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Abstract. Inthis paper we introduce a new way to protect software implementa-
tion of cryptographic protocols against Side Channel Attacks (SCA) using Aspect
Oriented Programming (AOP). For this purpose we have implemented the RSA
algorithm in Java and our aspects with AspectJ. As a result, we show how AOP
can help tremendously to enhance cryptographic protocols against SCA with
nearly no negative side-effects. Moreover, we illustrate a new countermeasure
against timing attacks aiming for the simple modular exponentiation technique.
Our simulation performs a timing attack against the hamming weight of the secret
key in a RSA cryptosystem. The success rate of the attack drops from 80% to 0%
with our countermeasure.

1 Introduction

In most security protocols, the device running the cryptographic primitives, interacting
with the user or with other devices is often viewed, analysed or considered as a black
box. Describing protocols [1-4], authors suppose the existence of a device or program
able to perform certain operations without leaking information to the outside world.
For instance, in [5] writing the following: To improve the level of security, a signature

o = Sign,(Av, Ag, M, C, D) ...should be considerédthe author make the hypothesis

that the key used for the calculation is not leaked, i.e. displayed on the screen, made
accessible through the network, ... during the computations.

While most leakage can be prevented by sound implementation of such protocols,
sometimes, it remains possible to attack the running system by monitoring its behaviour
(e.g. time to compute, . ..) or its impact on its surrounding (e.g. thermal energy or other
kind of electromagnetic field radiating from the device, ...). These attacks are known as
side channel attacks (SCA). Introduced in [6, 7] by Kocher, these attacks can, in some
cases, help an attacker recover sections of the cryptographic key used in the cypher of
an implemented and running cryptographic protocol.

To secure such implementation from side channel attacks, counter-measures have
been proposed [8]. However, most of them require the implementation to be altered.
This could be considered as a major drawback slowing down the adoption of such
counter-measure and thus preventing the protocols to be securely implemented against
SCAs. In some cases, the implementation’s source code is certified, has been thor-
oughly reviewed, is not open source, is under the responsibility of another team, com-
pany, ... All these situations could prevent a programmer to enhance the implementation
of a protocol in order to protect it against one or different type of SCA.
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In this paper, we suggest the use of a growing [9] state of thelevelopment
technology called Aspect Oriented Programming (AOP) tolém@nt such counter-
measures. We show how this methodology could separate spensibility in the de-
velopment of the protocol and of the counter-measures, reagle development more
flexible and even suggest a novel counter-measures thatocaadidy implemented us-
ing AOP.

In section 2 we present various counter-measures and ttasibdcks. In section 3,
we introduce AOP. In section 4, we present our contributipmtroducing how simply
AOP can be of used in this context, we illustrate our poinhwih applied example and
show the result of our experiment. We conclude in section 5.

2 Side Channd Attacks and Counter measures

Early moderns techniques created to attack cryptograpipicithms where based on
mathematical properties of those algorithms. These atack best known as linear
cryptanalysis (discovered in 1992 [10]) and differentigiatanalysis (discovered in the
early 90’s [11]). Algorithm such as DES [12] and AES [13-15]ewe later on designed
to prevent such attacks

During the second half of the 90’s, a new kind of cryptanalygpeared [6, 7, 17—+
19] and is nowadays called side channel cryptanalysisbis&d on information leaked
by the implementation of the targeted algorithm such as xeewdion time, the power
consumption, the electromagnetic emanations, ...

To avoid leakage and thus to protect the implementatiomagaich attacks, var-
ious countermeasures have been proposed such as: blinaasgging [8], hiding [8],
random / constant / adaptive idle-wait [20], . ..

Blinding [20] is the most usual countermeasure for the allyor RSA and consists
of performing the decryption on a randomised version of ipbartext. The randomi-
sation has, of course, to be performed in a way that can besevafter decryption.
It has only a small performance penalty. However, as andlirs¢6], using blinding
techniques is not enough to stop an attack from inferring-tamming weight of the
secret key.

Random idle-wait, constant idle-wait and adaptive idlétwansist of a family of
countermeasure wherein a delay is introduced during theygon process. These
techniques have the advantage of using less power sincedbegsor can be used to a
different task while the process is waiting. Adaptive idle@n optimised version of the
idle-wait technique with performance oriented design.

