Using Models to Assess Impact of Defective Software

Juan C. Augusto', George Wilkie', Chunping Li>, Hui Wang' and Jun Liu'

' CSRI and School of Computing and Mathematics, University of Ulster, Coleraine, U.K.
2School of Software, Tsinghua University, Tsinghua, P.R. China

Abstract. We explain a new strategy to model a set of java classes and to
abstract a model from them that can be use to study the impact that defects
affecting specific classes can have on the whole system. We use the models of
the software implementation as an abstraction of the software that can be used
for experimentation We used simulation and verification in SPIN but the idea
can be applied to implementations in other languages than java and the analysis
of defects impact can be done with other verification tools as well.

1 Introduction

As software applications become more complex, software reliability is becoming
more important. To improve reliability we need to reduce probability of software
failure, which can be catastrophic. An important approach to reducing probability of
failure is by predicting and then removing software defects. Existing methods for
defect prediction include those proposed in (Gaffney, 1984), (Khoshgoftaar and
Seliya, 2004) and (Subramanyam and Krishnan, 2003). These methods are all
machine learning based using some program features or program complexity
measures such as the CK measure (Chidamber and Kemerer, 1994). The performance
of these methods is still not desirable and much research is needed. For example,
Menzies et al. studied defect prediction for 5 software systems of NASA (Menzies et
al., 2004), with an average prediction accuracy of 36%. (Wilkie and Hylands, 1998)
reported that approximately 48% of defects could be predicted by the combination of
two of the CK measures.

This paper presents part of the findings in our BEACON project which focuses on
the creation of strategies that facilitates the study of software defects and their
consequences. We present here one of the strategies we investigated which as a
qualitative analysis focus and relies on the abstraction of models out of a collection of
java classes in such a way that the fundamental entities and interactions are
represented. This model is then used to assess the effect of injecting defects in
different parts of the system and through simulation and verification (Berard et al.,
2001) study how they affect the system. The content of the paper is organized as
follows. Section 2 explains the step of model creation then in section 3 we explain
how we used it and we finalize in Section 4 with conclusions and proposed further
work.

Augusto J., Wilkie G., Wang H., Liu J. and Li C..

Using Models to Assess Impact of Defective Software.

DOI: 10.5220/0003596000710077

In Proceedings of the International Joint Workshop on Information Value Management, Future Trends of Model-Driven Development, Recent Trends in
SOA Based Information Systems and Modelling and Simulation, Verification and Validation (MSVVEIS-2011), pages 71-77

ISBN: 978-989-8425-60-7

Copyright ¢ 2011 SCITEPRESS (Science and Technology Publications, Lda.)

72

2 Model Extraction

Part of the project was devoted to qualitative analysis of defects and how features
from the code can be used to create models which inform the analysis of impact of
those defects in the overall system. Starting with a java implementation of a system
we looked at the classes and their interaction to extract a model. We choose to model
systems using a well known and respected system: Promela/SPIN (Holzmann, 2003).

The analysis of a java implementation used for didactical purposes led the
identification of classes/methods which suggested the network of possible interactions
amongst the classes depicted in Figure 1. These classes are used to illustrate basic
concepts in java to the students of one of our modules.

y
road users l —>

manufacturer

Fig. 1. Network representing the interactions of classes.

Al

We use this network as a basis to define the processes and their interactions in the
Promela model. A basic transformation algorithm can be easily implemented to
translate a network into a Promela model:

1) for each node create a process with that name
2) for each transition create a channel with the names of both
3) the direction of the arrow in the graph dictates who send/receives the message
4) the interaction can be normal or defective
5) once a process is contacted by a defective module it sends a defective message to
everyone it interacts with and then blocks
A more subtle analysis can be carried of in the java code to identify the modality of
that interaction:
e for any interaction: is it mandatory or is only a possibility?
e when more than one call, are they independent or related (all have to be
done)
¢ if more than one incoming transition: are both required as a precondition for the
receiving node to operate or just some of them are enough?
In our example we considered all the arrows in figure 1 as “and’s”, that is that a node
with two outgoing arrows call methods from both destination nodes and that a node
with two incoming arrows is called by both classes in the origin nodes (notice this still
omit details like in which order the methods are called) then we can refine the above
models to obtain (a subset of the first model of this doc).

