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Abstract: In this position paper, we provide a preliminary assessment of hardware and software solution stack choices
available to developers of resource-oriented web services on commodity embedded devices. As part of an
ongoing interdisciplinary research project on air and water quality in a major urban ecosystem, we are de-
veloping an information infrastructure amounting to a role-based hierarchy of individually addressable, in-
terconnected resources, ranging from sensors, analyzers, and other monitoring devices to aggregators and
publishers. This infrastructure follows the Representational State Transfer (REST) architectural pattern and
integrates non-networked or non-RESTful monitoring devices through RESTful proxy resources running on
low-cost, low-energy, possibly wireless, always-on embedded servers. Commodity wireless routers running
a suitable embedded Linux distribution are a good choice for this purpose, and we have started to survey
the landscape of supported solution stacks, including programming languages and RESTful frameworks: Not
only were our preferred, familiar choices unavailable for medium-end routers, but we had to develop our own
lightweight REST layer for lower-end routers. Given the growing popularity of embedded Linux devices,
however, we argue that programming language designers and framework architects should support them to a
much greater extent than they do now. In addition, as the demand for green computing grows, we argue that
memory- and processor-efficient languages and frameworks become increasingly important.

1 INTRODUCTION Given that such devices are readily available in the
form of commodity wireless routers running a suit-

The purpose of this position paper is to provide a pre- able embedded Linux distribution, we have started to

liminary assessment of hardware and software solu-survey the landscape of supported solution stacks, in-

tion stack choices available to developers of resource-cluding programming languages and RESTful frame-

oriented web services on low-power equipment. The works: Not only were our preferred, familiar choices

context for this discussion is an ongoing interdisci- unavailable for medium-end routers, but we had to de-

plinary research project on air and water quality in a velop our own lightweight REST layer for lower-end

major urban ecosystem. routers. Because embedded Linux devices are becom-
The information infrastructure we are develop- ing increasingly common for a wide range of uses,

ing for this project amounts to a role-based hierar- however, we argue that language designers and soft-

chy of individually addressable, interconnected re- ware framework architects should support them to a

sources, ranging from a large number of sensors, an-much greater extent than they do now. In addition,

alyzers, and other monitoring devices to aggregatorsas the demand for green computing grows, memory-

and publishers. In developing this infrastructure, we and processor-efficientlanguages and frameworks be-

follow the Representational State Transfer (REST) ar- come increasingly important.

chitectural pattern (Fielding, 2000); accordingly, we

incorporate non-networked or non-RESTful monitor-

ing devices through RESTful proxy resources running

on low-cost, low-energy, possibly wireless, always-on

embedded servers.
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2 THE NEED FOR RESTFUL support for the PATCH request method), or other non-

THINKING idempotent operations. While most interaction with
environmental sensors is read-only, some sensors do
provide mutable resource state for configuration set-
tings such as the unit of measurement, calibration set-
tings, and the like. Our resources naturally support
the uniform interface as follows:

The Representational State Transfer (REST) architec-
tural pattern (Fielding, 2000) is centered around ad-
dressable resources with a uniform interface and hy-
permedia representations. In RESTful web services,
URIs are used as addresses, HTTP verbs (request® Obtaining a measurement reading or device set-
methods) as the uniform interface, and XML or JSON  ting from the sensor maps to the GET method.

(JavaScript Object Notation) as representations. e Providing a specific new value for a device setting

By exposing our hierarchical information infras- is idempotent and, thus, maps to the PUT method.
tructure as a collection of interconnected RESTful . . . .
e_Toggling or cycling among several options is not

web services, we allow the available information to idempotent and. thus. maps to the POST method
be consumed in flexible ways by user interface pre- P o ' P T
sentation layers, data analysis tools, web application ® Some nodes.in our infrastructure cache histori-

mashups, and other planned or unforeseen program-  cal data as their resource state; explicitly deleting
matic clients. some of those data maps to the DELETE method.

