
SEMANTIC-BASED DELIVERY OF E-SERVICES
APPLYING THE SAAS APPROACH

Poster Paper

Agata Filipowska, Monika Kaczmarek and Tomasz Kaczmarek
Department of Information Systems, Faculty of Informatics and Electronic Economy

Poznan University of Economics, Al. Niepodleglosci 10, 61-875, Poznan, Poland

Keywords: Service composition, Service platforms, Software as a service.

Abstract: The cloud computing paradigm aims at sharing various resources that encompass infrastructure, software,
application and business processes. This paradigm may affect the way companies develop and provide
services and offers inter alia increased reusability, costs reduction and decreased time to market. However,
its fulfilment requires a certain change in the approach to create applications that support business
processes. This paper provides a vision of a platform enabling users to build applications out of services
available in the cloud.

1 INTRODUCTION AND
MOTIVATION

The cloud computing paradigm aims at sharing
various resources that encompass infrastructure,
software, application and business processes (Zhang
& Zhou, 2009; Zhang et al., 2008). In the cloud, as
indicated in (Armbrust et al., 2009), especially the
software application resources i.e. services, are
provisioned and consumed using the software as a
service (SaaS) model. It affects the way companies
develop and provision their services.

More and more often, companies use services
distributed in the cloud and offered by various
providers on various machines. To build a solution
applying SOA with services available in the cloud,
one should also use mechanisms such as discovery
and composition of services. The vision of efficient
service discovery and composition in the SaaS
settings is very appealing offering increased
reusability, costs reduction and decreased time to
market. However, its fulfilment requires, in our
opinion, a certain change in the approach to create
applications that support business processes. In
addition, in order to allow for collaboration between
partners offering their services in the cloud and
allow business to build their offer in a more dynamic
way, an appropriate tool support, e.g., in a form of a
platform, is needed.

Developing a software platform supporting the

SOA architecture with functionalities such as
discovery and composition of services, which would
enable using complex services, requires addressing a
number of challenges. As the issue of service
discovery is well investigated, we focus on the
composition mechanism and the platform itself.
The aim of this paper is to discuss the requirements
for the composition mechanism in the cloud
computing setting and sketch a model of a platform
supporting this process. In order to fulfil this aim,
the paper is structured as follows. First, we define
requirements for the semantic-based composition
being a core element of the platform. The following
section describes an exemplary framework for
implementing these requirements. The paper
concludes with final remarks.

2 COMPOSITION–
REQUIREMENTS

Although there is a large number of services
available in the cloud, alone they have a limited
utility from users’ perspective, as they often fail to
meet users’ high level requirements. Therefore, the
need to create and then provision composite services
appears (Grossmann et al., 2011; Küster et al., 2005;
Dustdar and Schreiner, 2005; Peer, 2005). A number
of various approaches to static and dynamic
(automated) service composition has been developed

159Filipowska A., Kaczmarek M. and Kaczmarek T..
SEMANTIC-BASED DELIVERY OF E-SERVICES APPLYING THE SAAS APPROACH - Poster Paper.
DOI: 10.5220/0003612101590162
In Proceedings of the International Conference on e-Business (ICE-B-2011), pages 159-162
ISBN: 978-989-8425-70-6
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

e.g., (Hoffman et al, 2008, Rao et al., 2006; Pistore
et al., 2005; Benatallah et al., 2002). Each of these
approaches has to face the environment, where the
services are deployed. This environment usually has
the following characteristics:
 There is potentially a large number (not

comprehensible for a human developer) of
services available that may become the
building blocks for complex applications;

 Services may be both external to an enterprise
and internal ones, which might result in certain
security concerns or requirements towards the
composed workflow; some services might be
poorly documented;

 Services differ not only with respect to their
functionality, but non-functional parameters,
which has to be taken into account to deliver a
sound composed service;

 Services may be described using different
ontologies; even if they could be merged or
mapped, the resulting ontology might be large.

Given the environment adhering to the
assumptions outlined above, the requirements
towards the composition algorithm may be
formulated.
Req.1 Composition MUST be automated and
therefore, it SHOULD operate on the formal
description of a service.
Req. 2. Composition MUST deal with the formal
description of the relevant domain (e.g., a
background ontology). In addition to formal
services’ description there may be some additional
facts to take into account during composition, which
are expressed in ontologies used for service
description or added during ontology mapping.
Req. 3. Composition MUST be scalable with respect
to the complexity of the ontology (ontologies) used
for service description. It is in general expected that
the ontologies to be used for describing real world
services can have hundreds or even thousands of
concepts. If this would impact the composition
algorithm heavily, it could render it useless.
Req. 4. Composition MUST be scalable with respect
to the number of services.
Req. 5. Composition MUST be able to deal with a
number of services that have the same semantic
characteristics (the same pre/postconditions) but
different non-functional parameters, or no non-
functional parameters at all.
Req. 6. Composition MUST deal with non-
functional requirements towards the effect of the
composition.
Except from requirements towards composition,
there are certain requirements that the composition

algorithm poses against the environment, or more
precisely, the service descriptions that it operates on:
1. Services have to be single, atomic, stateless

operations or, if they are not stateless, this should
be expressed accordingly on the semantic level.