The following model is a first approach to representing possible behaviour in the

73

set of java classes under examination.

mtype = {ok};
chan car_status = [0] of {mtype};
chan driver_car = [0] of {mtype};

chan
chan
chan
chan

driver_manufacturer = [0] of {mtype};
manufacturer_car = [0] of {mtype};
roadusers_driver = [0] of {mtype};
roadusers_manufacturer= [0] of {mtype};

active proctype roadusers ()

}

if /* i.e., methods in the classes of
both destination nodes are invoked
but we do not know in which order
so we need to provide SPIN with the
option to choose any of the
possible orders */
roadusers_manufacturer!ok ;
roadusers_driver!ok
roadusers_driver!ok;
roadusers_manufacturer!ok

fi

active proctype driver ()

if

roadusers_driver?ok -->
if
i1 driver_car!ok ;
driver_manufacturer!ok
driver_manufacturer!ok;
driver_car!ok

fi

fi

}

active proctype manufacturer ()
{ if /* it has to be contacted by both in

any order to proceed contacting the
next class */
driver_manufacturer?ok ;
roadusers_manufacturer?ok -->
manufacturer_car!ok
roadusers_manufacturer?ok ;
driver_manufacturer?ok -->
manufacturer_car!ok

fi

}

?ctjve proctype car ()

if

o

it has to be contacted by both 1in
any order to proceed contacting the
next class */

: driver_car?ok; manufacturer_car?ok-->
car_status!ok
manufacturer_car?ok; driver_car?ok-->
car_status!ok

fi

}

active proctype status ()
{ if

car_status?ok

fi

74

3 Exploring the Model

Once we have a model we can take advantage of SPIN’s multiple features to examine
a model and inform us of the potential implications of a system built following the
strategy represented by that model.

On first inspection the model created in the previous section does not seem to
uncover any problems. Figure 2 shows a simulation.

We can now inject faults into the system. This was done manually but a
recommendation of our project is that this can be incorporated to a tool that first
distils a model from a group of classes and then allows the user to select in which
areas of the model to inject faulty interactions which can then be analyzed using
SPIN.

The following model has been injected faulty interactions in a couple of arbitrary
places. The message types are now offering SPIN two types of interactions. A line
“manufacturer_car!defect” has been added to proctype ‘manufacturer’ and another
line “manufacturer car?defect --> skip” has been added to proctype ‘car’. We have
also modified the model to allow the checking of some behavioural properties which
we can use to force SPIN to conduct a more rigorous analysis. We have added to the
model introducing a boolean variable ‘end_reached’ which we use to create a
“guarantee” formula checking if the end of ‘status’ can be reached (see that ‘status’ is
the final class in according to the network of Figure 1).
mtype = {ok, defect};
chan car_status = [0] of {mtype};
chan driver_car = [0] of {mtype};
chan driver_manufacturer = [0] of {mtype};
chan manufacturer_car = [0] of {mtype};
chan roadusers_driver = [0] of {mtype};
chan roadusers_manufacturer = [0] of {mtype};
bool end_reached=false;
active proctype roadusers ()

if /* i.e., methods in the classes of
both destination nodes are invoked
but we do not know in which order
so we need to provide SPIN with the
option to choose any of the
possible orders */
roadusers_manufacturer!ok ;
roadusers_driver!ok
roadusers_driver!ok;
roadusers_manufacturer!ok

fi
}
active proctype driver ()

if

:: roadusers_driver?ok -->

if

: driver_car!ok ;

driver_manufacturer!ok

:: driver_manufacturer!ok;
driver_car!ok

fi

fi

75

}

active proctype manufacturer ()

