes
(on the architectural side). The study of more sophis-
ticated high-level guis for the design of the queries is
another aspect to be considered in the future.

REFERENCES

Baralis, E., Garza, P., Quintarelli, E., and Tanca, L. (2007).
Answering XML queries by means of data summaries.
ACM Trans Info Syst, 25(3):1–10.

Blockeel, H., Calders, T., Fromont, E., Goethals, B., Prado,
A., and Robardet, C. (2008). An inductive database
prototype based on virtual mining views. InKDD,
pages 1061–1064, New York, NY, USA. ACM.

Euler, T., Klinkenberg, R., Mierswa, I., Scholz, M., and
Wurst, M. (2006). YALE: rapid prototyping for com-
plex data mining tasks. InKDD ’06, pages 935–940,
Philadelphia, PA, USA.

Holupirek, A., Grün, C., and Scholl, M. (2009). BaseX and
DeepFS - Joint Storage for Filesystem and Database.
In EDBT, pages 1108–1111, Saint Petersburg, Russia.
ACM.

Meo, R. and Psaila, G. (2006). An XML-based database for
knowledge discovery. InEDBT ’06, pages 814–828,
Munich, Germany.

Romei, A., Ruggieri, S., and Turini, F. (2006). KDDML: a
middleware language and system for knowledge dis-
covery in databases.Data Knowl. Eng., 57(2):179–
220.

Romei, A. and Turini, F. (2010). XML data mining.Softw.,
Pract. Exper., 40(2):101–130.

Romei, A. and Turini, F. (2011a). Inductive database lan-
guages: requirements and examples.Knowl. Inf. Syst.,
26(3):351–384.

Romei, A. and Turini, F. (2011b). Programming the KDD
process using XQuery. Technical Report (extended
version) TR-11-10, University of Pisa, Department of
Computer Science.

Schmidt, A., Waas, F., Kersten, M., Carey, M. J.,
Manolescu, I., and Busse, R. (2002). XMark: a bench-
mark for XML data management. InVLDB, pages
974–985.

The Data Mining Group (2011). The Predictive
Model Markup Language (PMML). Version 4.0.1.
www.dmg.org/pmml-v4-0-1.html.

W3C (2010). XQuery 3.0: An XML Query Lan-
guage. W3C Working Draft 14 December 2010.
www.w3.org/TR/xquery-30/.

PROGRAMMING THE KDD PROCESS USING XQUERY

139

