
ENHANCING UNDERSTANDING OF MODELS
THROUGH ANALYSIS

Kara A. Olson and C. Michael Overstreet
Department of Computer Science, Old Dominion University, Norfolk, Virginia, U.S.A.

Keywords: Discrete event simulation, Model analysis, Model understanding, Static analysis, Dynamic analysis.

Abstract: Simulation is used increasingly throughout research and development for many purposes. While in many
cases the model output is of primary interest, often it is the insight gained through the simulation process into
the behavior of the simulated system that is the primary benefit. This insight can come from the actions of
building and validating the model as well as observing its behavior through animations and execution traces or
statistical analysis of simulation output. However, much that could be of interest may not be easily discernible
through these traditional approaches, particularly as models become increasingly complex.
The authors suggest several possibilities of how to obtain such insights. These analyses have other obvious
uses including aid in debugging, verification and documentation. The authors, however, are primarily inter-
ested in how these analysis techniques can be used to help modelers gain additional insights into the models
they are using or constructing.
The discussed techniques are used with significant benefit within computer science and software engineering;
the authors believe these techniques can also serve simulation well. The authors’ experience with these tech-
niques thus far has involved discrete event simulations; their potential benefit with other model representations
and implementation approaches has not yet been explored.

1 INTRODUCTION AND
MOTIVATION

We begin with an unusual frame of mind about model
specifications, but one that the authors find intrinsi-
cally appealing. In mathematics, an axiomatic system
is any set of axioms from which some or all axioms
can be used in combination to logically derive theo-
rems. A mathematical theory consists of an axiomatic
system and all of its derived theorems (Wikipedia,
2011). In our view, one’s assumptions about a simula-
tion can be viewed as a set of axioms, with the proper-
ties of that system being our derivable theorems. Sev-
eral approaches are used to discover these properties
including observing a simulation during execution or
analyzing data generated during simulation runs: but
another approach is to reason about the system. With
this in mind, consider then that our goal is to comple-
ment existing analysis techniques by “deducing” what
we can about our system of interest.

It is often stated by users of simulation that its pri-
mary benefit is not necessarily the data produced, but
the insight that building the model provides. Paul et
al. discuss this in (Paul et al., 2005), noting that “sim-

ulation is usually resorted to because the problem is
not well understood,” and more often than not, the
simulation is no longer of interest once the problem
is fully understood. We believe that techniques such
as those discussed here can be used to enhance both
modelers’ and model users’ understanding.

A prime problem with model descriptions,
whether in textual or graphical notations, is that even
in simple models, descriptions are often difficult to
fully comprehend. Paul accurately states (Paul and
Kuljis, 2010):

Even when we think we know what we are
modeling there are many problems: we do not
have the software skills to know if the soft-
ware is doing the right thing; we cannot be
certain that the logic of the problem is faith-
fully represented in the model; we cannot be
sure that the assumptions built into the model,
the uses it was designed to be put to and not
put to, will be adhered to by future users etc.
And then with the passage of time, and proba-
bly with some model updates, corrections, and
possible changes of logic, we cannot be sure
of the way the model works at all.

321
A. Olson K. and Overstreet C..
ENHANCING UNDERSTANDING OF MODELS THROUGH ANALYSIS.
DOI: 10.5220/0003597603210326
In Proceedings of 1st International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH-2011), pages
321-326
ISBN: 978-989-8425-78-2
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)



Insights can arise from many different sources.
One can be surprised to learn that one event causes
another seemingly-unrelated event. One can also gain
insight when something that is expected to happen
does not occur. Sometimes events can happen with
regularity or as clusters which may not be noticed by a
modeler and may reveal important aspects of the sim-
ulated system. Often these facts are not immediately
obvious, particularly in large simulations (Overstreet
and Levinstein, 2004; Nance et al., 1999). Anecdotal
reports from modelers support the frequent difficulty
of detecting important aspects of their models which
when pointed out are quite useful.