Hypermedia Representations. The resources in

tructure can be conceived naturally as a RESTful re- OUr information infrastructure are naturally intercon-

source set (Pisupati and Brown, 2006; Taherkordi nected, and hypermedia representation formats ex-
et al., 2010). pose these connections as links. For.example, the rep-

] _ resentation of an aggregator node includes a link to its
e The singleton root resource corresponds to the in- jist of (statically known and/or dynamically discov-
formation infrastructure itself. ered) children. In addition, in following the Hyperme-

e Locations can be grouped at multiple levels cor- dia as the Engine of Application State (HATEOAS)

responding to places, organizations, or organiza- Principle (Fielding, 2008), the representations include
tional units. links that represent the next actions, corresponding to

state transitions, currently available to the consumer.

For example, the representation of a reading includes

a link to the device that produced the reading, and the

e Each device is responsible for measurements, representation of a device includes links to the various
such as nitrogen monoxide (NO), nitrogen diox- device settings, which can be modified with sufficient
ide (NQ,), or ozone (Q). authorization.

Addressable Resources. Our information infras-

e Each location can be configured to house one or
more devices.

e For any measurement, the device can provide the
current reading or historical values such as the Implementation. Using the Restlet framework for
minimum, maximum, or average over a given Java, to which the second author contributed ex-
time period. A unit of measurement is associated ample code and documentation, we have imple-
with each reading. mented a RESTful proxy for monitoring devices
that are network-capable but not RESTful on their
own. Our implementation runs on a conventional
Linux server and includes an adapter component
for a class of devices that support the widely used
TCP-based Modbus protocol. It is currently serves
HTTP Verbs as the Uniform Interface. Our re- as a RESTful proxy for several Thermo Scien-
sources support the main verbs of the uniform inter- tific air quality analyzers available at our institu-
face of HTTP, that is, the request methods GET, PUT, tion. For example, our proxy maps routes of
POST, and DELETE. These are similar to the familiar the form/{l ocati on}/{devi ce}/{measurenent}
CRUD (Create, Read, Update, Delete) operations for / { r eadi ng} to a resource that obtains a reading from
manipulating resources but do not correspond one-to-a device. The fragment of the externalized configura-
one. Specifically, PUT is idempotent and corresponds tion metadata (for the Spring Framework dependency
to creating or fully updating a specific resource, while injection container) in Figure 1 shows a specific loca-
POST corresponds to adding a child resource, par-tion with a nitrogen oxide analyzer. The measurement
tially updating a resource (in absence of widespread register settings specify which Modbus data registers

A topic for further investigation is the federation of
disjoint resource sets (across physical servers) into a
single, seamlessly browsable distributed resource.
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<entry key="baumhart">
<bean cl ass="Def aul t Locati on">
<property nane="devi ces"><mp>
<entry key="42i">
<bean cl ass="MdbusDevi ce" >
<property nanme="host name"

val ue="147. 126. 68. 251" />
<property

name="readabl eSettings"> ...
</ property>
<property

nane="rmeasur enent Regi st er s" ><map>
<entry key="no2"><map>
<entry key="current"
val ue="0"/>
<entry key="mn" val ue="10"/>

Figure 1: Resource configuration in Spring.

correspond to which readings from the analyzer. The
complete code for this example is available online.

3 GREEN PERVASIVE

COMPUTING

As pervasive computing becomes increasingly preva-
lent, more and more attention is given to green tech-
nology in the form of low-power, embedded devices.

Indeed, such devices are increasingly common as part

of the Internet of Things (Guinard et al., 2010) and
the emerging Web of Things and serve a variety of
needs, including home automation, home and small
office security, home entertainment, weather and en-
vironmental monitoring, RFID and identity manage-
ment, and near-field communication for presence and
proximity applications.

Accordingly, one of the key nonfunctional re-
qguirements for our information infrastructure and its
constituent devices is minimal power consumption.
Other requirements include low cost, always-on op-

eration, and, in some cases, wireless network connec-

tivity. To this end, we examine the lower end of the
server hardware spectrum, starting from the top.

Conventional x86-based Servers, including low-
energy versions such as Atom, Via C7, etc.,
typically include several gigabytes of RAM.
These systems support the full spectrum of
available software solution stacks, but at the
expense of power consumption and memory
use. Idle power consumption ranges from 30
watts for low-power fanless systems to several
hundred watts for conventional systems. Cost
starts around US$200.

