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Abstract. In this paper we introduce a new way to protect software implementa-
tion of cryptographic protocols against Side Channel Attacks (SCA) using Aspect
Oriented Programming (AOP). For this purpose we have implemented the RSA
algorithm in Java and our aspects with AspectJ. As a result, we show how AOP
can help tremendously to enhance cryptographic protocols against SCA with
nearly no negative side-effects. Moreover, we illustrate a new countermeasure
against timing attacks aiming for the simple modular exponentiation technique.
Our simulation performs a timing attack against the hamming weight of the secret
key in a RSA cryptosystem. The success rate of the attack drops from 80% to 0%
with our countermeasure.

1 Introduction

In most security protocols, the device running the cryptographic primitives, interacting
with the user or with other devices is often viewed, analysed or considered as a black
box. Describing protocols [1–4], authors suppose the existence of a device or program
able to perform certain operations without leaking information to the outside world.
For instance, in [5] writing the following: “To improve the level of security, a signature
σ = Sign

U
(AU , AE,M, C,D) . . . should be considered”, the author make the hypothesis

that the key used for the calculation is not leaked, i.e. displayed on the screen, made
accessible through the network, . . . during the computations.

While most leakage can be prevented by sound implementation of such protocols,
sometimes, it remains possible to attack the running system by monitoring its behaviour
(e.g. time to compute, . . . ) or its impact on its surrounding (e.g. thermal energy or other
kind of electromagnetic field radiating from the device, . . . ). These attacks are known as
side channel attacks (SCA). Introduced in [6, 7] by Kocher, these attacks can, in some
cases, help an attacker recover sections of the cryptographic key used in the cypher of
an implemented and running cryptographic protocol.

To secure such implementation from side channel attacks, counter-measures have
been proposed [8]. However, most of them require the implementation to be altered.
This could be considered as a major drawback slowing down the adoption of such
counter-measure and thus preventing the protocols to be securely implemented against
SCA’s. In some cases, the implementation’s source code is certified, has been thor-
oughly reviewed, is not open source, is under the responsibility of another team, com-
pany, . . . All these situations could prevent a programmer to enhance the implementation
of a protocol in order to protect it against one or different type of SCA.
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In this paper, we suggest the use of a growing [9] state of the art development
technology called Aspect Oriented Programming (AOP) to implement such counter-
measures. We show how this methodology could separate the responsibility in the de-
velopment of the protocol and of the counter-measures, makesuch development more
flexible and even suggest a novel counter-measures that can be easily implemented us-
ing AOP.

In section 2 we present various counter-measures and their drawbacks. In section 3,
we introduce AOP. In section 4, we present our contribution by introducing how simply
AOP can be of used in this context, we illustrate our point with an applied example and
show the result of our experiment. We conclude in section 5.

2 Side Channel Attacks and Countermeasures

Early moderns techniques created to attack cryptographic algorithms where based on
mathematical properties of those algorithms. These attacks are best known as linear
cryptanalysis (discovered in 1992 [10]) and differential cryptanalysis (discovered in the
early 90’s [11]). Algorithm such as DES [12] and AES [13–15] where later on designed
to prevent such attacks1.

During the second half of the 90’s, a new kind of cryptanalysis appeared [6, 7, 17–
19] and is nowadays called side channel cryptanalysis. It isbased on information leaked
by the implementation of the targeted algorithm such as the execution time, the power
consumption, the electromagnetic emanations, . . .

To avoid leakage and thus to protect the implementation against such attacks, var-
ious countermeasures have been proposed such as: blinding,masking [8], hiding [8],
random / constant / adaptive idle-wait [20], . . .

Blinding [20] is the most usual countermeasure for the algorithm RSA and consists
of performing the decryption on a randomised version of the ciphertext. The randomi-
sation has, of course, to be performed in a way that can be reversed after decryption.
It has only a small performance penalty. However, as analysed in [6], using blinding
techniques is not enough to stop an attack from inferring theHamming weight of the
secret key.

