
OVERVIEW OF CURRENT COMMERCIAL PAAS PLATFORMS

Andres Garcı́a-Garcı́a, Carlos de Alfonso and Vicente Hernández
Instituto I3M, Universitat Politècnica de València, Camino de Vera s/n, Valencia, Spain

Keywords: Cloud computing, PaaS platform, Platform-as-a-service, Web services.

Abstract: The development of Cloud Computing has paid attention mainly to the virtualization of hardware components,
under a scheme of Infrastructure-as-a-Service (IaaS). Most of Cloud vendors offer solutions based in IaaS to
offer virtual services and applications, instead of developing a proper Platform-as-a-Service (PaaS) solution.
This paper analyzes some existing commercial PaaS clouds, identifying in what degree they meet some essen-
tial requirements. These requirements are also argued, and guidelines for addressing them using an academic
approach in a PaaS solution are provided.

1 INTRODUCTION

Cloud Computing technologies have been tradition-
ally associated with business environments. There-
fore they have been used and promoted by enterprises
to build their business models around that technology
and its applications. This situation has caused enter-
prises to be the ones leading the development of this
technology, putting commercial interests before sci-
entific or academic interests and making researchers
to follow trends leaving some problems inherent to
the technology unattended.

Enterprises who have built their business model
around Cloud Computing try to offer competitive so-
lutions as soon as possible. Many of these solutions
are not correct or formal solutions, and would require
a deeper and elaborated research process, typical from
academic environments. The need of having a prod-
uct in the market has made commercial solutions to
ignore some features which may have been consid-
ered useful when applied to this technology.

One of the ignored developments has been the
Platform-as-a-Service (PaaS) level of Cloud Comput-
ing (Vaquero et al., 2009). Most of Cloud vendors
just offer solutions based in the Infrastructure-as-a-
Service (IaaS) level, providing virtual hardware re-
sources in the form of virtual machines. This same
concept has been used to offer virtual services, in-
cluding preconfigured services, packaged in a virtual
machine image which are deployed into IaaS solu-
tions. This approach is easy and immediate to im-
plement since it uses existing Cloud infrastructures,
but it also encompasses some drawbacks as the waste

of resources or a loss of control over direct services
management.

In this context, it is interesting to follow an ap-
proach to PaaS level based in building a platform from
the scratch with the aim of addressing service virtual-
ization directly, not by means of machine virtualiza-
tion. In order to build this platform, a set of features
are needed to be defined, to build a correct, reliable
and robust system.

This paper performs a comparative analysis be-
tween currently available commercial PaaS solutions.
After this comparative, some features that these so-
lutions do not address are stated, detailing for each
one how the platforms implement them, and why are
considered incorrect. Also some guidelines to open
research lines in these features are offered, providing
researchers with a broad specter of fields to provide
further developments.

2 PaaS PLATFORMS ANALYSIS

In order to detect open problems and unattended fea-
tures in commercial PaaS Cloud solutions, a com-
parison has been made between four currently avail-
able commercial PaaS platforms: Windows Azure
(Microsoft Corporation, 2010c), Google App Engine
(Google Inc., 2010a), Heroku (Heroku Inc., 2010) and
Engine Yard (Engine Yard, Inc., 2010). These plat-
forms are well known examples of commercial PaaS
Clouds, and the most representative part of the state-
of-the-art of PaaS platforms. All four solutions have a
clear web application orientation, although each one

368 García-García A., de Alfonso C. and Hernández V..
OVERVIEW OF CURRENT COMMERCIAL PAAS PLATFORMS.
DOI: 10.5220/0003604703680376
In Proceedings of the 6th International Conference on Software and Database Technologies (IWCCTA-2011), pages 368-376
ISBN: 978-989-8425-76-8
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)



takes a different approach.

• Windows Azure is Microsoft’s major product for
the Cloud Computing market. It offers a general
computing runtime for .NET, PHP, Ruby, Java and
Python languages, achieving the highest quantity
of supported languages from all four solutions.
Azure offers an SDK integrated with Visual Stu-
dio for .NET and SDK and Eclipse plug-ins for
other languages, assisting developers with appli-
cation templates and auto deployment capabili-
ties.
The platform hosts two application roles, Web and
Worker, where Web role acts as the user interface,
and as the front end for the applications, while
Worker role does background calculations. Both
roles communicate by exchanging messages, us-
ing a built-in message queue. Applications can
use several interfaces such as databases, blob stor-
age, authentication, etc. for extra functionality.
Azure uses two billing approaches, either a
monthly payment or a pay-as-you-go schema.
Using monthly payment, developers purchase a
quantity of resources to use along a month for a
fixed price. In the pay-as-you-go schema, billing
is done monthly based in the amount of resources
used in that time frame.