Plug Computers, usually ARM-based, have re-
cently emerged as an alternative to conventional
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systems and typically offer half a gigabyte of

RAM or more. These systems also support stan-
dard available solution stacks. Idle power con-
sumption ranges from 5 to 15 watts. Cost starts
around US$100 but can reach two or three times
that amount for fanless systems with diverse 1/0
ports, such as eSATA and USB.

Wireless Routers, network-attached storage (NAS)

devices, and similar devices are typically based
on ARM or embedded MIPS CPUs and feature
0-32MB on-board flash memory and 2-64MB
RAM. Although these are sold as special-purpose
consumer devices, numerous models can be con-
verted to general-purpose embedded servers by
installing a suitable embedded Linux distribution
that supports a subset of the standard solution
stacks (discussed in more detail below). Virtu-
ally all of these devices are fanless, and idle power
consumption is around 1 to 3 watts. Cost ranges
from US$40 to US$120 for routers depending on
memory, wireless radio chipset, and presence of
USB ports. The differences in power consump-
tion and cost when compared to plug computers
seem to be minor but quickly scale up when tens
or hundreds of devices are involved.

Single-board Embedded Computers and  micro-
controllers, often ARM- or Atmel-based, are
designed to perform device control tasks and are
often limited to flash memory and RAM well
below one megabyte. Some of these systems run
embedded Linux distributions with very limited
software and operating system stacks. Idle power
consumption is well below 1 watt. Cost starts
around US$20 for a bare board without case, not
including the cable required to connect the chip
to a host computer and program it. These devices
are generally not suitable as stand-alone servers
but could be useful when attached to, say, an
embedded host computer.

Wireless routers and related devices in the second-last
category appear to be the most economical devices in
terms of cost, availability, power consumption, and
physical footprint that can be used as general-purpose
embedded Linux servers. Based on our evaluation,
wireless routers and related devices offer the sweet
spot in terms of these requirements:

Reliability. These devices are based on mature
chipsets with a common architecture, such as
ARM or MIPS. They are fanless and have no other
moving parts, yet they are not so small as to im-
pede good air flow for cooling.

Ease of Software Development. There are several
choices of embedded Linux distributions for these
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devices. Software development for these targets one. For example, the RESTful sensor proxy example
is well supported. Development typically takes shown above, implemented in Java using the Restlet
place using an integrated development environ- and Spring frameworks, will not run on the limited
ment or other tools on a development host; the Java ME (Micro Edition) virtual machines available
resulting code is then either cross-compiled for or on embedded Linux platforms.

directly interpreted on the embedded target. In the remainder of this section, we will discuss

Active Community Support. There are active preliminary results from our ongoing effort to eval-

knowledgeable communities for both hardware Yate programming languages and REST frameworks.
and operating system. This effort is quite similar to themplementing-rest

. ) i i project (Amundsen et al., 2011), but with the added
Specific device choices include constraint of embedded Linux devices as deployment
e low end: ASUS WL520gU with a 200MHz targets. As we will discuss below in more detalil, this
Broadcom CPU, 4MB flash, and 16MB RAM for added constraint requires us to shift focus from Java
US$40 and .NET to cross-compilation, scripting, and other

e mid-range: ASUS WL500gP v2 with a 240MHz  lightweight approaches.
Broadcom CPU, 8MB flash, and 32MB RAM for
US$65 Java. As mentioned above, Java on OpenWrtis lim-
e high end: Buffalo WZR-HP-G300NH with a ited to the Java ME platform with the Connected De-
400MHz Atheros CPU, 32MB flash and 64MB vice Configuration (CDC, JSR 218) The CDC Foun-
RAM for US$90 dation Profile is a set of APIs designed for headless
servers and other devices without a GUI. Java ME,
still based on Java 1.4.2, is missing important re-
cent additions to the language, most notably, anno-

The remaining step is to choose an embedded Linux
distribution. Some of the available choices, such as