Random idle-wait, constant idle-wait and adaptive idle-wait consist of a family of
countermeasure wherein a delay is introduced during the decryption process. These
techniques have the advantage of using less power since the processor can be used to a
different task while the process is waiting. Adaptive idle is an optimised version of the
idle-wait technique with performance oriented design.

More generally, to protect an algorithm against timing attacks, [21] and [22] suggest
firstly to ensure that all operations take exactly the same amount of time which should,
of course, be independent of the message to encode and from the value(s) of the key(s).
Since most countermeasures against SCA of any kind have the same purpose, i.e. to
decorrelate the leaked information from the secret information such as the message and
the secret key, some of them can work against several SCA. Forexample, [8]’s sug-
gestions (such as random insertion of dummy operations, random insertion of dummy

1 As indicated in [16] and contrary to some beliefs, differential cryptanalysis was known before
DES was designed which explains its resistance to such attacks.
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cycles, skipping clock pulses, randomly changing the clockfrequency, multiple clock
domains, . . . ) against power analysis attacks can also be used against timing attacks.

In [6], Kocher introduces timing attacks with the modular exponentiation using the
standard simple modular exponentiation algorithm [6]. In that algorithm, the number
of modular multiplications is directly correlated to the number of bits set to one in the
key. Therefore, the algorithm performs a multiplication each time it encounters a “1”.
Performing such a multiplication takes a noticeable numberof time in regard to the
alternative, which is a simple variable assignation when the algorithm encounters the
value “0”. In the case of the RSA cypher [23], since the valuesare usually at least 1024
bits long, this factor is even more noticeable. As you will see in section 4, we will
illustrate our methodology applying our countermeasure onKocher’s example.

3 About Aspects and AOP

An aspect is a logic scattered or tangled across the code. Such a logic is thus harder
to detect, maintain and understand. For instance, an aspectcould be a piece of code
which was “copied & pasted” into several function, e.g. the call to a method called
checkIntegrity() at the end of each method of an abstract data type developed with
the design by contract methodology [24] could be consideredas an aspect. While such
a code could make a lot of sense, it usually does not fit with thelogic and purpose of
the methods of the class that calls it.

Aspect-oriented programming (AOP) is a programming paradigm whose purpose is
to isolate secondary or supporting functions from the main program’s core logic. AOP
allows the programmer to externalise cross-cutting concerns, the aspect(s), and thus
clean the class’s code which afterwards only contains code regarding its core function.
Using what is called an Aspect weaver, it is thus possible to alter, dynamically or not,
the original code with external specification without manually entangle the modification
in the code itself and thus without mixing nor the logic of theclass and of the aspect
nor the programmers responsibilities for these two codes. Lots of languages have imple-
mentation of AOP such as C++, PHP, Delphi, Smalltalk, Java, .. . within the language or
as an external library. The amount of features and possibilities depend on the weaver’s
implementation.

In this paper, we will illustrate our point and the AOP model (also called Join
Point2 Model (JPM)) using AspectJ, a Java implementation of AOP. Tothe author’s best
knowledge it is the most popular and widely known general purpose Aspect weaver.

3.1 The Dynamic Join Point Model of AspectJ

3 It is made of 4 components: poincuts, advice, inter-type declaration and aspects.

2 A join point is a point of the program that an aspect could impact. It can be structural (classes,
methods, . . . ) or behavioural (call to a method, modificationof variable, . . . ).

3 This section was inspired by www.eclipse.org’s presentation of AspectJ’s model [25].

41



Pointcuts. A pointcut designate a set of join points in the program execution flow.
For instance,call(void Point.setX(int)) designate every join points in the flow
where a method having the signaturevoid Point.setX(int) is called. AspectJ al-
lows the programmer to name these pointcuts and to combine them using logical oper-
ator ”and”, ”or” and ”not”.

Advice. An advice defines the crosscutting behaviour’s code. Once the pointcuts are
defined, advices can be associated with these pointcuts using keywords such as ”be-
fore”, ”after”, ”after returning”, . . . which allows the programmer to indicate when ex-
actly he wishes the aspect to be executed. During the execution of an advice, the latter
can be made aware of its execution context by the pointcuts. AspectJ’s advice operate
essentially dynamically.