• Google App Engine is Google’s PaaS solution.
It supports Java and Python languages, and runs
applications in a “safe sandboxed environment”.
Runtimes for both languages have been modi-
fied to impose restrictions over the capabilities of
hosted applications. Specifically, this sandbox en-
vironment prevents applications from:

– Writing to the filesystem.
– Opening a socket or access another host di-

rectly.
– Spawning a sub-process or thread.
– Making other kinds of system calls.
– Only classes in a whitelist can be accessed from

the Java standard library.

These limitations are oriented towards guarantee-
ing the correct behavior of applications and the
safety of the system. There exist additional limi-
tations, such as the 30 second limit for an appli-
cation to send a response from a request, that are
intended to improve the platform performance.
Google App Engine includes an extensive mon-
itoring system which provides detailed statistics
and metrics about the applications performance,
including resources usage (CPU, bandwidth, stor-
age), number of requests received, number of API
calls, etc. These values, or quotas, are used as

a measure for the payment for the service. Ser-
vice hosting is free under some values for each
quota, but it is set unavailable when these quo-
tas are exceeded. If billing is enabled, it switches
to a pay-as-you-go model for quotas over the free
limit. Developers are able to specify a budget
which limits the quantity of resources to hire from
the platform. Each quota resets its value in a 24
hours period, and has a max value that cannot be
overcome even using the payment model.

• Heroku is a company founded in 2007 which fo-
cuses in offering a PaaS platform for Ruby ap-
plications. Developer’s applications are hosted
in a software stack (named Dyno) which in-
clude frameworks (Rails (Hansson, 2010b),
Sinatra (Mizerany, 2010)), middlewares (Rack
(Neukirchen, 2010), Rails Metal (Hansson,
2010a)) and a VM (MRI (Matsumoto, 2010)) for
the Ruby language, wrapped in virtual machine
images that are deployed in an IaaS infrastruc-
ture (specifically in Amazon EC2 (Amazon.com
Inc., 2010)). These Dynos are organized in a
pool of applications which receive requests from
users. A reverse proxy and a HTTP cache manage
external requests serving applications via a rout-
ing mesh, which acts as a load balancer between
dynos. Storage (either persistent or not) is pro-
vided by means of a database system or a memory
cache system.
Heroku offers two roles: dynos (equivalent to a
web role in Azure) and workers. Dynos process
HTTP requests from users, while workers perform
background tasks and transmit messages via mes-
sage queue. Developers can choose dynamically
the number of dynos and workers that they want
to hire, with a minimum of 1 dyno and a maxi-
mum of 24 for both. Databases plans offer access
to a databases system with different capacity or
performance level. The user is able to choose be-
tween shared or dedicated databases and the num-
ber of cpu units.
Finally, an add-on system provides extra function-
alities to hosted applications, for instance, capac-
ity to use SSL, a cron process, custom domains,
etc. Databases and add-ons are provided in a
monthly fee basis, while dynos and workers are
billed hourly, based in the number of units hired.

• Engine Yard is a company founded in 2006
which provides a Ruby Cloud, using an underly-
ing IaaS infrastructure (Amazon EC2) very sim-
ilar to Heroku. Engine Yard however focuses its
business model around the technical support and
consultative services, instead of application host-
ing.

OVERVIEW OF CURRENT COMMERCIAL PAAS PLATFORMS

369



Engine Yard cloud is built over Amazon EC2 and
Amazon S3, and it provide wrapped ruby environ-
ments as virtual machines. Customers are able to
purchase different sizes of these instances and add
additional features like a dedicated database or a
load balancing cluster. Once some instances have
been purchased, developers can deploy and man-
age their applications from a web interface within
Engine Yard website. That interface acts as a front
end for the platform and includes different man-
aging operations. Billing is based in the instances
hired, the number of hours running, storage and
data transfer.
Recently Engine Yard has divided their Cloud of-
fering in two branches, one named AppCloud,
which offers the described standard features, and
another “Enterprise Grade Cloud” named xCloud.
xCloud offers a set of extra features not available
in public AppClouds, like the provision of an au-
ditable infrastructure. The solution offers plans
such as a fractional cluster offer, which includes
dedicated database and disk storage, or a dedi-
cated cluster, an exclusive solution where the in-
frastructure is reserved just for one customer. Ad-
ditional features include consultative services, ori-
ented to help enterprises to migrate their appli-
cations to the cloud, providing extensive analysis
about the application needs, and a customized so-
lution in the Engine Yard platform, while a pre-
mium support system extends standard support
to 24x7 availability for critical issues, proactive
monitoring of applications, etc.

