

A METHOD OF ADJUSTING THE NUMBER OF REPLICA
DYNAMICALLY IN HDFS

Bing Li and Ke Xu
School of Computer Science and Technology, Beijing University of Posts and Telecommunications, Beijing, China

Keywords: Hadoop, HDFS, Network congestion, Hot spots detection, Adaptive replica control.

Abstract: With the development of Cloud Computing, Hadoop –an Infrastructure as a Service open source project of
Apache – has been used more and more widely. As the basis of Hadoop, the Hadoop Distributed File
System (HDFS) provides basic function of file storage. HDFS-an open source implementation of Google
File System (GFS) –was designed for specific demand. Once the demand was changed, HDFS cannot fit it
very well. Especially when the access demand of file is different, there will be hot spots and the existing
replica will not be enough. It will lower the efficiency of the whole system. This paper introduced a system-
level strategy which could adjust the replica number of specific file dynamically. And the experiment shows
that this mechanism can prevent the problem of decline of user experience bring by hot spots and improve
the overall efficiency.

1 INTRODUCTION

In the era of information explosion, there are billions
of Internet services provided to users and increasing
sharply every day. As a result, user’s interest is
changing every minute and hard to be traced. So
developers can hardly know whether their service
could attract enough users to cover their expenses.
Nowadays Cloud Computing seems to be one of the
solutions to this problem. Cloud Computing could
provide limitless ability of storage and computing
according to developer’s demand. If the service was
welcomed and have thousands of users, developer
can order extra resources from Cloud Computing
provider. If users were not interested any more, the
developer can rent less resource to reduce their cost.
In a word, developers will not necessary to buy a lot
of hardware by the estimation of market size. That’s
why Cloud Computing costs much less than the
traditional ways.

Therefore, Cloud Computing becomes a hot topic
in industry area and academy area now. A lot of
organizations and institutes have been developed
their own Cloud Computing framework. There are
also a lot of open source Cloud Computing projects
and Hadoop (Apache Hadoop, 2011) which is
sponsored by Apache foundation is one of them.
Hadoop is an open source framework that

implements the MapReduce parallel programming
model (J. Dean and S. Ghemawat, 2004). Yahoo!
and Facebook contribute a lot to this project and use
Hadoop in their real computing environment.

There are lots of components in Hadoop such as
Hadoop Common, HDFS, and MapReduce.

In this paper, section II gives a brief introduction
to HDFS, especially about the flaws and the
solutions; section III talks about auto hot spot
detector in HDFS, section IV introduces the adaptive
replica controller, section V shows the experiment
data and section VI gives the conclusion.

2 HADOOP DISTRIBUTED FILE
SYSTEM

HDFS is an open source implementation of Google
File System (GFS) (Sanjay Ghemawat, Howard
Gobioff, and Shun-Tak Leung, 2003). It is one of the
core components of Hadoop and provides the basic
function of file storage to the upper components
such as MapReduce and Hbase. HDFS is a file
system designed for storing very large files
(typically 64M each block) with streaming data
access patterns, running on clusters on commodity
hardware (Tom White, 2009).

529Li B. and Xu K..
A METHOD OF ADJUSTING THE NUMBER OF REPLICA DYNAMICALLY IN HDFS.
DOI: 10.5220/0003587005290533
In Proceedings of the 13th International Conference on Enterprise Information Systems (SSE-2011), pages 529-533
ISBN: 978-989-8425-53-9
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

The HDFS cluster has a master-slave architecture
and primarily consists of one Namenode and several
Datanodes. This architecture ensures all the data will
not flow through the Namenode and reduce the
workload of Namenode. This is a single point of
failure for an HDFS installation. If the Namenode
goes down, the file system is offline. Normally there
is a secondary node as the backup of Namenode.

……

Namenode
(Metadata)

Datanode

Secondary
Node

Datanode Datanode

Rack 1

……

Datanode Datanode Datanode

Rack 2

Figure 1: HDFS Architecture.

 Namenode
Namenode is the primary node in HDFS. It

manages the file system metadata instead of data
itself. Namenode has to maintain the directory tree, a
mapping between HDFS files, a list of blocks and
the location of those blocks. And more, Namenode
provides management and control service.

Namenode will store the Metadata of directory
and file in a binary file called fsimage which is the
most important part related to the procedure of read
and write. Every operation before the fsimage saving
will be recorded in editlog. When the editlog reach
certain size or a certain time passed, Namenode will
refresh the Metadata to fsimage. That’s how
Namenode ensure the security of Metadata
information of HDFS.

