
TO CONTAIN COST, LET'S NOT OVER BUILD
OUR SOFTWARE SOLUTIONS

Jie Liu
Department of Computer Science, Western Oregon University, Monmouth, OR, U.S.A.

Keywords: Project management, Software engineering, Cost estimations, System requirements, Quality control.

Abstract: In the software industry, many deployed projects suffered one or more of the following: they had fewer
features than planned, they were late on their deployment, or they were over budget. We participated in a
project that suffered all of these. More significantly, it overran the budget by at least 400%.
Looking back, many wrong decisions were made, such as misjudged users’ expectations and their
environments, subscribed over complicated backend architecture, and selected a different programming
language that was unable to reuse existing code, etc. In this paper, serving as a case study, we argue that an
effective approach to contain the cost of a software project, especially internal software, is to build a system
that answer the core requirements with room for improvement, not to build the best system in the market.

1 INTRODUCTION

Many software projects need to cross the bridge of
"requiring additional funding to continue." Most of
the times, the added costs were justified assuming
the software under developed is what the clients
want and need. However, this assumption may not
always be true for many reasons. Rather than
discussing why this assumption may not be true, this
paper uses a multi-million dollar project as a case
study to identify a few areas where the difference
between what the clients really need and what we
are building may be the main reason for the
increased cost.

We participated in a project to replace an
existing one that was still in use and functioning.
However, this is not a typical "next generation"
project. The new software has more professional
GUI and is capable of supporting, estimated, 100
times more users than the one it replaced. The
problems are (1) the users are all internal (so more
professional GUI is nice but is not necessary to
increase the productivity) and (2) the number of
users remains roughly the same (so the added
capacity is not necessary and can never be utilized).

A proposal of building a replacing system with a
few added features over the functioning system was
only prices at $120,000 and was reject for business
reasons. The initial budget of the replacement
software project was budgeted at $350,000. The

final product was built with an estimated cost of
$2,000,000. Clearly, the cost of the project was
unnecessarily high.

In this paper, we will discuss our analysis by
sharing some details of the project and listing
several major factors and decisions that, we believe,
had contributed to the project’s high price tag. We
surely hope that our readers can benefit from the
lessons we have learned. We are in a unique position
to offer this analysis because we actively
participated in the development of both the replacing
and the replaced systems.

2 THE PROJECT HISTORY

Microsoft Excel is a common tool used by many to
perform calculations involving a lot of numbers.
However, it lacks the capability of tracing and
debugging. When numbers do not reconcile or when
accuracy is questioned, it is very hard to isolate the
problems or to verify the results.

This happened to our client. After a few
incidents, our client realized that they needed a
software solution to help them collecting necessary
inputs and propagating them to all the calculations,
automatically performing complex calculations,
providing certain level of tracking ability, and
generating a list of predefine reports. The system
was an internal one with only about 200

269Liu J..
TO CONTAIN COST, LET’S NOT OVER BUILD OUR SOFTWARE SOLUTIONS.
DOI: 10.5220/0003562102690272
In Proceedings of the 6th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2011), pages 269-272
ISBN: 978-989-8425-57-7
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

geographically distributed users to support highly
cyclical activities every three months. Purchasing
such a tool is not possible because most calculations
are proprietary and may need to be calibrated on the
fly. We were fortunately selected to be the solution
provided.

After several discussions with the clients, it
became obvious that they needed a web-based
system. We then built the first version, functional
but not flashy. The entire project took less than four
person-months with a total cost of $25,000. The
development process was a classical evolutionary
prototyping one. The system went into production
on 1/3/2000, the first working day of the Y2K, and
survived the first forecasting cycle without any
major glitch and users like it.

In the three years after our initial deployment,
several enhancements were made including a
stronger reporting component and performance
improvement. Gradually, the software became one
of the essential tools of the division’s operations,
and many decisions were made based on its reports.

Because the original developers were the only
ones knew the system well enough to provide
effective support and enhancement, attempts were
made to train others to provide the necessary support
and to add new features. The attempts failed because
identifying engineers with the similar skill set as our
original developers was difficult. This worried the
upper level managers. Consequently, the lack of the
ability of effective supporting the tool was identified
as a business risk. Finally, at the juncture of adding a
few new features, managers decided to enlist their
company's own IT team to build a replacement.

We submitted a proposal and scoped the project
at 12 person-months. Our proposal was rejected
because it would not resolve the initially identified
business risk. However, we were asked to join the
new project team mostly due to end users strong
request. The final product, with many requested new
features moved to later releases, was deployed with
a procurement costs exceeded one million dollars
under a new PM and took close to two years to
complete. If we add the costs of internal personnel
and other overhead, the unaudited estimation of
overall cost easily exceeded two millions US dollars.

The rest of the paper lists factors, contributed to
the high cost of the project and other lessons we
have learned through the execution of this project.

3 PROJECT RETROSPECTIVES

Since we are not be able to conduct any scientific

experiments by repeating the process with one or
few changes, we have to claim that the following are
only our opinions and may or may not reflect the
opinions of the project managers, our client, project
sponsors, or other project team members.

3.1 Lesson 1: Not Every System Needs
to be Enterprise Level Software

Our PM had a solid back ground in building
enterprise level software for large companies. It
should not be a surprise that he announced during
our first project meeting that we would be building
an enterprise level software solution. The only issue
was that the system only had couple of hundreds
internal users, and every one would access the
application using Microsoft’s Internet Explorer. We
believe that this should be capitalized as an
opportunity to cut development costs. In addition,
the system was not a mission critical one.