More generally, to protect an algorithm against timingekta [21] and [22] suggest
firstly to ensure that all operations take exactly the sameuartnof time which should,
of course, be independent of the message to encode and feoraltie(s) of the key(s).
Since most countermeasures against SCA of any kind haveathe purpose, i.e. to
decorrelate the leaked information from the secret infdionesuch as the message and
the secret key, some of them can work against several SCAeXample, [8]'s sug-
gestions (such as random insertion of dummy operationdprarinsertion of dummy

1 As indicated in [16] and contrary to some beliefs, differ@intryptanalysis was known before
DES was designed which explains its resistance to suctkattac
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cycles, skipping clock pulses, randomly changing the cloeguency, multiple clock
domains, ...) against power analysis attacks can also loeagsénst timing attacks.

In [6], Kocher introduces timing attacks with the modulaperentiation using the
standard simple modular exponentiation algorithm [6].Hattalgorithm, the number
of modular multiplications is directly correlated to themipber of bits set to one in the
key. Therefore, the algorithm performs a multiplicatiorcleéime it encounters a “1”.
Performing such a multiplication takes a noticeable nundfgime in regard to the
alternative, which is a simple variable assignation whenalgorithm encounters the
value “0". In the case of the RSA cypher [23], since the valresusually at least 1024
bits long, this factor is even more noticeable. As you wik g section 4, we will
illustrate our methodology applying our countermeasuracher’'s example.

3 About Aspectsand AOP

An aspect is a logic scattered or tangled across the codé. Slagic is thus harder
to detect, maintain and understand. For instance, an aspaltt be a piece of code
which was “copied & pasted” into several function, e.g. tladl tb a method called
checkl ntegrity() atthe end of each method of an abstract data type developied wi
the design by contract methodology [24] could be considassan aspect. While such
a code could make a lot of sense, it usually does not fit witHabie and purpose of
the methods of the class that calls it.

Aspect-oriented programming (AOP) is a programming paradivhose purpose is
to isolate secondary or supporting functions from the maggmm’s core logic. AOP
allows the programmer to externalise cross-cutting cargehe aspect(s), and thus
clean the class’s code which afterwards only contains cegarding its core function.
Using what is called an Aspect weaver, it is thus possibldter,alynamically or not,
the original code with external specification without mahuentangle the modification
in the code itself and thus without mixing nor the logic of tlass and of the aspect
nor the programmers responsibilities for these two codets af languages have imple-
mentation of AOP such as C++, PHP, Delphi, Smalltalk, Javayithin the language or
as an external library. The amount of features and pods#sililepend on the weaver’s
implementation.

In this paper, we will illustrate our point and the AOP modalsf called Join
Poinf Model (JPM)) using AspectJ, a Java implementation of AORh&author’s best
knowledge it is the most popular and widely known generappae Aspect weaver.

3.1 TheDynamic Join Point Model of AspectJ

3 It is made of 4 components: poincuts, advice, inter-typeadtation and aspects.

2 A join point is a point of the program that an aspect could iotpt can be structural (classes,
methods, ...) or behavioural (call to a method, modificatibvariable, . ..).
3 This section was inspired by www.eclipse.org's presemitatif AspectJ’'s model [25].
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Pointcuts. A pointcut designate a set of join points in the program etienuflow.
For instancegal | (voi d Poi nt. set X(i nt)) designate every join points in the flow
where a method having the signatwrg d Poi nt . set X(i nt) is called. AspectJ al-
lows the programmer to name these pointcuts and to combéme tising logical oper-
ator "and”, "or” and "not”.

Advice. An advice defines the crosscutting behaviour’s code. One@dintcuts are
defined, advices can be associated with these pointcutg keywords such as "be-
fore”, "after”, "after returning”, ...which allows the pgyzammer to indicate when ex-
actly he wishes the aspect to be executed. During the ex@coftian advice, the latter
can be made aware of its execution context by the pointcigseétJ’s advice operate
essentially dynamically.