The form of fsimage shows in figure 2:

Figure 2: Fsimage information.

When a Datanode start and join in the HDFS, it
will scan its disk and report the block information to
Namenode. Namenode keeps this information in its
memory with the datanode information. And then,
the chart of block to Datanode list is constructed.
This chart information is saved in a data
organization called BlockMap. The BlockMap has

the information of Datanode, block and replica.

Figure 3: BlockMap.

The BlockMap is showd in figure 3. There are 3
replica of a block. Each replica information is a tree-
element group. DN means which Datanode has the
replica; prev means the previous BlockInfo quota of
this block in the Datanode; next means the next
BlockInfo quota of this block in the Datanode. The
number of this three-element group is as same as the
number of replica.

 Datanode
DataNode stores and manages the actual data.

Each file was split into one or more blocks and these
blocks are stored in a set of Datanode. We can
simply think Datanode stores the block ID, the
content of block and the mapping relationship.

A HDFS cluster normally has thousands of
Datanode. These Datanode communicate to
Namenode periodically.

 Replica
HDFS achieves reliability by replicating the data

across multiple hosts. Each block has one or more
replica in other Datanodes and each Datanode has
one replica of a file at most. With the default
replication value 3, data is stored on three nodes:
two on the same rack, and one on a different rack.
Generally, the node on the different rack has lower
chance to fail.

Developers can set the parameter to determine the
number of replica they want. More replicas mean the
better reliability and more disk space wasted. Each
replica of block is recorded in Namenode. Client
could access the nearest Datanode to read/write the
block. And if one replica was changed, HDFS will
automatically change all these replicas in other
Datanode through pipe mechanism.

 Block Read Procedure
At first, client sent a message to Namenode

through RPC to get a block list of specific file and
the address of Datanode where all the replicas
located. And then, the client connected those
Datanode and sent a requests of those blocks to build
the link. After the link was built, client read those
Blocks one after one.

 Flow
 HDFS has a single point failure problem: if

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

530

the Namenode dead, all the system would go
off-line;

 HDFS is designed for big files (typically the
size is GB or TB) and not work well for small
files: the I/O mechanism is not fit for small
files, and Namenode keep all the metadata in
its memory, the size of memory determines
the number of files HDFS can keep.

 Balancing portability and Performance:
HDFS is written in Java and designed for
portability across heterogeneous hardware
and software platforms, there are
architectural bottlenecks that result in
inefficient HDFS usage;

 HDFS has a hot spot problem: HDFS has the
same replica number for all the files, if files
access frequency was different, some were
welcomed and some cared by nobody, there
will be hot spot. If an access burst happened,
the existing replica may not satisfy the users.
The hot spot problem will cause the local
network congestion and reduce the
throughout rate of the whole system.

 Solutions
 Single point failure problem: we can set a

secondary not to be the backup of Namenode.
And Feng Wang (Feng Wang, Jie Qiu, Jie
Yang, 2009) etc.. have done a great job to
solve this problem through metadata
replication;

 Small files problem: Grant Mackey and Saba
Sehrish (Grant Mackey, Saba Sehrish, Jun
Wang, 2009) provide a solution to improving
metadata management for small files in
HDFS; Xuhui Liu and Jizhong Han etc
(Xuhui Liu, Jizhong Han, Yunqin Zhong,
Chengde Han and Xubin He, 2009).
introduce a solution to combine small files
into large ones to reduce the file number and
build index for each file;

 Balancing portability and Performance:
Jeffrey Shafer and Scott Rixner (Jeffrey
Shafer, Scott Rixner, and Alan L. Cox, 2010)
have done a great job to investigate the root
causes of these performance bottlenecks in
order to evaluate tradeoffs between
portability and performance in HDFS;

 Hot spot problem: this paper introduces a
system-level strategy by given each Block a
independent replica configuration; when the
reading requests became higher than system
capacity, the Namenode will increase the
replica number of specific Block.

 Hot spot Bottleneck analysis

The user’s access demand to each file is different.
Some files have been visited a lot and some others
are silence. Moreover, those hot files are not
specified all the time. Sometime, natural accidents
and social incidents such as earthquake and
Olympics will create new hot files. And sometimes
social trend make these old silence files become
welcomed. If huge number of clients visit the same
block at the same Datanode, there will be hot spot.
Because of the limited of host hardware capability
and network throughput, the access performance will
decrease sharply and the user experience will
become unacceptable. Unfortunately, the Namenode
and system operator is hard to know which file or
block will get visited frequently. There is a need of a
mechanism to tell if a block has become a hot spot
and its location.