Indeed, in one of our experiences, a model-coder
was studying trace data produced during simulation
executions. It was noted that the events that occurred
could be divided into a small number of groups based
on the number of times each event occurred; every
event in each group occurred the same number of
times. This observation revealed a structure of the
model (and the system it represented) that had not
been previously recognized; this fundamental system
property may not have been apparent through more
traditional techniques.

We suggest many possibilities and types of possi-
bilities of how to obtain such insights throughout the
next section.

2 DISCUSSION POINTS

What kind of analyses might reveal insights into a
given model? First, let us consider potential benefi-
ciaries of such analyses.

Certainly at least two groups could benefit from
insightful discoveries: modelers and model users. A
modeler, by our definition, is one who realizes the
model into the computer: perhaps in terms of a pro-
gramming language such as C++ or GPSS, or in terms
of a visual product like Simio or Arena. A model user,
then, is one who uses the simulation to meet some ob-
jective such as training, evaluating different scenarios,
or perhaps trying to understand better the system at
hand.

The analyses we discuss herein can benefit both
groups in possibly different ways.

The types of analyses in which we are most inter-
ested arestatic analysisanddynamic analysis. With
static analysis, an object (such as code or a list of
specifications) is analyzed without executing it. With
dynamic analysis, data is collected during execution
of the object of interest (normally code). Dynamic
analysis often requires inclusion of additional state-
ments into the code to enable data collection during

code execution, such as output or profiling statements.
These two techniques have a long history of use in
both the computer science community and the soft-
ware engineering community to support, for example,
code optimization and automated generation of some
types of system documentation.

Previous model analysis research has used multi-
ple model representation/specification forms such as
Petri nets, DEVS and event graphs. An excellent
survey of Petri net analysis can be found in (Mu-
rata, 1989). These techniques, though, require that
a Petri net model be constructed and not all simula-
tions lend themselves to this representational form.
Zeigler’s DEVS formalism (Zeigler, 1990) has been
the basis of significant analysis work. However, the
focus of much of this work concerns model verifi-
cation – for example, (Hwang and Zeigler, 2006).
Event graphs (Schruben, 1983) are also used as a ba-
sis for model analysis, though as our objectives differ
from Schruben’s, the information in our graphs dif-
fer. Each of these representational forms could sup-
port the types of analyses we discuss, but we do not
explore their potentials here.

2.1 Insights – Static Code Analysis

Observing and analyzing the behaviors produced by
a simulation are the usual techniques for improving
understanding of a system being simulated. However,
static analysis of the model specification itself can of-
ten reveal characteristics of a model not readily ap-
parent from observing merely its run-time behavior.

In compiler optimization, several techniques are
used routinely that could potentially provide useful
insights to the modeler. Data flow analysis is used to
help identify data dependencies – that is, to help iden-
tify relationships among different parts of the code.
This analysis also can help determine interactions
among variables in different model components, un-
realized relationships, both causal and coincidental,
relationships among different code modules, or rela-
tionships among different simulation components –
relationships of which the modeler might not be so
aware.

For example, using data flow analysis, one can po-
tentially identify both the events which can cause a
specific simulation event, and those events which can
be caused by a specific event. If these lists can be
generated, they can be informative by possibly iden-
tifying unanticipated effects previously unrecognized
by the modeler. They can also serve a diagnostic pur-
pose if the list omits events the modeler knows should
be included, or includes events the modeler knows
should not be included.

SIMULTECH 2011 - 1st International Conference on Simulation and Modeling Methodologies, Technologies and
Applications 

322



Another benefit of static code analysis: no finite
number of runs can deduce what is possible. Not test-
ing, execution traces or animations can necessarily
discover all things that are possible in some simula-
tion run. However, from static analysis, one can re-
veal the possibility of infrequent situations occurring.

Data flow techniques also can be used to deter-
mine if race conditions exist. In a common implemen-
tation of a discrete event simulation, an events list is
checked before the clock is advanced. Ideally, the or-
der in which events that are scheduled to occur at the
same time happen to be on the list should not matter
to the simulation results; however, analysis can flag
this possibility – or point out a potential surprise to
the modeler.