I nter-type Declar ations. AspectJ’s inter-type declarations cut across classeshaid t
hierarchies. For instance, they allow the programmer tr dfte content or even the
inheritance relationships of multiple classes. Aspedni&sr-type declarations operate
at compile-time.

Aspects. An aspect in AOP is basically the equivalent of the class€iject Oriented
Programming as it can own methods, fields and initialiseesdiition to the crosscut-
ting members (pointcuts, advice and inter-type declanaithat they regroup.

4 Implementing Counter measures with AOP

“Aspectd lean modularisation of crosscutting concernshsas error checking and han-
dling, synchronisation, context-sensitive behaviourfgrenance optimisations, moni-
toring and logging, debugging support, and multi-objedtprols’(Aspect)’'s homepage:
eclipse.org/aspectj/)

In this section we propose a novel way of using AOP that, asgare know, has
not yet been studied (especially the use we are proposing isomsidered in [25] nor
in [9]). Specifically we propose the use of AOP in the conteéxthe implementation
of countermeasures against some side channel attackss jeger we outline the first
ideas that would allow to further develop this new defencanelogy.

In section 2, we evoked several countermeasures, naméalidiray, random / con-
stant / adaptive idle-wait, random insertion of dummy opere, random insertion of
dummy cycles, skipping clock pulses, randomly changingctbek frequency, multi-
ple clock domains, ... Most of those countermeasures an@ e be implemented
via aspects.

To blind the message, one could place a pointcut on the @reaiftthe encryption

and decryption methddThe advice could then substitute the value of the message by

its blinded counterpart.

“41n a public key cryptosystem, one could argue the need toreehboth the encryption and
decryption process since one of the two keys is always public
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The family of idle-wait countermeasures could be impleradntith a pointcut on
the access to the object’s attribute or on the call/exeowtfdhe encryption or decryp-
tion method. The advice would be a simglesep() call with a parameter depending
on the member of the family.

The “random insertion of dummy operations” can also be imgeted with the
same pointcuts and with adequate advices containing thexwoperations in question.

The same can be said for the last countermeasures. Notiadltbithese operations
do not have to be deterministic since an advice can have abilatic behaviour.
Moreover, the most trivial countermeasure could be to upeds to intercept the call
to the encryption process and substitute the algorithmavitither which could produce
the same results and be time independent.

We will illustrate below such an implementation on the RSgptosystem with a
countermeasure that we created for the standard simple laragkponentiation tech-
nigue (SSMET) [6]. As indicated, the source code contaihemimplementations of
the modular exponentiation algorithm. Switching from thestmaive algorithm to the
one used to illustrate our point is already a countermeasnce some othetdeak eas-
ily the value of the key while the second.is faster and onlkdehe hamming weight
of the secret key. We then implement a countermeasure teatdpthat leak.

4.1 TheRSA Cryptosystem

The RSA cryptosystem was first described by Ron Rivest, Adn8hand Lan Adle-
man in 1977 [26]. It is an algorithm for public-key cryptogrey [27] used for encryp-
tion and digital signatures.

Mathematical Principles. The private ¢) and public ¢, n) keys are generated follow-
ing equations 1 and 2 and, with the messag¢he encryption and decryption procedure
is illustrated with equation 3.

n=pq, 0<p<g<n:npq€Z (1)
o(n)=(p—1)(g—1), ed=1mod ¢(n), e < p(n) <n )
m € Zn,c=m®mod n,m = ¢ mod n 3)

There exist several ways to compute the modular expon&mtighe naive algo-
rithm (@" = [}, a), square-and-multiply algorithm [28], via the explicit i@ase
remainder theorem [29], SSMET [6], ...

Our Simulation. After the creation of thousands of keys using BBAKey Gener at or
class, we simulated series of encryption and decryptionran@domly chosen message.
The encryption and decryption process uses the SSMET. Witte key,n the mod-
ulus, w its size and considering bits from the most significant biS@) to the least
significant bit (LSB), the algorithm looks like this:

® Other techniques are implemented and available in the smarge for testing purpose.
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Let sg = 1.
For k=0upt o w-1:
I f (bitk of x)is 1t hen
Let Ry =(sk.Yy) modn.