2. Services have to be described in a standard format
(or translatable standards).

3. Services have to be described in a single
formalism, or clearly announce the formalism,
which enables translation; in general different
approaches to semantic-based composition
assume certain logical formalism, to which the
service descriptions have to adhere.

4. Services have to be described using the same
ontology (or ontologies that can be mapped or
merged).

5. Service descriptions have to include average /
declared / promised non-functional parameters
values, including pricing model.

6. Service repository has to be accessible. This
requirement is implicit in the whole composition.

7. Services have to be searchable by semantic
description.

8. Services have to be searchable by non-functional
parameters.

From the all composition approaches, the dynamic,
ontology-based approaches are the ones, that fulfil
most of the requirements defined above.
Except from the composition, additional work might
be required to bridge the technological gap between
different Web services on a technical level. Another
issue of concern might be the security context. In the
cloud environment each service might require
credentials, which have to be provided by the
application, but are not taken into account during the
composition - they have to be added during the
manual plumbing. It is also assumed that appropriate
business mechanisms are available within the
platform which controls the execution of the
composed service: billing for service usage, and
monitoring of non-functional parameters during
service execution. Payment and Service Level
Agreement negotiation, signing and fulfilment need to
be set in place and they are handled externally to the
composition environment, and are not considered to
be part of a business process that composition is used
for. The error handling, recovery and reliability
mechanisms for the whole business process solution
have to be in place and are not handled usually by the
composition algorithms themselves, nor by the
business processes that are composed.

ICE-B 2011 - International Conference on e-Business

160

3 CONCEPTUAL FRAMEWORK
FOR DELIVERY OF
E-SERVICES IN THE SAAS
PARADIGM

The platform supporting enhanced delivery of
services using the software as a service approach,
should address challenges described above.
Therefore, numerous requirements including
functional or non-functional should be met.

After a careful study and benefiting from our
experience from research projects dealing with SOA
and service composition, we defined the following
requirements for the platform:
1. Exposing services to platform users enabling for

services discovery, enactment, monitoring, etc.
This includes exposing services using SaaS
model.

2. Discovery of services taking into account
semantic descriptions of services and allowing
for finding services matching functional and
quality requirements defined by users.

3. Semantic-based composition of services taking
into account functional and non-functional
features of services. These services may be also
exposed by platform-external providers and
available in the cloud.

4. Reasoning based on the user-provided ontology,
that is to be used mainly while composition and
discovery of services.

5. Support for ontology development and
maintenance enabling for ontology evolution and
linking to new ontologies and knowledge bases
being made available in the LOD cloud.

6. Billing and SLA management to assure proper
service delivery and payment.

7. Enactment of services and composed services.
8. Execution of services and composite services.
9. Monitoring of execution the services and

composite services.
In addition, the platform should conform to the

current quality standards for software development.
Among of non-functional requirements worth
underlining are:
1. Accordance with the SOA principles to ensure

extensibility of the platform.
2. Development using available and open-source

components under a proper license model.
3. Scalability, especially with regard to the

composition and discovery of services.
4. Security and privacy model. The platform should

provide a mechanism for user authentication and
should be able to generate digital certificates
with that information.

These requirements led to proposing the platform
framework that is discussed in the section below.

3.1 Platform Proposal

The central architectural component of the platform to
address previously described challenges is the service
bus (SB) that enables communication between
architecture components. Its main feature is provision
of the communications layer being a message-
oriented middleware infrastructure capable of
supporting a variety of industry-standard access
mechanisms and protocols. Other components will
communicate over the bus by sending and receiving
messages. The SB should also handle external Web
service invocations and incoming messages as all
services (including also composite services) will be
exposed in the SaaS model.

Other important components include:
 Composition component ensuring services

composition based on ontological descriptions,
 Discovery component that retrieves services

fulfilling criteria specified as service goals (in
functional and nonfunctional terms),

 Reasoner that provides logic-based inference
engine capable of reasoning with ontologies
describing services and user goals,

 Monitoring service that while monitoring the
execution of services provides data regarding
achieved results and quality parameters
achieved, that may be further used while billing
users for usage of composite services and
providing overview or changes to values of
NFPs of services,

 Ontology evolution component supporting
ontology storage and change management,

 Execution components including Execution
Engine (EE) and Service Execution Engine
(SEE). SEE responsibility is to enable execution
and interoperability of services, while EE is to
deal with semantic descriptions of services (and
proper enactment of atomic services in
composite services).

Finally, also an Advanced User Interface for
platform administration and maintenance should be
provided to enable a user to initially define his profile,
and provide access to platform functionalities such as
ontology management, services discovery and
composition.