The following features have been analyzed for
these platforms.

• Underlying architecture: This feature specifies
which software architecture supports the solution.

• Status: This topic states whether the solution is
available for the users for creating private clouds
or it is proprietary.

• Use of standards: It is also analyzed whether the
solution makes use of standards for three main op-
erations: authentication mechanisms to access the
platform, access to databases for built-in storage
support and communication protocols to interact
with the platform.

• Interoperability: States whether the platform is
able to interoperate with other clouds or it is iso-
lated

• Versioning: Refers to the support of the platform
to software versioning.

• Migration: This topic states whether the solution
supports service migration.

• Catalog: It refers to whether the platform provides
some sort of information services, that would in-
clude any kind of useful information about the
platform or the services.

• SLA: This feature is related to the mechanisms
included in the platform for defining the obli-
gations, warranties, compensations or pricing of
the resources in the terms of the service between
provider and customers. These mechanisms may
be offered in several options and features:

– Text document SLA: The provider uses a
legally binding document which acts as a con-
tract between the company and the customers.

– Purchasing options: The user is able to pur-
chase different business plans which offer spe-
cific functionalities for a fee (e.g. fixed size
monthly plans, additional support, etc.).

– Configuration options: Users can specify re-
strictions over their services using configura-
tion options (e.g. geographical deployment
constraints).

– Pay-as-you-go: Payment is decided dynami-
cally over the quantity of resources used and
the options that have been purchased.

The comparison shown in Table 1 highlights that
there are some topics which are not supported by the
platforms analyzed. In the following section, based
in the data gathered from the analysis of the commer-
cial platform, a set of open problems in PaaS Cloud
solutions is exposed.

3 OPEN PROBLEMS IN PaaS
CLOUD PLATFORMS

This section reviews features that are interesting to be
provided by PaaS platforms, and are widely provided
by the current available PaaS solutions analyzed. The
proposed features are the result of the comparison
with the characteristics of Cloud concepts introduced
by the generalization of IaaS platforms (Armbrust
et al., 2009), and others identified by the community.
For each of the topics an explanation of the approach
of the commercial platforms is provided, and the ex-
planation of its inadequacy from an academic point
of view. Some guidelines to address the problems de-
rived by that approach are also provided.

3.1 Pure PaaS Architecture

In general terms, details about the underlying ar-
chitecture of the commercial PaaS solutions are not

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

370



Table 1: Comparison of commercial PaaS platforms.

Name Windows Azure Google App Engine Heroku Engine Yard

Underlying architecture Not disclosed Not disclosed IaaS IaaS

Status Proprietary Proprietary Proprietary Proprietary

Use of standards SQL language for SQL language for Keypair authentication. Keypair authentication.

databases. databases.1 SQL language for SQL language for

databases. databases.

Interoperability No No No No

Versioning No Yes No No

Migration No No No No

Catalog Service marketplace2 Service marketplace2 No Dashboard with

“Codename Dallas”. “Google App service statistics.

Marketplace”.

Dashboard with

service statistics.

SLA Text document SLA. Text document SLA.1 Purchasing options. Text document SLA.

Purchasing options. Pay-as-you-go. Purchasing options.

Pay-as-you-go. Pay-as-you-go.

Configuration options.

known, but from what is shown, in most cases there
does not exists any specific PaaS oriented architecture
which supports each solution. The major difference
between IaaS solutions and PaaS solutions is that IaaS
virtualizes machines while PaaS virtualizes services.

The architecture of some platforms, such as
Heroku, are based in an underlying IaaS solution
without any specific consideration about services vir-
tualization. The approach of building a PaaS solution
over an IaaS solution is easy and fast, because both
share many features as a starting point. According to
that premise, the PaaS platform may be confident in
the fact that the IaaS platform will provide some of
the “cloud” characteristics (e.g. load balancing, isola-
tion, migration, multitenancy, etc.).

However, while machine virtualization fits per-
fectly in an IaaS environment, it misses the aim of
service virtualization. In a PaaS solution, the virtu-
alized resource which is offered to clients is the run-
time where services run, but some solutions (Heroku,
Engine Yard) wrap this runtime inside a virtual ma-
chine image, instead of addressing virtual services di-
rectly. A PaaS architecture built over an IaaS archi-
tecture will take profit from the solutions to the prob-
lems found for IaaS architectures, but it should still
address PaaS specific problems. As a result, the solu-
tion will not be able to solve some problems related
with a PaaS platform or will do so in a less efficient
manner, due to a biased vision of the PaaS solution.