2.2 Insights – Dynamic Code Analysis

Static code analysis has its limitations; it can identify
possible actions but since the possible complexity of
code is unbounded, the results of the analysis can on
rare occasions be misleading. From static analysis,
one may discover that eventA can cause eventB, but
dynamic analysis often can reveal specifics of which
events caused which events – that is, which event
caused a particular event, and which event(s) a par-
ticular event caused – which cannot always be deter-
mined prior to run-time. In addition, if static analysis
suggests that eventA can cause eventB, but dynamic
analysis reveals that this never happens, this may be
of interest to a modeler or user of the simulation.

The ancedote in Section 1 about the grouping of
events by frequency of occurrence is another example
of useful information revealed through dynamic anal-
ysis.

2.3 Insights – Examining the Model
Differently, Interactively

Alas, source code tends to involve many issues un-
related to the model itself, such as data collection,
animation, and tricks for efficient run-time behav-
ior. Unless the modeler is an expert programmer,
this other code tends to obscure the model as imple-
mented. Consider if one were able to be shown only
what one considered currently relevant.

Weinberg identified the importance of program lo-
cality (Weinberg, 1971), the property obtained when
all relevant parts of a program are found in the same
place. He noted that “...when we are not able to find a
bug, it is usually because we are looking in the wrong
place.” Since “issues of concern” vary widely, no sin-
gle organization of a program can exhibit locality for
all such concerns. Additionally, as the problem of

interest changes, the information considered relevant
also changes.

Consider if there were multiple model “views,”
where one could see only the aspects of (current) in-
terest, and as the aspects of interest changed, so could
what was shown to the modeler or model user. Per-
haps these “slices,” not unlike Weiser’s program slices
(Weiser, 1984), could aid in allowing model charac-
teristics to be more easily understood.

An additional interactive possibility – a zoomable
action cluster interaction graph – is discussed below.

2.4 Insights – Visualizing the Model

When given an unfamiliar model to modify or use,
modelers and model users traditionally examine text
output, source code, and perhaps animations if avail-
able. Animations aside, most analyses are not par-
ticularly visual, a shame since pictures help us build
mental models (Glenberg and Langston, 1992) – in
this context, a mental model of the encoded model.

Some work has been done on the “visuality” of
models. Program visualization (which is distinct
from visual programming – “the body of techniques
through which algorithms are expressed using vari-
ous two-dimensional, graphic, or diagrammatic nota-
tions,” such as Nassi-Schneiderman diagrams (Nassi
and Schneiderman, 1973)) has similarly stated goals:
“to facilitate a clear and correct expression of the
mental images of the producers (writers) of computer
programs, and to communicate these mental images
to the consumers (readers) of programs” (Baecker,
1988). However, the approach to doing so “focuses
on output, on the display of programs, their code, doc-
umentation, and behavior” and “[displaying] program
execution in novel ways independent of the method of
specification or coding” (Baecker, 1988).

A prime problem with model descriptions,
whether in textual or graphical notations, is that even
for simple models, the descriptions are often difficult
to fully comprehend. Even in relatively simple cases,
the wealth of data available can easily obscure useful
information in the volume of what is presented. The
type of tools for which we argue may help with the
problem of having “too much information” by allow-
ing the interactive exploration of a model so that only
relevant information is presented.

An information mural (Jerding and Stasko, 1998)
is a technique for displaying and navigating large in-
formation spaces. The goal of the mural is to visu-
alize a particular information space, displaying what
the user wants to see and allowing the user to focus
quickly on areas of interest. As Jerding and Stasko
aptly state, “A textual display of such voluminous in-

ENHANCING UNDERSTANDING OF MODELS THROUGH ANALYSIS

323



formation is difficult to read and understand. A graph-
ical view [...] could better help a software developer
understand what occurs during a program’s execu-
tion.” We find this notion particularly appealing, since
the source code is the true specification of the model
as executed.

The action cluster interaction graph (Overstreet,
1982) is a type of dependency graph that can assist
in model decomposition. The main purpose of this
graph, derived from source code, is to show which
events can cause which events. In these graphs, a
solid line indicates that eventA can cause eventB
to occur at the same instance in time; a dashed line
indicates that eventA will cause eventB at a future
instance in time.