3.2 Implementing the Platform

Such a platform may be developed from a scratch or
adopting already existing open source components.
We indicated the following components fulfilling the

SEMANTIC-BASED DELIVERY OF E-SERVICES APPLYING THE SAAS APPROACH - Poster Paper

161

requirements and available under a licence that would
enable for their application within a research project.
These components include:
Service Bus Implementation: Petals ESB (Petals
ESB, 2011): being a distributed open source
implementation of Java Business Integration (JBI)
specification.
Composition Components: composition components
are usually not publicly available as separate
components but offered as a part of integrated Web
Service platforms, e.g. WSMX (Web Services
Execution Environment, 2011).
Execution Engines: Apache ODE (Apache, 2011) –
a WS-BPEL compliant web services orchestration
engine that needs to be semantically extended in order
to support execution of Semantic Web services as
done e.g. in (SUPER, 2011).
Web Services Execution Infrastructure: the
message exchange between services may be ensured
using e.g. Apache Axis. In addition, one also needs a
tool such as Virtuoso Universal Server assuring data
storage and providing web application server.
Ontology Storage: it depends on the ontology
specification language e.g. for OWL-S or RDF,
SESAME may be used.
Advanced User Interface: The user interface must
be designed to support user interaction with the
platform, such as specification of a composition goal,
update of an ontology, etc. An example of such
advanced user interface is proposed by the WSMO
Studio, where a user may edit an ontology, design a
process, describe a service in terms of desired
functionality, launch composition or enactment.

4 SUMMARY

In order to realise the full potential of service oriented
applications and deliver the e-services in a SaaS
model, it is essential that the platform for application
developers and business analysts is available, that
allows for service discovery, composition, execution
and monitoring. The goal of this paper is to present
the general considerations and requirements towards
such platform, and currently existing solutions that
form a base for such platform. Much has been done to
address various requirements and challenges that are
posed by the service oriented environment. There
exists solutions for virtually all aspects of the
postulated platform, they are however not coherent, or
overlap only to some extent. Judging by the
involvement of the software industry, the solution (or
a number of them) will arise on the border between
research projects and industry platform, where state-

of-the-art research results will be included in strong
industry frameworks and will gradually re-shape the
way applications are build, and business processes are
carried out.

REFERENCES

Apache ODE, http://ode.apache.org/, last accessed
08.04.2011.

Armbrust, M., Fox, A., Griffith, R., Joseph, A.: R. Katz,
Konwinski, Lee, A. G., Patterson, Rabkin, D. A.,
Stoica, I., Zaharia, M.: Above the Clouds: A Berkeley
View of Cloud computing. Technical Report.
University of California at Berkley, USA, 2009.

Benatallah, B., Dumas, M., Sheng, Q. Z., Ngu, A. H. H.
Declarative Composition and Peer-to-Peer
Provisioning of Dynamic Web Services. In Proc. 18 th
International Conference on Data Engineering, 2002.

Dustdar, S. and Schreiner, W. ,‘A survey on web services
composition’, Int. J. Web and Grid Services, Vol. 1,
No. 1, pp.1–30, 2005.

Grossmann, G., Thiagarajan, R., Schrefl, M., Stumpter, M.
Conceptual Modeling Approaches for Dynamic Web
Service Composition. In: The Evolution of Conceptual
Modeling, LNCS 6520, pp. 180-204, 2011.

Hoffmann, J., Ingo Weber, James Scicluna, Tomasz
Kaczmarek, and Anupriya Ankolekar. Combining
scalability and expressivity in the automatic
composition of semantic web services. In ICWE-08:
Proceedings of the 8th International Conference on
Web Engineering 2008, July 2008.

Küster, U.; Stern, M. & König-Ries, B. A Classification of
Issues and Approaches in Automatic Service
Composition Proc. of the First International Workshop
on Engineering Service Compositions (WESC'05),
2005, 25-33.

Peer, J. Web Service Composition as AI Planning - A
Survey. Univ. of St. Gallen, Switzerland, 2005.

Petals Enterprise Service Bus, http://petals.ow2.org/, last
accessed 08.04.2011.

Pistore, M., Traverso, P., and Bertoli, P. Automated
Composition of Web Services by Planning in
Asynchronous Domains. In 15th Intl. Conference on
Automated Planning and Scheduling, 2005, pp. 2-11.

Rao, J.; Dimitrov, D.; Hofmann, P. & Sadeh, N. A Mixed
Initiative Approach to Semantic Web Service
Discovery and Composition: SAP's Guided Procedures
Framework Proceedings of the 2006 IEEE
International Conference on Web Services (ICWS
2006), Chicago, USA, September 18 - 22, 2006.

SUPER project, http://www.ip-super.org, last accessed
08.04.2011.

WSMX, http://www.wsmx.org/, last accessed 08.04.2011.
Zhang, L., Zhou, Q.: CCOA: Cloud Computing Open

Architecture. In: IEEE International Conference on
Web Services, pp. 607–616, 2009.

Zhang, L. J., Chang, C. K., Feig, E., Grossman, R., Panel,
K.: Business Cloud: Bring the Power of SOA and
Cloud Computing. In: IEEE International Conference
on Service Computing, 2008.

ICE-B 2011 - International Conference on e-Business

162