{ dif /* it has to be contacted by both in
any order to proceed contacting the
next class */

driver_manufacturer?ok ;
roadusers_manufacturer?ok -->
manufacturer_car!defect
driver_manufacturer?ok ;
roadusers_manufacturer?ok -->
manufacturer_car!ok
roadusers_manufacturer?ok ;
driver_manufacturer?ok -->
manufacturer_car!ok
fi
}

active proctype car ()
if /* it has to be contacted by both in
any order to proceed contacting the
next class *
driver_car?ok; manufacturer_car?ok-->
car_status!ok
manufacturer_car?ok; driver_car?ok-->
car_status!ok
:: manufacturer_car?defect --> skip
fi
}

?ctj¥e proctype status ()
i
car_status?ok

i;
end_reached=true

If we run a verification of that property, SPIN detects a problem as indicated in Figure
3.

B conmo o0 -2 - =5 [. 5 SIS
Fi. | et | view. | Run..| Help | SPIN DESIGN VERIFICATION Linetfs0 Fing -
[n
I
active proctpe ariver
it
roadusers_driver20k — E
it
driver_carlok ;
driver_manufaciureriok
ariver_manufacturerlok;
ariver_carlok
f
fi
I
active proctpe manutacturer ()
[1t has to be contacted by both in
any order to proceed contacing the
nextclass */
ariver_manufacturer?ok [=[=] =]
roadusers_manufaciurer?ok — 3 et g = =
manufacturer_carlok | e Find
roadusers_manufacturer?ok; —
driver_manufaciurer?ok — + Staring roadUsers with pid 0
manufacturer_carlok 0 Br0G - (root) creates proc 0 (roadUsers)
i Starting driver with pid 1
3 o proc - (root) creates proc 1 (driver)
sctve proctpe car (1 Starting manufacturer with pid 2
I 7 # s to be contacted by bothin o proc - (oot creates proc 2 (manufacturer)
| anyorgerto praceea cantacting the Starting car with pid 3
| et class =l o proc - (oot creates proc 3 (car)
driver_carPok; manufacturer_car?ok-—> Starting status with pid 4
car_statuslok o proc - (00t creates proc 4 (status)
manufacturer_car?ok diiver_car?ok— 1 proc 0 (roadUsers) line 18 “pan_in’ (state 1) [roadusers_manufacturerlok]
car_statuslok 1 proc 2 (manufacturen) line 42 " (state 4) [r0a0US 6rs_manufacturer?ok]
M 1 proc 0 (roadUsers) ine 18 'p state - [alues: 110k]
s 1 proc 2 (manufacturen) line 42 " (state - [values: 170K]
actve proctpe status 2 proc 0 (roadUsers) line 19 “pan_in” (state 2) [roadusers_drverok]
i 2 proc 4 (criver) line 28°pan_in" (state 1) [readusers_driver?ok]
car_status 7ok 2 proc 0 (roadUsers) line 19"pan_in” (stats -) values: diok]
2 proc 1 (ariver) ine 26 “pan_in" (state -) values: 470]
3 proc 1 (driver) ine 30 “pan_in" (state 4) driver_manufacturerio]
3 proc 2 (manufacturen) line 43°pan_in" (state 5) [diiver_manufacturer?ok]
3 proc 1 (driver) line 30 pan_in" (state -) [values: 210K]
3 proc 2 (manufacturer) line 43°pan_in" (state -) values: 270k]
4 proc 1 (ariver) line 31°pan_in" (state 5) [dnver_carok]
oy d
Single Step | Suspend Savein |smout Clear| Cancel

) Microso. 2 AdobeA.. : BEACO... W Augusto. | T Figures || 1] Unitied - . ISt & Sequenc. T Dota val <« WEG 1M

Fig. 2. A simple simulation in SPIN showing a possible way of interaction amongst classes.