Consider several modifications of this dependency
graph. First, combining the static nature of this graph
– which events can cause which events – with dy-
namic analysis – which event did cause which events
– could prove insightful to a modeler. Second, imag-
ine if the graph were “zoomable” – where one could
see only one or a few steps at a time, rather than
be overwhelmed with a graph of several hundreds,
thousands or more events. We feel that exploring
this graph interactively – perhaps as the simulation
progresses, perhaps as the curiosity of the moment
changes – could be insightful as well.

3 VISION

Our vision involves a unique product that can incor-
porate these types of analyses into one, useful, user-
friendly tool, enabling both modelers and model users
to gain additional insights into their models. This
tool could start as something similar to CodeSurfer
(Anderson et al., 2003), a commercially-available
software static analysis tool based on prior De-
fense Advanced Research Projects Agency (DARPA)-
sponsored research at the University of Wisconsin.
CodeSurfer can create system dependences graphs
– similar to our action cluster interaction graphs –
based on static analysis, and allow those graphs to be
queried in multiple ways.

Since these graphs explode as the number of
events increases, our envisioned tool would allow the
user to see the graph of all events – perhaps presented
in a way akin to an information mural – and allow the
user to select a particular event to follow, either stat-
ically (eventA could cause eventsB or C to occur),
or dynamically within a particular run at a particular
time (in this execution trace, at timet, eventA caused
eventB, which then caused eventsC andD, ...).

CodeSurfer also has multiple views that allow the

user to view the parts of the code that s/he finds rele-
vant at the time – analogous to our vision of showing
the user only the currently relevant information.

3.1 Example

Consider a standard harbor model from (Nance et al.,
1999): ships arrive at a harbor and wait for both a
berth and a tug boat to become available; a ship is
then escorted to a berth, unloaded, and escorted back
to sea. This model is used to study tug boat utilization
and ship in-harbor time.

A sample view of the model’s action clusters
might look like a subset of Figure 1. An action clus-
ter is a collection of model actions that must always
occur atomically. For example, aninitialization ac-
tion cluster in this context might consist of setting the
mean interarrival time of ships; the unload time of a
ship; how long a tug boat takes to travel while em-
cumbered and while unencombered; how many tug
boats and berths will be available; and so on. These
actions will occur as an indivisible unit every timeini-
tializationoccurs.

Figure 1: List of a sample model’s action clusters.

SIMULTECH 2011 - 1st International Conference on Simulation and Modeling Methodologies, Technologies and
Applications 

324



With the harbor C code [Figure 2], using static
analysis techniques, one can obtain its action cluster
interaction graph [Figure 3]. As mentioned above, in
these graphs, a solid line indicates that eventA can
cause eventB to occur at the same instance in time;
a dashed line indicates that eventA will cause event
B at some instance in time. Here, the simulation is
started with the eventinitialization. An initialization
event can cause anenter, deberth, movetug to ocean,
movetug to pier, or termination event to occur at
start-up, and will schedule anarrival event to occur;
and similarly for the other nodes in the graph. As one
can see, this graph is already non-trivial for a model
of merely 12 events.

Figure 2: Sample source code.

Figure 3: Action cluster interaction graph.

Let us take an example of a 26-event model. Static
analysis could yield something like Figure 4; how-
ever, using an interactive tool, one could study, say,
eventV: first, the user could click on eventV and see
(more clearly) that it could cause eventsE, R, andQ;

then, selecting eventQ, s/he could see that eventQ
can cause eventsF, W, G, R, andL [Figure 5]. Given
a specific execution trace and timeline of events, this
type of visual could be used to traverse through the
entire run, seeing which events caused which events.

Figure 4: A sample action cluster interaction graph for a
model with 26 events.

Figure 5: Exploring eventV.