El se
Let Rp = sk
Let sp+1 = Ri modn.
EndFor .

Return (Ry—1).
The simulation’s full code is available online [30]. It i®t intended for real world
application. The purpose of this paper is not to presentféciexft and resistant imple-
mentation of RSA nor to present an intelligent countermezaagainst timing attack
for the RSA cypher. The code purpose is to demonstrate hoily €8P could be
used to implement some countermeasures without the udtiautfies and mixed re-
sponsibilities. We implemented a cypher with the intentlakirating a timing attack.
It's running time is dependant on key’s hamming weight orpese. Therefore a con-
stant delay is performed after each multiplication to seeithe ability of an attacker
to measure the time with more precision than what the JavaaliMachine offers
with its Syst em current Ti meM | | i s() method. The code can be easily modified
to use a real world implementation of the function-as we idetlithe corresponding
less experimental code from the Biginteger library in tHease source code. The key
generator can be reused but the seleetsldould be chosen at randérind the default
key size should be modified from 256 bits to at least 1024, 260#8or 4096 bits as
recommended for real world application [31].

4.2 A Timing Attack

Without considering side channel cryptanalysis, the sgcof RSA is based on the
difficulty to factorise large numbers. Several attacks aesented in [22]: common
modulus attack, low private exponent attack, low publicangnt, Hastad’s broadcast
attack,. . . However, these attacks are mostly effectivavthe algorithm is misused.

As explained in section 2, in the SSMET, since a multiplwatis performed only
when the algorithm encounter a bit set to “1” in the binaryesentation of the encryp-
tion or decryption key, the time it takes to perform its tasldirectly proportional to
the key’s hamming weight. Thus, by measuring that time, ttecker obtains a leaked
information. Such an information can drastically incredmespeed of an attack against
the scheme since, for instance, only the keys with such a liagnweight would have
to be tested in a brute force attack. Therefore, if the keyisiA024 bits and has a ham-
ming weight of 1023, instead of having rougif?* possible keys to try, the attacker
only has to try(joas) = Toazh. = 1024 keys.

1023 1023!1!
This attack’s success rate is inversely proportional todsred precision of the

& Which seems a fairly reasonable hypothesis.

" We currently start searching for possible values dofrom a probable random prime of
(key sizg /2 bits which speeds up the process but is not mandatory anditeeard poten-
tial values fore.
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hamming weight’s approximation and proportional to thaekers measuring capabil-
ities (simulated here by the magnitude of the induced delaiié multiplication), e.g.
the success rate will be lower if the delay is shorter, thedieg is longer and if the
approximation needs to be very preéisklore clever attacks would perform multiple
decryption using potentially different messages and trguess the hamming weight
using advanced statistical or machine learning technigidneseas, here, no technique
is used, only one measurement on a single message.

4.3 A Countermeasure

As explained in section 2, our countermeasure will simplsuea that the encryption or
decryption process always takes a fixed and key independenira of time since our
purpose, in this example, is to protect the secret key.

Another approach could be to add a random delay to each daktexponentiation
function. However, while this is out of the scope of this papee are afraid that the
latest, a noise, could easily be defeated by averring the taken to decrypt the same
message with the same key and thus we did not use it to iltestta point.

Our Aspect. The easiest way to implement such a countermeasure is toyrtbodi
source code directly in order to perform a multiplicationedtier the encountered key
bit's value is “1” or not. As previously explained, this lesith mixing the responsibility
of the programmers responsible for the implementation afreect and sound cypher
and of the programmers responsible of enhancing that imgrdmtion against contex-
tual side channel attacks. Moreover, this leads to a morgticated code and thus the
reviewing of such a code would also be more complicated hieantore, if a reviewing
committee has declared the code as “correct”, no more &tiareould be allowed since
the whole code would have to be reevaluated.

To escape such a fate, we will use AOP and design an aspecbtlidtbe reviewed
and evaluated separately from the original source codeddhafall of this technique
would be to trust the aspect weaver in addition to the presdnist already given to the
Java environment.