76

If we follow the Guided Simulation offered by SPIN we get a counterexample as
feedback which we show in Figure 4 and shows the system gets stalled when ‘car’
expects an OK from ‘manufacturer’ and gets a defective interaction instead.

He\p‘ SPIN DESIGN VERIFICATION ne=37 Find:

r bool end_reached=false:

lactive proctype roadUsers ()

I

if /1.6, methods inthe dlasses af both destination nodes are invoked butwe do not know in

which order sowe needto provide SPIN with the option to choose any of the possible arders
ruadusers manufal:\urermk roadusers ﬂrwer\uk

[
Jactive proctype driver ()
i

roadusers_driver?ok —
it

driver_carlok; driver_manufacturerlok
ariver_manufacturerlok; driver_carlok
L
f

i

Jactive proctype manufacturer ()

if * ithas to be contacted by both in any orderto proceed contacting the next dlass in fig 1 */
driver_manufacturer?ok :roadusers_manufacturer2ok —> manufacturer_carldefect

ok driver_ 20k

roadusers._
f

I
active proctype car ()
i if /' ithas to be contacted by both in any orderto proceed contacting the next class infig 1%/
driver_car?ok; manufacturer_car?ok > car_statuslok
: manufacturer_car?ak; driver_car?ok — car_statusloks
* manufacturer_car?defect — skip

i
active proctype status ()
Ko

: car_status?ok

end_reached=true

L -D_POSIX

Te——
©' @ O Microson Ot) Clarin com - M. BEACON ™ NGF -

“ pan:invalid end state (at depth 7)

Search for:

pan: wrote pan_in trail

(Spin Version 4.3.0 — 22 June 2007)

Warning: Search not completed
+Partial Order Reduction

Full statespace search for
never dlaim -(none specified)
assertion violations - (disabled by -Aflag)
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 56 bjte, depth reached 18, erfors: 1
22transitions (= storegsmatehed)
0 atomic steps

hash conflicts: 0 {resolved)

Sats on memoryusage (i Hegabcs)
quivalent memoryusage for states (stored*(State-vector + overhead))

u 3u3 adhual mermon, usbG fo iales (unsuceosstl compression 23650 00%)
State-vector as stored = 15128 byte + 8 byte overhead

2097 memory used for hash table (-w19)

0320 memory used for DFS stack (-m10000)

0098 memory lostto fragmentation

2622 tofal actual memery usage

unreached in proctype roadUsers
line 17, "pan_in’", state 4, “roadusers_manufacturerlok
(10f 7 states)

unreached in proctype driver
(00f 10 states)

unreached in proctype manufacturer
line 32, "pan_in", state 5, “roadusers_manufacturer?ok”
(10712 states)

unreached in proctype car
(0 0f 11 states)

unreached in proctype status
(DLt 5 statac)

ﬂ Iverficati.. || 54 SPIN CONTROL... ' [&q Verification Out.

= | E S

Optionally, repeat the run with different search depth to find a shorter path to the error.

#9) Suggested Action

O, perform a GUIDED simulation to retrace the erfor found in this run, and skip the first series
of steps if the error was found at a depth greater than about 100 steps),

<R G 6u

Run Guided Simulation.. | Close

Setup Guided Simulatios

Suggested Actit

Fig. 3. Problems detected by SPIN after injection of faults in the model.

File. ‘Em |V\ew |F1u ‘He\p‘ SPIN DESIGN VERIFICATION

2
r Ibool end_reached=false:

active proctype roadUsers ()
i

if ie., methods inthe classes of both destination nodes are invoked butwe do not know in
which order so we need to provide SPIN with the option to choose any of the possible arders */
:roadusers_manufacturerok; roadusers_driveriok:
*roadusers_driveriok: roadusers_manufactureriok
fi

I
scwe ummvue driver ()
ruadusers driver?ok —>
drwer carlok ; driver_manufacturerlok
driver_manufacturerlok; driver_carlok
i
fi