4 CONCLUSIONS

This work presents several challenges. Identifying
a model specification form that works for model
builders and model users and can be the basis for
analysis techniques is challenging and will require a
compromise due to conflicting needs. Additionally,
identifying only the additional information likely to
be useful to modelers and model users is a challenge.
Use of modeler-directed interactive tools can assist.

In this paper, we have discussed a many-faceted
approach to obtaining insights into a given model
based on both source code and model execution.
Types of analyses considered include static analysis,
dynamic analysis, looking at the model differently, in-
teractively, and visually – perhaps all at once, as dif-
ferent activities, or some combination thereof.

We propose a tool that would help with the prob-
lem of having “too much information” while incorpo-

ENHANCING UNDERSTANDING OF MODELS THROUGH ANALYSIS

325



rating these types of analyses. Indeed, our long in-
terest is in enhancing model understanding – helping
modelers gain additional insights into the models they
are using or constructing.

REFERENCES

Anderson, P., Reps, T. W., Teitelbaum, T., and Zarnis, M.
(2003). Tool support for fine-grained software inspec-
tion. IEEE Software, 20(4):42–50.

Baecker, R. (1988). Enhancing program readability and
comprehension with tools for program visualization.
In Proceedings of the 10th International Conference
on Software Engineering, pages 356–366.

Glenberg, A. M. and Langston, W. E. (1992). Comprehen-
sion of illustrated text: Pictures help to build mental
models.J. Mem. Lang., 31(2):129–151.

Hwang, M. H. and Zeigler, B. P. (2006). A modular ver-
ification framework based on finite & deterministic
DEVS. InProceedings of the 2006 DEVS Integrative
M&S Symposium, pages 57–65.

Jerding, D. F. and Stasko, J. T. (1998). The information mu-
ral: A technique for displaying and navigating large
information spaces.IEEE Trans. Vis. Comput. Graph.,
4(3):257–271.

Murata, T. (1989). Petri nets: Properties, analysis and ap-
plications.Proc. IEEE, 77(4):541–580.

Nance, R. E., Overstreet, C. M., and Page, E. H. (1999).
Redundancy in model specifications for discrete event
simulation. ACM Trans. Model. Comput. Simul.,
9(3):254–281.

Nassi, I. and Schneiderman, B. (1973). Flowcharting tech-
niques for structured programming.ACM SIGPLAN
Notices, 8(8):12–26.

Overstreet, C. M. (1982).Model Specification and Analysis
for Discrete Event Simulation. PhD thesis, Virginia
Polytechnic Institute and State University, Blacks-
burg, VA.

Overstreet, C. M. and Levinstein, I. B. (2004). Enhancing
understanding of model behavior through collabora-
tive interactions. Operational Research Society (UK)
Simulation Study Group 2nd Two Day Workshop.

Paul, R. J., Eldabi, T., Kuljis, J., and Taylor, S. J. E. (2005).
Is problem solving, or simulation model solving, mis-
sion critical? In Kuhl, M. E., Steiger, N. M., Arm-
strong, F. B., and Joines, J. A., editors,Proceedings of
the 2005 Winter Simulation Conference, pages 547–
554.

Paul, R. J. and Kuljis, J. (2010). Problem solving, model
solving, or what? In Johansson, B., Jain, S., Hugan, J.
R. M.-T. J. C., and Yücesan, E., editors,Proceedings
of the 2010 Winter Simulation Conference, pages 353–
358.

Schruben, L. (1983). Simulation modeling with event
graphs.Comm. ACM, 26(11):957–963.

Weinberg, G. M. (1971).The Psychology of Computer Pro-
gramming. Computer Science Series. Van Nostrand
Reinhold Company, New York, NY.

Weiser, M. (1984). Program slicing.IEEE Trans. Softw.
Eng., SE-10(4):352–357.

Wikipedia (2011). Wikipedia. Axiomatic system,
http://en.wikipedia.org/wiki/Axiomaticsystem.

Zeigler, B. P. (1990). Object-Oriented Simulation with
Hierarchical, Modular Models. Academic Press,
Boston, MA.

SIMULTECH 2011 - 1st International Conference on Simulation and Modeling Methodologies, Technologies and
Applications 

326