Our salvation will come from a simple aspect. It will exectite computations of
an encryption process on the same message but with the lmioanglementg, of the
secret key then proceeds with the requested encryption. Thus, if tharkiag weight
(HW) of the keye is © (HW (e) = z) and the key is stored withy bits, instead of
performingz multiplication during the encryption process, we will al@ggperformw
multiplication (sinceH W (€) = w — z andw — x + x = w). This aspect implements a
new kind of countermeasure close to the idle family, buedéht from the definition of
constant, random or adaptive idle. Indeed, firstly the caeds never really idle and
secondly the execution time is constant relatively to tretesy parameters, i.e. the size
of the potential keys. It corresponds to maxTime, the maximamount of time that the
modular exponentiation function could take for any key,the required time is the key
is made solely of 1’s.

8 All these parameters are taken into account in our simulatial can be modified at will.
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publ i c aspect Power Conpl enent {
long around(long n, long e, long M
(execution(* RSA decrypt(..))) &&
args(n,e,m {
RSA. power ModHanmi ng( n, RSA. get MaxVal ue() . subtract(e), n;
return proceed(n, e, m;
}
}
The aspecPower Conpl ement is made of(1) the pointcuts ong ar ound( | ong
n, long e, |ong n, which substitutes any execution of the methiaar ypt of
the clasRSA and with three parametefs, e, m) with
If one wishes to implement a constant idle countermeasaréesacribed in section
2, after defining a constant> maxTime, replacing the body of the previous aspect by
the following should be enough:

long start = SystemcurrentTineM [ 1is();
| ong res = RSA. power ModHanm ng(n, e, m;
long stop = SystemcurrentTineM | 1is();

Thr ead. sl eep(t-(start-stop));
return res;

4.4 Results

The experimentation’s sets of keys are made respectiveR0pfL00, 1 000, 10 000
and 100 000 distinct keys generated by our key generatore&ar launch, a random
messagen € Z, is chosen. The launch proceeds by encrypting and decryfitatg
message with all the keys in the set. Measurements are taferetand after the de-
ciphering and are saved. Using those measurement, thelsétatel attack is launched
and a record is kept of each correct guess of the key’s hanweight. The procedure
is exactly the same during the experimentation with the terameasure. The success
rate of the attack increases if the delay introduced for @agltiplication is increase,
which simulates the ability to measure that particular moinee to suppress the influ-
ence of the rest of the code with a greater precision. To btlealsuspense, without
countermeasure and independently of the chosen messageafrkeys, the success
rate of the attack for keys of 256 bits were always between 88%84%. With the
countermeasure, the success rate of the atta@k ishatever the delay, the message,
the precision or the key size were. These sets of keys, measuits and statistics are
available at [30].

5 Conclusions

In this paper we suggested a new domain of applications feedoriented program-
ming, naming the flexible implementation of countermeasg&nst side-channel at-
tacks. We introduced the notions of aspect and side chanyyiography before pre-
senting the application and illustrated the latest with greeiment.
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The first result is the obvious easiness to create and implen@intermeasure
against side channel attacks (SCA) without altering thgiwaill code of the cryptosys-
tem thanks to aspects. Indeed, all of the previously meatiarawbacks disappeared
with, however, the cost of trusting the aspect weaver. Thethodology is thus well
indicated in order to enhance existing cryptographic cotlkeout the need to edit the
latest. This leaves us with a brand new field of experimemiator instance, we intend
to explore the domain of Smart Card and the possibility tofeete existing crypto-
graphic code using aspects where it is needed and possible.

The second is the perfect effectiveness of the new propasetermeasure against
timing attacks for the simulated RSA cryptosystem.

We wish to stress the following point: In order to implememiintermeasure against
SCAss, it is obvious that the programmer has to take the ctbirteconsideration before
choosing his language and then the most adequate aspeaneearesponding to that
language. The choice we made to illustrate our point via @eement using Java and
AspectJ was based, as explained on the weaver’s capaoitgsttour needs for this
paper. It was in no case a suggestion to use that languageeawdmin every context.
Also, one has to keep in mind that implementing a counteraoreas protect against
a certain kind of SCA can sometimes introduce a leak of in&diom that could be
captured by an other kind of SCA [32].
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