Hadoop takes the multi-replica way to deal with
parallel reading of the same block. The number of
replica was set in the fsimage we have already
introduced before the whole cluster began to work
and the configuration is valid in the whole system.
All the Datanodes would take the same
configuration, and all Blocks has the same number
of replica.

So, there will be two problems: the first one, when
the reading requests exceed more than the
expectation, the number of replica configuration is
hard to meet the demand; and the second, if we set
the number of replica much bigger, there will be
huge waste of hard-drive space of the system
obviously. If the number of replica plus from 3 to 6,
there is half space left.

Because the Hadoop takes multi-thread and NIO
to deal with parallel reading problem, the bottleneck
of the distributed system is hard-drive IO
performance. We use a 7200rpm and 133M/S of
external transfer rate in order to void the influence of
network throughout performance to the experiment.
When the number of reading requests was lower or
equal to the number of replica, the average reading
speed is 113.7M/S. Consider of the difference of
theory data and real experimental environment, the
result is acceptable. And when we set the number of
reading requests as much as twice of the number of
replica, the experiment data shows the average read
speed S is 52.8M/S.

TnFSaverage ÷×=)(

The averageS represents the average reading speed,
the F represents the file size, the n represents the
number of requests and the T means the total time.
We can see that the average reading speed was
roughly liner downward.

A METHOD OF ADJUSTING THE NUMBER OF REPLICA DYNAMICALLY IN HDFS

531

According to the analysis, we can assume that the
reading requests to the specific file increase sharply
lead by some social incidents, the system cannot
support the huge traffic and the user experience will
become unacceptable. That’s why we should adjust
the number of replica of each file. And at the same
time we also need to monitor the number of requests.
If the number of request exceeds the threshold, we
should increase the number of replica. And if the
number of request is less than the threshold, the
system will automatically reduce the number of
replica.

In section III, we introduce a method to solve
those problems.

3 DESIGN DETAIL

Normally, if a client wants to read a file, it will
connect the NameNode first and find out which
DataNode has the file. So we can simply record the
number of connection to tell which DataNode has
become hot spot.

3.1 New Variable in Namenode

At first we change the replications in fsimage to a
minimal number of replica. It means the system will
read this value when it checks the replica number of
Block.

Second, we set two new variables named
numReplica and connectCounter after the BlockID
in BlockMap which shows in Figure 4.

Figure 4: BlockMap with new variables.

At the very beginning, the numReplica equals to
the minal number of replications in fsimage. And the
system could set the number of replication for each
Block according to the numReplica. The
connectCounter is a parameter which shows how
many clients are read the Block at the same time.
When there is a new request to read a file from a
client, the connectCounter of those Blocks which
belong to this file will plus one. Blocks from same
file have the same numReplica and connectCounter.

3.2 DataNode Response

In order to prevent the connectCounter keep
increasing, we need to make client send a message
to Namenode when reading is finished. And after
Namenode received this message, the
connectCounter should reduce by one.

3.3 Minimal Value

We set the minimal number of replica in the fsimage,
which means each Block’s number of replica cannot
be less than this value.

3.4 Add and Reduce Replica

When the connectCounter is bigger than the
threshold, Namenode will trigger the procedure of
increasing replica. This procedure is the original one
in Hadoop. Namenode will instruct Datanode get a
copy of the Block from other Datanode, and it will
update the BlockMap.

When the connectCounter is less than the
threshold, Namenode will start the procedure of
reducing replica. Namenode will instruct the
Datanode move the Block into /trash directory, and
update the BlockMap also.

4 EXPERIMENT

We compare the performance between the original
system and the new design one. Each of them run on
the same cluster with one Namenode and twelve
Datanodes, all the machines are configured with
dual 2.0 GHZ processor, 1GB memory, two 80GB
disks(7200rpm with 133M/S) and a 1000 Mbps
Ethernet connection switch. The operating system is
ubuntu10.04. The version of Hadoop is 0.20.2 and
java version is 1.6.0.