Tomato and DD-WRT, focus primarily on router func-  44ions and complete support for reflection, as well

tionality, while others, such as Embedded Debian, 5 jaya.util.concurrent. Because most modern REST
have too large a footprint for our target devices. We frameworks, dependency injection containers, and
have chosen OpenWrt (OpenWrt, 2010) for the fol- gher commonly used frameworks and tools rely on
lowing reasons: support for a wide range of devices, yhese Janguage features, they cannot be used on our
including the three mentioned above; open and flexi- ¢yrget devices out of the box. Even the NetKernel
ble with excellent build system; extensive documen- o4 rce-oriented platform, which explicitly supports
tation; mature code base under active development, j5,a 1 4.2 will not work out of the box on Java ME
and a competent and helpful community. Various em- pecayse it uses the String.replaceAll method instead
bedded distros, including OpenWirt, replace the C li- ot Syring replace; we are currently investigating how
brary (usually glibc) with uClibc, which provides es- 0y effort it would take to port Netkernel to this
sentially the same functionality with a much smaller platform. Furthermore, many frameworks rely heav-
memory fqotprlnt. . i i ily on XML, which can be memory-intensive and for
We typically configure our devices to run as wire- \vpich java ME support is limited (JSR 280); we pro-

Ie§s clients (in so—_called station mode) on an e>§isting pose to rely more on JSON than XML for lightweight
wireless network infrastructure. We have confirmed oy iarnalized configuration and data exchange. Con-

that the low-end WL520gU can run for four hours on - geqently, if one wants to develop Java services for

four rechargeable NiMH AA batteries. In the near omnpeqded Linux devices, one is limited to a solution
future, we plan to add a small solar panel to charge g4ck of older versions of the relevant layers, such as
the battery pack continually. The advantage of such a g jetty 6.1.x: web server, db4o 7.x object database,
configuration is that it can be deployed where desired e anshell 2.0b4 scripting environment, and PicoCon-
but without the need for any wired connections. tainer 1.3 dependency injection container. Instead, we
hope that there will at some point be a Java “Micro
Enterprise Edition” that is more up-to-date language-

4 RESTFUL SERVICESFOR wise and offers better support for RESTful service de-
EMBEDDED DEVICES velopment for embedded devices.

In practice, we have found it challenging to apply .NET/Mono. We hope that .NET on the Mono run-
RESTful thinking to green computing on embedded time will eventually be a viable alternative. Mono
devices. We cannot simply deploy a service devel- is known to run on ARM, but the pertinent docu-
oped for a conventional platform to an embedded mentation refers to Mono 1.x, while the current ver-
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sion is 2.8.x. We successfully cross-compiled the
Mono 2.8.1 runtime for OpenWrt and installed it on
x86, ARM, and MIPS. While the x86 installation
passed all tests included with the Mono runtime, only
very simple programs worked on ARM and MIPS.
This confirms that the problem is not using Mono on
a uClibc-based system but possibly the just-in-time
compilation for these non-x86 processors. We hope
that this problem will be addressed eventually be-
cause of the wealth of REST and other frameworks
available for .NET.

Cross-compilation. In contrast with the byte-
code-based Java and .NET platforms, using cross-
compilation to generate binaries for the target devices
is well supported. Languages such as C and C++
work well. In particular, C++ along with the Boost
libraries is a promising choice for interfacing with
external sensors or microcontrollers. By adding the
POCO C++ libraries for building network-based ap-
plications, C++ could be an overall winner. We have
not evaluated these libraries yet, but they appear to
be well documented and under active development.
Although Objective-C works as a language, the asso-
ciated GNUstep framework is too resource-intensive
for embedded targets. We were also interested in the
Embedded ML project, which translates ML code to
C code, which can then be cross-compiled. Unfortu-
nately, the resulting binaries crashed immediately on
x86, ARM, and MIPS, so we suspect that the gener-
ated code is not compatible with uClibc.

Other Interpreted and Scripting Languages We
have also experimented with various interpreted and
scripting languages, which can very conveniently be
developed on a host and interpreted on target at source
or byte-code level. While all of these languages work
more or less well on conventional hardware, the ques-
tion is how well they scale down to embedded hard-
ware, and this is where differences become apparent.
Our preliminary experience is as follows:

Erlang is well supported on OpenWrt. There is a
package for the Mnesia database, and one can
manually install the RESTful Webmachine frame-
work. We have already confirmed that this solu-
tion stack runs well on a mid-range router. Given
how interesting Erlang is as a functional language,
we are eager to evaluate this stack further.