[

[active proctype manufacturer ()

i if 7 ithas to be contacted by both in any orderto Dmteed contactingthe r\ext c\sss infig 1%
defect

iver_ ok ;roadusers._
E river_ k roadusers_ e Jzzr\u
ruadusers 3ok ; driver_ 70k —= carlok

I

active proctype car ()

i r it has to be contacted by both in any order to proce ed contacting the next class in fig 14/
T3 I it

o
manuvamurer,camuk diiver_carok
manufacturer_car?defect —= skip

f

car_statuslok

i
jactive proctype status ()
Ko

car_status?ok

i
end_reached=true

e v === |

cfatusls
]

|

¥ Simulation Output (=] B [

Search for: Find

iuL 1w e 2s pan_in 1o _nanmaumeron
Broc 2 (manufacturer) ling 21 "pan_in" (state -) [values: 370K]
proc 2 (manufacturer) line 31 "pan_in” (state 1) [driver_manufacturer?akl
0 (roadUsers)line 17 "pan_in" (state -) values: lok]
0 (roadUsers)line 17 "pan_in" (state 4) [roadusers_manufacturerlok]
proc 2 (manufacturer) line 31 "pan_in” (state -) [values: 470K]
proc 2 (manufacturer) ling 31 "pan_in" (state 2) [roadusers_manufacturer?ok]
spin: trail ends after 8 steps
Fprocesses:5
proc 4 (status)line 44 “pan_in" (state 2)
s proc 3 (canline 38 “pan_in” (state 2)
8 proc
proc
proc 0 (roadUsers) line 19"pan_in” (state 7)

i oy e

-8

Single Step [Suspend |

¥2| Data Values

Search for:

“ end_reached =

T Scauence... || I Dota Values

Fig. 4. Simulation with SPIN after faults in the model were detected.

71

4 Conclusions

The most important finding on this aspect of the project is that:

o there is a way to automatically translate java into Promela so that the impact of
defects can be studied.

e a tool can be built which can perform the translation and also allow the injection of
Promela code in the model representing faulty classes. These classes may be those
which have been identified by statistical methods and this will enrich the assessment
of the effect of defects within a system.

The strategy we explored in this paper is one of several approaches. The focus in this
strategy was qualitative. Other strategies considered tried to quantify which classes
may be more prone to faults. There is no single strategy or group of strategies that
can provide definitive answers to these problems but a number of them may help to
identify were a team should focus their efforts.

Acknowledgements

We want to acknowledge the financial support offered by the Royal Society to the
BEACON project under the eGAP2 initiative.

References

1. Gaffney, J. R. Estimating the Number of Faults in Code, IEEE Trans. Software Eng., 10(4),
1984.

2. Khoshgoftaar, T. M. and Seliya, N. The Necessity of Assuring Quality in Software
Measurement Data, Proc. 10th Int’l Symp. Software Metrics, IEEE Press, 2004.

3. Subramanyam, R. and Krishnan, M. S. Empirical Analysis of CK Metrics for Object-
Oriented Design Complexity: Implications for Software Defects, IEEE Trans. Software
Eng., 29(4), 2003.

4. Chidamber, S. R. and Kemerer, C. F. A Metrics Suite for Object-Oriented Design, IEEE
Trans. Software Eng., 20, 1994.

5. Menzies, T. DiStefano, J. Orrego, A. and Chapman, R. Assessing Predictors of Software
Defects, Proc. Workshop Predictive Software Models, 2004.

6. Wilkie, F. G. and Hylands. B. Measuring Complexity in C++ Applications. Software
Practice & Experience, 28(5), 1998.

7. Berard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoebelen, P.
Systems and Software Verification: Model-Checking Techniques and Tools, Springer
Verlag, 2001.

8. Holzmann, G. J. The Spin Model Checker Primer and Reference Manual, Addison-Wesley,
Reading, Massachusetts. 2003.