There are three kinds of file which size are 64Mb,
128Mb and 256Mb in the system. It has been
divided into 1, 2 and 4 Blocks. The size of Block is
typically 64Mb. In order to ensure the static
precisely, those Blocks cannot be stored in a same
Datanode. We try to make each Datanode have the
same number of Block. We have ten clients reading
those Blocks at the same time. The default number
of replica is 3.

From the experiment, we got two groups of results.
One is from the control group which takes the
original system and the other result is from an
optimization system. The actual experiment result
shows in Table I, Table II and figure 5.

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

532

Table 1: Experiment result from the original system.

 128Mb 256Mb 512Mb
Total Time Cost(s) 2.61 3.37 8.45

Table 2: Experiment result from the optimization system.

 128Mb 256Mb 512Mb
Total Time Cost(s) 1.97 3.39 8.50

There are 2 blocks in one Datanode at most in the
512Mb condition. Theoretically, the total time cost
should approximately be as much as twice of the
time cost in the condition of file with 256Mb.
However, we can see from the experiment result it’s
much higher than that. The reason is HDFS reads
Blocks of the same file in order. If the client hasn’t
finish Block 1, it cannot read Block 2 first.

Moreover, in the condition of file with the size
of 256Mb, the total time cost for the optimization
system is roughly equal to the time cost for the
original system. That’s because there is no more
room for another replica. As a result, the replica
adjusting procedure cannot be activated.

Figure 5: Total Time Cost Contrast.

And last, when there is enough space for new
replica, the improvement of system performance is
obviously. But the total time cost from the
optimization system in the condition of 128Mb is
not equal to 0.96s theoretically. Real number is
higher than the ideal one. That’s because the system
detect there is less replica than the access requests
and activated replica adjusting procedure. The time
cost consisted of three parts. One is the normal
reading time cost, and the second is the cost of
communication between Namenode and Datanode,
the third part is the cost of transfer Block between
Datanodes.

5 CONCLUSIONS

HDFS takes replica of block to store large files and
suffers performance penalty while some file became
hot spot and a huge number of client send a request

to Namenode in order to read this file. In this paper,
we optimize the HDFS replica strategy and improve
the system performance by adjusting replica number
dynamically. So the file in hot spot could get more
replicas to deal with file access. We also compare
the optimization system to the original system in 3
ways: full of space for more replicas, the number of
Datanode is equal to the number of block and the
number of block is more than Datanode. We can
see, in the condition 1, the optimization could
improve the system performance by 25 percent.

ACKNOWLEDGEMENTS

This work is supported by the National Key project
of Scientific and Technical Supporting Programs of
China (Grant Nos.2008BAH24B04,
2008BAH21B03, 2009BAH39B03); the National
Natural Science Foundation of China(Grant
No.61072060); the Program for New Century
Excellent Talents in University (No.NECET-08-
0738); Engineering Research Center of Information
Networks. Ministry of Education.

REFERENCES

Apache Hadoop. http://hadoop.apache.org/
J. Dean and S. Ghemawat, “MapReduce: Simplified data

processing on large clusters”, In OSDI’04:
Proceedings of the 6th Symposium on Operating
Systems Design & Implementation, pages 10–10,
2004.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung, “The Google File System”, In SOSP’03:
Proceedings of the nineteenth ACM symposium on
Operating systems principles, page 29–43, New York,
NY, YSA, 2003. ACM Press.

Tom White, “Hadoop: The Definitive Guide”, O’Reilly
Press, 2009

Feng Wang, Jie Qiu, Jie Yang. “Hadoop High Availability
through metadata Replication”, CloudDB’09,
November 2, 2009, Hong Kong, China.

Grant Mackey, Saba Sehrish, Jun Wang, “Improving
Metadata Management for Small Files in HDFS”,
IEEE International Conference on Cluster Computing
and Workshop, 2009.

Xuhui Liu, Jizhong Han, Yunqin Zhong, Chengde Han
and Xubin He, “Implementing WebGIS on Hadoop: A
Case Study of Improving Small File I/O Performance
on HDFS”, IEEE, International Conference on Cluster
Computing and Workshops, 2009

Jeffrey Shafer, Scott Rixner, and Alan L. Cox, “The
Hadoop Distributed Filesystem: Balancing Portability
and Performance”, IEEE International Sympossium on
Performane Analysis of Systems & Software
(ISPASS), 2010.

A METHOD OF ADJUSTING THE NUMBER OF REPLICA DYNAMICALLY IN HDFS

533