Inter-type Declarations. AspectJ’s inter-type declarations cut across classes and their
hierarchies. For instance, they allow the programmer to alter the content or even the
inheritance relationships of multiple classes. AspectJ’sinter-type declarations operate
at compile-time.

Aspects. An aspect in AOP is basically the equivalent of the classes inObject Oriented
Programming as it can own methods, fields and initialisers inaddition to the crosscut-
ting members (pointcuts, advice and inter-type declarations) that they regroup.

4 Implementing Countermeasures with AOP

“AspectJ lean modularisation of crosscutting concerns, such as error checking and han-
dling, synchronisation, context-sensitive behaviour, performance optimisations, moni-
toring and logging, debugging support, and multi-object protocols”(AspectJ’s homepage:
eclipse.org/aspectj/)

In this section we propose a novel way of using AOP that, as faras we know, has
not yet been studied (especially the use we are proposing is not considered in [25] nor
in [9]). Specifically we propose the use of AOP in the context of the implementation
of countermeasures against some side channel attacks. In this paper we outline the first
ideas that would allow to further develop this new defence technology.

In section 2, we evoked several countermeasures, namely: blinding, random / con-
stant / adaptive idle-wait, random insertion of dummy operations, random insertion of
dummy cycles, skipping clock pulses, randomly changing theclock frequency, multi-
ple clock domains, . . . Most of those countermeasures and more can be implemented
via aspects.

To blind the message, one could place a pointcut on the execution of the encryption
and decryption method4. The advice could then substitute the value of the message by
its blinded counterpart.

4 In a public key cryptosystem, one could argue the need to enhance both the encryption and
decryption process since one of the two keys is always public.
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The family of idle-wait countermeasures could be implemented with a pointcut on
the access to the object’s attribute or on the call/execution of the encryption or decryp-
tion method. The advice would be a simplesleep() call with a parameter depending
on the member of the family.

The “random insertion of dummy operations” can also be implemented with the
same pointcuts and with adequate advices containing the dummy operations in question.

The same can be said for the last countermeasures. Notice that all of these operations
do not have to be deterministic since an advice can have a probabilistic behaviour.
Moreover, the most trivial countermeasure could be to use aspects to intercept the call
to the encryption process and substitute the algorithm withanother which could produce
the same results and be time independent.

We will illustrate below such an implementation on the RSA cryptosystem with a
countermeasure that we created for the standard simple modular exponentiation tech-
nique (SSMET) [6]. As indicated, the source code contains other implementations of
the modular exponentiation algorithm. Switching from the most naive algorithm to the
one used to illustrate our point is already a countermeasuresince some others5 leak eas-
ily the value of the key while the second is faster and only leaks the hamming weight
of the secret key. We then implement a countermeasure to stopsuch that leak.

4.1 The RSA Cryptosystem

The RSA cryptosystem was first described by Ron Rivest, Adi Shamir and Lan Adle-
man in 1977 [26]. It is an algorithm for public-key cryptography [27] used for encryp-
tion and digital signatures.

Mathematical Principles. The private (e) and public (d, n) keys are generated follow-
ing equations 1 and 2 and, with the messagem, the encryption and decryption procedure
is illustrated with equation 3.

n = pq, 0 < p < q < n : n, p, q ∈ Z (1)

φ(n) = (p− 1)(q − 1), ed = 1 mod φ(n), e < φ(n) < n (2)

m ∈ Zn, c = me mod n,m = cd mod n (3)

There exist several ways to compute the modular exponentiation: the naive algo-
rithm (an =

∏

n

i=1
a), square-and-multiply algorithm [28], via the explicit Chinese

remainder theorem [29], SSMET [6], . . .

Our Simulation. After the creation of thousands of keys using ourRSAKeyGenerator

class, we simulated series of encryption and decryption on arandomly chosen message.
The encryption and decryption process uses the SSMET. Withx the key,n the mod-
ulus,w its size and considering bits from the most significant bit (MSB) to the least
significant bit (LSB), the algorithm looks like this:

5 Other techniques are implemented and available in the source code for testing purpose.
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Let s0 = 1.
For k = 0 upto w-1:

If (bit k of x) is 1then
Let Rk = (sk . y) mod n.