This approach implies a high overload and a less
direct management of the services. On one side, if a
whole virtual machine is used, instead of just a vir-
tual service, extra memory, storage and processor re-
quirements are added to those that the service needs.
Moreover the management of the services becomes
more complicated, as it is necessary to work at ma-
chine level instead of service level.

Other platforms, like Google App Engine, seem
to be based in an original PaaS architecture, although
no details are revealed about it. This approach intro-
duces new considerations about the management of
services, like imposing limitations in the service be-
havior, but also provides several benefits like a ver-
sioning system or detailed statistics reports.

While the typical approach is to embed the run-
time in a virtual machine and use it as a building
block, the proposed approach is to virtualize the run-
time itself, and use it as a building block. Using run-
time virtualization (or virtual containers) researchers
are able to design a pure PaaS architecture. Also this
approach bring new needs, problems and features that
must be addressed, which are missed when virtual
machines and IaaS solutions are used as a base. Ser-
vice virtualization offer new models for monitoring
and billing, SLA terms, interoperability features, se-
curity concerns, etc. Furthermore, runtime virtualiza-
tion increases the flexibility of the system, since vir-
tualized runtimes can be placed into virtual machines,
and a PaaS solution can be built using either IaaS so-
lutions, physical machines directly, or even applying
mixed schemes.

New research lines opened by this feature include
defining the requirements of a PaaS platform and the
specification and design of a PaaS oriented architec-
ture.

1Introduced in App Engine for Business beta, in May
2010.

2Service Marketplace are web portals where developers
and business publish they applications and users buy sub-
scriptions for them.

OVERVIEW OF CURRENT COMMERCIAL PAAS PLATFORMS

371



3.2 Tools for the Development of Private
PaaS Clouds

In order to use an IaaS cloud, users can adopt solution
offered by IaaS vendors or build a private cloud us-
ing their own resources and a cloud software (Nurmi
et al., 2008)(Sotomayor et al., 2009). When consid-
ering PaaS level, there are few vendors who offer pri-
vate PaaS solutions, and even less tools that enable
users to build their own private PaaS cloud, like (Uni-
versity of California, Santa Barbara, 2010).

Using a cloud from a vendor means the outsourc-
ing of management and maintenance operations and
leverages the transition between traditional datacen-
ters and cloud computing for enterprises. This is of-
ten considered as a desirable feature since developers
just use the resources without additional management
cost such as physical machine hosting, cooling sys-
tems, network access, etc. However, sometimes pri-
vate cloud solutions meet the requirements of users
better than public clouds.

One of the major concerns about outsourcing host-
ing services is the security and privacy requirements.
Enterprises have the responsibility of hosting services
that have a high value (known as mission critical ser-
vices) and storing information which contains sensi-
ble data (e.g. clients personal information) in order to
keep their compromise with customers and maintain
their business model. When services are outsourced
to external companies, enterprises require from ven-
dors guarantees that are compatible with those that
they offer to their customers. Also outsourcing im-
plies a loss of control over services and data, which
force enterprises to rely in third party hardware and
staff to run and manage their assets.

When building a private PaaS cloud, developers
are able to host mission critical services and sensible
data in house, avoiding security concerns and keeping
direct control over software and resources. Also, the
user takes profit from all the other benefits provided
by cloud computing such as resource optimization or
easier management.

Furthermore, hybrid clouds solutions may be
built, where private clouds interact with public clouds.
In such solution, private clouds manage sensitive data
and services, while public clouds provide extra capac-
ity to the system.

Under the scope of IaaS, there are several initia-
tives such as Eucalyptus or others, which are derived
from the usage and the concepts introduced by Ama-
zon WS. Unfortunately, there are few PaaS initiatives,
and that is probably why most of the concepts are still
under development.

Tools for the development and deployment of

PaaS solutions would allow users to build their own
private clouds and taking advantage of its benefits.
Using an open and free tool, administrators are able
to deploy PaaS solutions, configuring and adapting
the software to their needs. Therefore, the design and
implementation of an open tool for the deployment of
PaaS infrastructure remains as an open research line
itself.

3.3 Use of Standards

As it occurs with any emerging technology, Cloud
Computing yet lacks its own solid standards for many
operations. However, that void has become a chance
for some companies to use technology of their own in-
terest in parts where some standards could have been
applied (e.g. LiveID (Microsoft Corporation, 2010b)
authentication of Windows Azure, Google App En-
gine using GQL (Google Inc., 2010c) for databases).

Cloud Computing has been defined as the new
model for Utility Computing. One of its most impor-
tant features is that anyone can plug their systems to
“the cloud” and use computing power, storage or net-
work as a commodity. However, if standards are not
used, the purpose of a true Utility Computing is lost,
since the developed systems cannot be used in any but
just their target cloud.