Lua is directly supported in the form of a module for
the extremely lightweight uhttpd server. We im-
plemented a very minimal Lua script service that
exposes data from a USB input device as a REST-
ful resource (see Figure 2) in a similar way as
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sensors = {
baurhart = {
tsd42i = {
nitrogen = {

no = {

current = function()

return read_sensor(device, 7)

end,

Figure 2: Resource configuration in Lua.

function nap_path_to_resource(path, resource)
pos = resource

for word in
string.gfind(path or ", "[*/]+") do
pos = pos[ wor d]
end
if type(pos) == "table" then
header _ok()
print("[\"" .. table.concat(keys(pos),
AT )
el seif type(pos) == "function" then

header _ok()
print(string.format("{ \"value\": % }",

pos()))

el se
header _not f ound()
end
end

Figure 3: Mapping from URI path to resource.

the previous Restlet/Spring example. The func-
tion shown in Figure 3 maps the request URI path
to this Lua resource set object and returns a rep-
resentation of the resource in the JavaScript Ob-
ject Notation (JSON). The two auxiliary functions
generate the HTTP response headers that precede
the response body with the representation. The
complete code is available online.

Notably, all packages required for this configura-
tion, together with our Lua code, fit within the
4MB flash memory of the low-end WL520gU
router. This is a key requirement for the follow-
ing reason: The external input device is plugged
into the single USB port of this router. Exceeding
the available flash memory would require a USB
memory stick and a USB hub. The additional re-
quired power would take us further away from the
goal of battery- or solar-powering the router.

On mid-range systems, there are additional
choices. Among many other packages, Lua pro-
vides the Orbit web framework, which supports
the main HTTP request methods. Portions of this
framework are written in C, but the luarocks pack-
age management system can be set up for cross-
compilation. We have gotten basic server func-
tionality to work on a mid-range router and plan
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to evaluate Orbit during the next few months. In the long term, we intend to apply RESTful
thinking to novel hardware architectures. Although
not in the direct scope of this paper, general purpose
computing on graphics processing units (GPGPU)
and other novel architectures are in dire need of more
resource-oriented thinking to allow for better integra-
PHP is well supported with over 30 packages avail- tion in various distributed systems scenarios. While
able. It runs within the lighttpd web server these architectures are not low in absolute power con-
through FastCGI and appears to consume rel- sumption, they are very power-efficient when consid-
atively littte memory and other processor re- ering their computational performance. An example
sources. Given that there are several RESTful is where a lower-power device, say, is taking sensor
frameworks for PHP, this choice looks promising readings and needs to offload the analysis to a more

Perl is well supported with over 135 packages avail-
able, but we have not had an opportunity to eval-
uate it yet. Several RESTful frameworks for Perl
have been mentioned on stackoverflow.com.

and merits further evaluation.

Python also appears to be well supported with over
20 packages available. Based on our initial ex-
plorations, there appear to be some issues with

powerful device for data analysis (e.g., time-series,
compression, etc.) Here, a GPU would be a power-
efficient way to support collective operations for large
numbers of data supplier devices.

Python’s package management systems that must

be resolved before further evaluation is possible.
Ruby is well supported in terms of the availability
of packages and tools.

sometimes requiring a reboot of the device. In ad-
dition, the WEBrick web server toolkit example

works but caused over 100 processes under rela-

tively light load, so this stack appears to be too
heavyweight overall for our target device classes.

5 CONCLUSIONS

Based on our ongoing investigations, we recommend
that developers of RESTful web services for embed-
ded Linux devices be open toward alternatives to the
mainstream Java and .NET platforms: several promis-
ing choices are available, including Erlang, Lua, and
PHP. By choosing an appropriate solution stack, it is

possible to use these devices as low-power servers

with nearly equivalent functionality as their conven-

tional x86-based counterparts. Conversely, language
designers should be more supportive of embedded tar-

get platforms, and framework architects should be
more aware of the limitations of current language sup-
port on these targets.

In the near term, we will conduct a broad-based
systematic evaluation of the various language and
framework combinations using web server perfor-
mance tools such as httperf and siege along with light-
weight memory profiling.

In the medium term, we plan to expand our ex-
plorations to devices in the next-lower device class of

single-board embedded system and microcontrollers.

Here, we expect C/C++ and possibly Lua to be the
most viable options.

Nevertheless, the gems
package management system runs out of memory,
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