Else

Let Rk = sk
Let sk+1 = R2

k
mod n.

EndFor.
Return (Rw− 1).

The simulation’s full code is available online [30]. It isnot intended for real world
application. The purpose of this paper is not to present an efficient and resistant imple-
mentation of RSA nor to present an intelligent countermeasure against timing attack
for the RSA cypher. The code purpose is to demonstrate how easily AOP could be
used to implement some countermeasures without the usual difficulties and mixed re-
sponsibilities. We implemented a cypher with the intent of illustrating a timing attack.
It’s running time is dependant on key’s hamming weight on purpose. Therefore a con-
stant delay is performed after each multiplication to simulate the ability of an attacker
to measure the time with more precision than what the Java Virtual Machine offers
with its System.currentTimeMillis() method6. The code can be easily modified
to use a real world implementation of the function as we included the corresponding
less experimental code from the BigInteger library in the release source code. The key
generator can be reused but the selectede should be chosen at random7 and the default
key size should be modified from 256 bits to at least 1024, 2048bits or 4096 bits as
recommended for real world application [31].

4.2 A Timing Attack

Without considering side channel cryptanalysis, the security of RSA is based on the
difficulty to factorise large numbers. Several attacks are presented in [22]: common
modulus attack, low private exponent attack, low public exponent, Hastad’s broadcast
attack,. . . However, these attacks are mostly effective when the algorithm is misused.

As explained in section 2, in the SSMET, since a multiplication is performed only
when the algorithm encounter a bit set to “1” in the binary representation of the encryp-
tion or decryption key, the time it takes to perform its task is directly proportional to
the key’s hamming weight. Thus, by measuring that time, the attacker obtains a leaked
information. Such an information can drastically increasethe speed of an attack against
the scheme since, for instance, only the keys with such a hamming weight would have
to be tested in a brute force attack. Therefore, if the key size is 1024 bits and has a ham-
ming weight of 1023, instead of having roughly21024 possible keys to try, the attacker
only has to try

(

1024

1023

)

= 1024!

1023!1!
= 1024 keys.

This attack’s success rate is inversely proportional to thedesired precision of the

6 Which seems a fairly reasonable hypothesis.
7 We currently start searching for possible values fore from a probable random prime of
(key size)/2 bits which speeds up the process but is not mandatory and thusdiscard poten-
tial values fore.
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hamming weight’s approximation and proportional to the attackers measuring capabil-
ities (simulated here by the magnitude of the induced delay in the multiplication), e.g.
the success rate will be lower if the delay is shorter, the keysize is longer and if the
approximation needs to be very precise8. More clever attacks would perform multiple
decryption using potentially different messages and try toguess the hamming weight
using advanced statistical or machine learning techniqueswhereas, here, no technique
is used, only one measurement on a single message.

4.3 A Countermeasure

As explained in section 2, our countermeasure will simply ensure that the encryption or
decryption process always takes a fixed and key independent amount of time since our
purpose, in this example, is to protect the secret key.

Another approach could be to add a random delay to each call tothe exponentiation
function. However, while this is out of the scope of this paper, we are afraid that the
latest, a noise, could easily be defeated by averring the time taken to decrypt the same
message with the same key and thus we did not use it to illustrate our point.

Our Aspect. The easiest way to implement such a countermeasure is to modify the
source code directly in order to perform a multiplication whether the encountered key
bit’s value is “1” or not. As previously explained, this leads to mixing the responsibility
of the programmers responsible for the implementation of a correct and sound cypher
and of the programmers responsible of enhancing that implementation against contex-
tual side channel attacks. Moreover, this leads to a more complicated code and thus the
reviewing of such a code would also be more complicated. Furthermore, if a reviewing
committee has declared the code as “correct”, no more alteration could be allowed since
the whole code would have to be reevaluated.

To escape such a fate, we will use AOP and design an aspect thatcould be reviewed
and evaluated separately from the original source code. Thedownfall of this technique
would be to trust the aspect weaver in addition to the previous trust already given to the
Java environment.