The lack of standards produces vendor lock-in
and it also difficult interoperability between clouds.
While the definition of standards for the cloud as a
whole is a work in progress (Open Cloud Consortium
(OCC), 2010), the usage of standards for key opera-
tions (communications, authentication) should be en-
couraged. A system with a highly modular design
would provide a good basis to adopt standards and
would enable the upgrade of them to new versions (or
new standards).

An open research line in this field consists in iden-
tifying key components where standards can be used,
and design protocols and procedures which are part of
the state of the art specifications for those operations,
helping the joint effort for the definition of cloud stan-
dards.

3.4 Platform Utilities

The paradigm shift between IaaS and PaaS consist on
the provisioning of a platform for the deployment and
management of services, instead of the provisioning
of virtualized hardware. However a platform not only
encompasses the deployment and execution of soft-
ware, but to give support to the whole development
cycle, from implementation to debugging.

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

372



A complete PaaS solution should provide a set of
Platform Utilities that effectively realize a higher ab-
straction level than the IaaS solutions. A PaaS product
that only stores and executes services does not pro-
vide many advantages over an IaaS solution that pro-
vides on-premise virtual machines configured to exe-
cute services.

The generic term Platform Utilities includes a set
of features that the platform offers to developers and
hosted services in order to integrate the Cloud de-
ployment in the software development cycle. Some
of these utilities are described below.

• IDE integration. One of the aims of PaaS solu-
tions is to integrate the cloud deployment with the
software developing process. The underlying idea
is that the whole development procedure should
be cloud-aware, to enable developers to create
cloud applications and not applications that run
in the cloud, adapting the development cycle to
the cloud. For achieving this integration is neces-
sary to provide an IDE that communicates with
the Cloud and allow testing applications before
deployment, automatically deploying applications
in the Cloud and using other Platform Utilities. In
this field, Microsoft offers Azure Tools for Visual
Studio, an add-on to the Visual Studio IDE which
allows local testing of Cloud services in a simula-
tion environment, the usage of the Azure libraries
and automatic deployment of applications in the
Azure Cloud. Google offers the Google App En-
gine SDK (for Python and for Java), as a set of
tools with similar functionalities, and the Google
Plugin for Eclipse, which allows the usage of the
SDK in an IDE.

• Communication System. As in any distributed
system, applications may have the need to com-
municate between them. Some software solu-
tions, such as a master-slave execution schema,
make heavy use of inter-service communication,
and therefore a built-in efficient solution leverages
the load of the system and improves the develop-
ment cycle. In this field, Microsoft Azure includes
the Service Bus utility, which allows clients and
services to exchange messages or data.

• State Replication System. One of the principles of
the Cloud is the scalability of services by means
of multiple services instances, load balancing and
stateless interactions. The principle of stateless
interactions says that in order to properly serve a
petition, a service must not rely on previous in-
teractions, and therefore the same petition may
be served by different instances, producing the
same return value. However many applications
need the management of some kind of state, that

must be consistent between instances of a ser-
vice. This requirement is dealt with the usage of
Cloud Storage, which typically incurs in compu-
tation overhead and economic cost. The usage of
state replicating mechanisms would allow devel-
opers to keep the state of their services consistent
using built-in platform mechanisms and without
the need of Cloud Storage.

• Versioning. This feature allows developers to
maintain an incremental development cycle, and
enables testing and upgrading applications. De-
velopers are able to keep long-term services and
add new functionalities incrementally, and testing
the new software versions in the target environ-
ment before they are released. Developers would
be able to deploy stable versions of software in
the cloud, and concurrently deploy beta versions
for testing purposes. Once beta versions have
been debugged and became stable, the deployed
instances would be able to be update on the fly,
providing users with stable and updated services
transparently. Most of current PaaS solutions don
not take into account the software versions, and
developers must manually manage those concepts
in a non-transparent manner. Google App Engine
is the only analyzed platform which integrates the
concept of versioning, allowing developers to de-
fine service versions, deploy several at the same
time and define one of them as default, which will
be the one publicly available.

• Debugging Mechanisms. Debugging of dis-
tributed software is a challenging issue and a field
of study itself, and it becomes even more complex
when the developers are not the owners, nor have
direct access to the platform executing the code.
Local testing of services may solve some errors
before the service becomes publicly available, but
only when the software to test becomes used in
a real world scenario, all possible issues become
noticeable. Since developers do not have direct
access to the virtual runtimes, the platform itself
must provide mechanisms to debug deployed ser-
vices. In this field, Google App Engine provides a
logging service that allows developers to log error
or warning systems, and these messages are re-
trieved by the platform and displayed in the dash-
board, where developers can check them. Heroku
offers the Exceptional add-on, with two subscrip-
tion levels (regular and premium), a system which
stores and make real-time notification to develop-
ers when an exception arise in a running applica-
tion.

The inclusion of Platform Utilities provides a
clear differentiation in terms of abstraction level be-

OVERVIEW OF CURRENT COMMERCIAL PAAS PLATFORMS

373



tween the IaaS and PaaS solutions. A PaaS solu-
tion that provides Platform Utilities allows building
Cloud-aware applications, that actively make use of
its features for their advantage.

The cited Platform Utilities, among other that may
be formulated for different use cases, represent an
open research line in this field.

3.5 Service Migration

Live migration is a concept associated to distributed
systems, specifically SOA (Service Oriented Archi-
tecture), although the popularization of virtualization
technologies has recently associated the term to vir-
tual machine migration. Live migration is defined as
the movement of a running piece of software from one
physical host to another one without any disruption
of service or perception of downtime from the users
point of view (Clark et al., 2005). The major advan-
tages of live migration are the following:

• Software can be moved from one machine to an-
other, making its execution independent from the
original machine. This ability allows administra-
tors to interact with the original machine without
affecting the application. For instance, if a ma-
chine needs to be shutdown for maintenance, live
migration would enable services hosted in it to
keep running in other host machine with no down-
time associated.

• Services can be migrated between resources, ap-
plying load balancing algorithms. If a machine is
overloaded and other has spare capacity, moving
services between both of them would optimize re-
source usage and improve performance.

• Live migration is done without disrupting ser-
vices. Users can keep using services without
noticing that they have been moved to another
physical machine

• Using interoperability and live migration, devel-
opers can change its cloud provider automatically
and without disrupting its customers.

• Autoscaling (up and down) becomes easier and
more efficient. When scaling up, load can be re-
distributed among new nodes using live migra-
tion, while when scaling down, services from ma-
chines that will be stopped can be moved to the
remaining ones.

Among the platforms analyzed, only Heroku ex-
plicitly apply some sort of migration in order to load
balance resources, while the others totally ignore this
concept, or hides it from users. Heroku is built on top
of an IaaS infrastructure and it migrates its compo-
nents (dynos and workers) between nodes in order to

improve performance transparently to users. The mi-
gration consists in moving the virtual machine which
hosts the service from a node to another.

Live migration of running instances has been seen
as a desirable feature also for IaaS solutions, since it
provides load balancing and better management of re-
sources. As well as IaaS platforms continue working
on offering virtual machine live migration, PaaS plat-
forms should offer virtual services live migration.

Live migration, which is a field of study itself, can
be achieved using a migration protocol. Those pro-
tocols often include three basic steps: deploy a new
instance, redirect clients from the old instance to the
new one and undeploy the old instance. This protocol
works properly when services are RESTful (Fielding,
2000), specifically if they are stateless. However, if
services keep some kind of state (either as local stor-
age or as in-memory data) this protocol must include a
state transfer step, which increases the complexity of
the process. Therefore live migration involving state
transfer opens new lines of research along with the
service migration protocols.

3.6 Digital SLA

In a cloud environment, SLA becomes the contract
that specify the terms of the agreement between the
vendor and the user at a software level, specifying
obligations, warranties and compensations.

Nowadays cloud vendors offer a very basic vision
of SLA for their solutions. They provide a plain text
document that specifies obligations in terms of up-
time, stating that vendors will offer x% uptime (mea-
sured along a certain amount of time), and the com-
pensation in case of violation of the terms, commonly
formulated as a discount in the next charge to the
client. Other candidate options to be part of the SLA
(geographic constraints, CPU, memory requirements)
are left out as configuration options, or totally ignored
in some cases.

In order to offer a complex SLA system which can
handle service restrictions, configuration, user infor-
mation, etc., platforms need to incorporate the con-
cept of ‘Digital SLA’ and a SLA framework to al-
low administrators to define their own SLA terms and
management rules. This concept has been included
in the work lines of other projects such as Reservoir
(Rochwerger et al., 2009) which defines the inclu-
sion of SLA metadata in the manifest of the services,
and is the key topic in the SLA@SOI project (The
SLA@SOI consortium, 2010), whose aim is to pro-
vide a business-oriented Service Oriente Infrastruc-
ture (SOI) which allow the management of the busi-
ness processes by means of Digital SLAs.

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

374



Digital SLAs would be the binary representation
of the documents which define the terms of the ser-
vice between provider and users. Those terms should
include every element that defines the agreement be-
tween both parts:

• Resources required by the user (CPU, memory,
storage).