Our salvation will come from a simple aspect. It will executethe computations of
an encryption process on the same message but with the binarycomplement,e, of the
secret keye then proceeds with the requested encryption. Thus, if the Hamming weight
(HW) of the keye is x (HW (e) = x) and the key is stored withw bits, instead of
performingx multiplication during the encryption process, we will always performw

multiplication (sinceHW (e) = w− x andw− x+ x = w). This aspect implements a
new kind of countermeasure close to the idle family, but different from the definition of
constant, random or adaptive idle. Indeed, firstly the computer is never really idle and
secondly the execution time is constant relatively to the system parameters, i.e. the size
of the potential keys. It corresponds to maxTime, the maximum amount of time that the
modular exponentiation function could take for any key, i.e. the required time is the key
is made solely of 1’s.

8 All these parameters are taken into account in our simulation and can be modified at will.
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public aspect PowerComplement {

long around(long n, long e, long m) :

(execution(* RSA.decrypt(..))) &&

args(n,e,m) {

RSA.powerModHamming(n,RSA.getMaxValue().subtract(e),m);

return proceed(n, e, m);

}

}

The aspectPowerComplement is made of(1) the pointcutslong around(long

n, long e, long m), which substitutes any execution of the methoddecrypt of
the classRSA and with three parameters(n, e,m) with

If one wishes to implement a constant idle countermeasure, as described in section
2, after defining a constantt > maxTime, replacing the body of the previous aspect by
the following should be enough:

long start = System.currentTimeMillis();

long res = RSA.powerModHamming(n,e,m);

long stop = System.currentTimeMillis();

Thread.sleep(t-(start-stop));

return res;

4.4 Results

The experimentation’s sets of keys are made respectively of20, 100, 1 000, 10 000
and 100 000 distinct keys generated by our key generator. Foreach launch, a random
messagem ∈ Zn is chosen. The launch proceeds by encrypting and decryptingthat
message with all the keys in the set. Measurements are taken before and after the de-
ciphering and are saved. Using those measurement, the side-channel attack is launched
and a record is kept of each correct guess of the key’s hammingweight. The procedure
is exactly the same during the experimentation with the countermeasure. The success
rate of the attack increases if the delay introduced for eachmultiplication is increase,
which simulates the ability to measure that particular moment or to suppress the influ-
ence of the rest of the code with a greater precision. To breakthe suspense, without
countermeasure and independently of the chosen message or set of keys, the success
rate of the attack for keys of 256 bits were always between 80%and 84%. With the
countermeasure, the success rate of the attack is0% whatever the delay, the message,
the precision or the key size were. These sets of keys, measurements and statistics are
available at [30].

5 Conclusions

In this paper we suggested a new domain of applications for aspect oriented program-
ming, naming the flexible implementation of countermeasureagainst side-channel at-
tacks. We introduced the notions of aspect and side channel cryptography before pre-
senting the application and illustrated the latest with an experiment.
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The first result is the obvious easiness to create and implement countermeasure
against side channel attacks (SCA) without altering the original code of the cryptosys-
tem thanks to aspects. Indeed, all of the previously mentioned drawbacks disappeared
with, however, the cost of trusting the aspect weaver. This methodology is thus well
indicated in order to enhance existing cryptographic code without the need to edit the
latest. This leaves us with a brand new field of experimentation. For instance, we intend
to explore the domain of Smart Card and the possibility to reinforce existing crypto-
graphic code using aspects where it is needed and possible.

The second is the perfect effectiveness of the new proposed countermeasure against
timing attacks for the simulated RSA cryptosystem.

We wish to stress the following point: In order to implement countermeasure against
SCA’s, it is obvious that the programmer has to take the context in consideration before
choosing his language and then the most adequate aspect weaver corresponding to that
language. The choice we made to illustrate our point via an experiment using Java and
AspectJ was based, as explained on the weaver’s capacities to suit our needs for this
paper. It was in no case a suggestion to use that language and weaver in every context.
Also, one has to keep in mind that implementing a countermeasure to protect against
a certain kind of SCA can sometimes introduce a leak of information that could be
captured by an other kind of SCA [32].
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