• User restrictions over services (e. g. geographical
constraints).

• Price of the elements, which could be specified
individually for each instance or service.

• Configuration options over services at platform
level (e. g. elasticity rules, list of developers al-
lowed to manage a service, number of replicas for
stored data).

• Warranties offered by the provider (maximum re-
sponse time, security constraints, etc.).

• Compensation terms (compensation to users when
SLA is violated). It would be interesting to spec-
ify them individually for each element, depending
of the ‘severity’ of the issue.

This Digital SLA, unlike traditional SLA con-
tracts expressed as plain text documents, can be stored
and automatically managed by the platform, enabling
to deal with it in an automated manner. A platform
managing Digital SLA would be able to automati-
cally perform operations to correct or prevent SLA
violations, report the incident to administrators and
developers, and take corrective actions and compen-
sate users as required.

New open research lines derived from this field in-
cludes the definition of the terms of the SLA, defini-
tion of a language to represent SLA, creation of proto-
cols for SLA manipulation, interaction of SLA with a
PaaS platform components, definition of mechanisms
to enforce SLA, prevent their violation, take correc-
tive actions and compensation to users in case of vio-
lation, etc.

3.7 Information Services

Some of the features of PaaS Cloud platforms need a
system to store and retrieve different kinds of infor-
mation, such as monitoring information, metadata for
services and users, etc. In a Cloud solution, informa-
tion is generated everywhere in the system, either by
the platform components or by external users interact-
ing with them. Some of this information must be re-
trieved and stored for further processing (for instance
the CPU load of a service for SLA monitoring), and
therefore arise the need of such a system.

In the field of distributed systems, this concept is
realized as Information Services, or Catalogs. A Cata-
log is a semi-centralized system which store and man-
age information, and provides an API for every com-
ponent to add or retrieve data from it.

Current PaaS solutions have made a particular in-
terpretation of the Catalog concept. Google and Mi-
crosoft offer Google Apps Marketplace (Google Inc.,
2010b) and Microsoft codename Dallas (Microsoft
Corporation, 2010a) services. Both products are web
portals where developers can register their applica-
tions hosted in the cloud and offer them for a fee,
and consumers can browse for and subscribe to them.
These services offer a commercial trade point for de-
velopers and consumers, but do not offer the features
of a Catalog.

Besides the App Marketplace, Google App En-
gine includes an integrated dashboard where develop-
ers can check statistics and metrics about their ser-
vices, as well as an API to allow hosted services
to check some monitoring information about them-
selves. This concept comes closer to an Information
Service, as defined in (Czajkowski et al., 2001), but
yet lacks the global nature of such system.

Open research lines in this field comprise defin-
ing an organization of a catalog for a Cloud solution,
defining what information is included in it, how the
information is stored and managed, define replication
and distribution mechanisms, define the access proto-
cols and API for the addition, modification, deletion
and retrieval of information, etc.

4 CONCLUSIONS

The lack of research in the Platform-as-a-Service
level of cloud computing have produced an absence
of detailed analysis about its features, needs and chal-
lenges. The state of the art in PaaS clouds have been
mainly carried out by enterprises, which have released
PaaS solutions guided by commercial interests and
not by scientific or academic considerations. Their
main aim usually is to deliver solutions to their cus-
tomers in a short time, in order to gain advantage over
their competitors. This business model has caused the
release of platforms constrained by the limitations of
the model established by each provider.

Although the reviewed platforms conform a rep-
resentative sample of the current state of the art in
commercial PaaS Cloud, not every platform provides
the same set of features. In order to provide efficient,
reliable and robust products, a description of the ba-
sic characteristics needed to build a PaaS solution has
been made, by means of an analysis of the state of the

OVERVIEW OF CURRENT COMMERCIAL PAAS PLATFORMS

375



art of Cloud Computing, but also incorporating part of
the expertise of Grid Computing and IaaS solutions.

This paper highlighs each one of these selected
features, and explains its motivation and importance.
Also it defines the degree of compliance of each plat-
form for each feature, and includes a brief description
of the challenges associated with them.

Future works includes further research in PaaS so-
lutions requirements in order to provide more fea-
tures and refine the definition of the ones included
in this work. For each one of these features identi-
fied, a set of open problems or research lines provide
a broad range of new developments that not only con-
cern PaaS Cloud, but all levels of Cloud Computing as
a whole. Some of these research lines include but are
not limited to the design of live migration procedures,
specification of a SLAs, specification of a Cloud Cat-
alog, etc.

ACKNOWLEDGEMENTS

The authors wish to thank the financial support re-
ceived from the Spanish Ministry of Education and
Science to develop the project “ngGrid - New Gen-
eration Components for the Efficient Exploitation of
eScience Infrastructures”, with reference TIN2006-
12890. This work has been partially supported by
the Structural Funds of the European Regional De-
velopment Fund (ERDF). This work has been devel-
oped under the support of the program “Formación
de Personal Investigador de Carácter Predoctoral”
(grant number BFPI/2009/103), from the “Conselle-
ria d‘Educació” of the “Generalitat Valenciana”.

REFERENCES

Amazon.com Inc. (2010). Amazon EC2 (Elastic Com-
pute Cloud). http://aws.amazon.com/ec2/ [Online; ac-
cessed 01-03-2011].

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I., and Zaharia, M. (2009). Above the Clouds:
A Berkeley View of Cloud Computing. Technical re-
port.

Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E.,
Limpach, C., Pratt, I., and Warfield, A. (2005). Live
migration of virtual machines. InNSDI’05: Pro-
ceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation, pages
273–286, Berkeley, CA, USA. USENIX Association.

Czajkowski, K., Fitzgerald, S., Foster, I., and Kesselman,
C. (2001). Grid information services for distributed
resource sharing.

Engine Yard, Inc. (2010). Engine Yard Cloud. http://www.
engineyard.com/ [Online; accessed 01-03-2011].

Fielding, R. T. (2000).Architectural styles and the design
of network-based software architectures. PhD thesis.
Chair-Taylor, Richard N.

Google Inc. (2010a). Google App Engine. http://
code.google.com/appengine/ [Online; accessed 01-
03-2011].

Google Inc. (2010b). Google App Marketplace.
http:// www.google.com/enterprise/marketplace/ [On-
line; accessed 01-03-2011].

Google Inc. (2010c). GQL. http://code.google.com/
appengine/docs/python/datastore/gqlreference.html
[Online; accessed 01-03-2011].

Hansson, D. H. (2010a). Introducing Rails Metal.
http://weblog.rubyonrails.org/2008/12/17/introducing-
rails-metal [Online; accessed 01-03-2011].

Hansson, D. H. (2010b). Ruby on Rails. http://
rubyonrails.org/ [Online; accessed 01-03-2011].

Heroku Inc. (2010). Heroku. http://heroku.com/ [Online;
accessed 01-03-2011].

Matsumoto, Y. (2010). Matz’s Ruby Interpreter. http://
www.ruby-lang.org/ [Online; accessed 01-03-2011].

Microsoft Corporation (2010a). Codename “Dallas”.
http://www.microsoft.com/windowsazure/dallas/
[Online; accessed 01-03-2011].

Microsoft Corporation (2010b). LiveID. https:// accountser-
vices.passport.net/ [Online; accessed 01-03-2011].

Microsoft Corporation (2010c). Windows Azure.
http:// www.microsoft.com/windowsazure/ [Online;
accessed 01-03-2011].

Mizerany, B. (2010). Sinatra. http://www.sinatrarb.com/
[Online; accessed 01-03-2011].

Neukirchen, C. (2010). Rack: a Ruby Webserver Inter-
face. http://rack.rubyforge.org/ [Online; accessed 01-
03-2011].

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., So-
man, S., Youseff, L., and Zagorodnov, D. (2008).
The Eucalyptus Open-source Cloud-computing Sys-
tem. InProceedings of Cloud Computing and Its Ap-
plications.

Open Cloud Consortium (OCC) (2010). Open Cloud Con-
sortium (OCC). http://opencloudconsortium.org/ [On-
line; accessed 01-03-2011].

Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin,
K., Llorente, I. M., Montero, R., Wolfsthal, Y., Elm-
roth, E., Caceres, J., Ben-Yehuda, M., Emmerich, W.,
and Galan, F. (2009). The RESERVOIR Model and
Architecture for Open Federated Cloud Computing.
IBM Journal of Research and Development, 53(4).

Sotomayor, B., Montero, R. S., Llorente, I. M., and Foster,
I. (2009). Capacity Leasing in Cloud Systems using
the OpenNebula Engine. Cloud Computing and Ap-
plications 2008 (CCA08).

The SLA@SOI consortium (2010). SLA@SOI. http://
sla-at-soi.eu/ [Online; accessed 01-03-2011].

University of California, Santa Barbara (2010). AppScale.
http://appscale.cs.ucsb.edu/ [Online; accessed 01-03-
2011].

Vaquero, L. M., Rodero-Merino, L., Caceres, J., and Lind-
ner, M. (2009). A break in the clouds: towards a
cloud definition.SIGCOMM Comput. Commun. Rev.,
39(1):50–55.

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

376