This “enterprise level software” mentality
greatly contributed to the decisions followed,
especially the using of extremely sophisticated
backend infrastructure. Developing software on the
complex platform increased the complexity of the
software, resulting in higher costs in design,
development, testing, and support.

3.2 Lesson 2: Do Not Add Features
that Will Never be Used

With only a couple hundreds of internal users and no
addition users in sight, a piece of software should
not be built as if it would support hundred
concurrent external users accessing the software
under diverse operating environments, which is what
many software engineers had in mind regarding
enterprise level software systems.

Because the users would all be internal, we had
several advantages. First, they are more forgiven. In
our case, this translates to that we had a great deal of
freedom to plan our down time, and our GUI budget
could take a little break. Second, users’ operating
environment was prescribed by our IT department
and was extremely uniform -- every user access to
our system through IE 6.0. Third, the users were
readily available to define the correct behaviour of
the system, which calls for development processes
that could benefit from the opportunity.

Still, despite many hours of meeting and
discussions, the architecture team selected Java as
the programming language for our project,
ORACLE as the DBMS, and WebLogic as the
application server. The main reason given for
selecting Java was that it was the best language

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

270

supporting platform independence. In our situation,
this was a feature not in the requirement and would
never be utilized because we require our users to use
IE 6.0 or later. Clearly, this decision was heavily
influenced by the PM's “enterprise level software”
mentality without closely examining the real needs.

3.3 Lesson 3: Development Tools
Matter

We believe that the selection of Java increased the
duration of our development cycle in several ways.
First, none of the business logic related code from
the previous version, which was in C#, could be
reused without converting into a different
programming language; doing so required a much
deeper understanding for the algorithms and resulted
in expanses on a large number of avoidable tests.
Second, many of the component that came with
Visual Studio .NET 2.0, such as the data grid, had to
be re-implemented using Java. Third, all the above
not only extended the development time, but also
increased the time necessary for testing and
debugging. The decision of not using component
based software development approach future
contributed to the project's cost (Microsoft, 2002).

Heard our questioning about the PM and
architecture team, our clients questioned IT's
decisions about using Java and complex backend
infrastructure. Interestingly, the end users were told
to let the IT team to make IT related decisions. It
seems to us that only internal IT team would use this
line of reasoning. Let's say we were building a
house, would the decision on what grade of lumbers
to use be a decision solely made by the builder?

We are not here to promote one stack over
another. We have participated successful projects
where Java were used. What we want to emphasize
is that programming language selection can affect
the backend infrastructure and programming tools.
As a result, this decision will affect the final project
cost and is not as simple as just a "preference issue."

3.4 Cheaper Rate ≠ Lower Overall
Cost

The backend infrastructure decisions were made
without considering existing engineers' skill set. The
next logic solution was to outsource. The company
procurement division forwarded two software
companies: Company X, a CMMI level three
certified, and Company Y that was not certified and
was now to us. Our PM selected the Company Y
because its initial quote was much lower than
Company X. Most importantly, Company Y

accepted most of our conditions. One of them stated
that we would contract a third company to perform
quality control at all levels, including conducting
some unit tests. The interesting observations were
(1) if we did not trust Company Y to generate solid
code, hence the necessity of third party quality
control, why would we hire it, and (2) if we were to
outsource our development, why not select a
programming language already proven to be suitable
by the previous version of the system?

3.4.1 Quality Control Should be Part of
Software Development

It is clear now that this approach of separating
software development with quality control did not
work well, especially in terms of costs. The reasons
are simple. First, high quality software hardly ever
results from testing.

Second, the QA company and the software
vendor have very different agendas. The QA
company wants to conduct more tests, finding more
defects (not necessary significant), and has an
overall goal of spending more time testing the
software so it could realize more revenue. On the
other hand, the software vendor was constantly
bombarded with defects not necessarily significant.
So, the two companies spent a lot of time in
meetings discussing and reclassifying defects. At the
same time, our client is paying parties on their hours.

Third, the QA company engineers, as superior as
they were, did not have a good understand regarding
the end users’ needs and preference, nor did they
understand the code provided by the software
engineers. So, they cannot create elegant test cases.
As a result, they can only come up with some simple
tests and did not have the ability to interpret the
testing results without the help of end users or
software engineers. This hindered the effectiveness
of their tests and generated a great deal of extra
work to both end users and software engineers
resulting in increased costs in several areas.

At the end, the cost for QA costs counted for
about one-third of the total procurement expenses,
partially because the QA company is located in
North America and commanded a higher rate. Did
the QA company positively contribute to the quality
of the final system? I believe it did. However, we
recommend project managers search for alternatives
before commit to this approach, especially when the
system specifications are not detailed enough.

The bottom line is that if you outsource, then
select a company you can trust that will do a good
job, even it may cost you more hourly.

TO CONTAIN COST, LET'S NOT OVER BUILD OUR SOFTWARE SOLUTIONS

271

3.4.2 Cannot Just Follow Some High Level
Specifications to Build Software

We all know the importance of SRS (Software
Requirement Specifications). Generally, the bigger a
system is, the more difficult to produce a SRS that is
complete and accurate (Laird, L. and Brennan, C.
2006)

Company Y sent its PM produced the SRS by
combining several initial documents such as RFP,
studying the existing system, and interviewing end
users. Clearly, the SRS only collected key use cases.
This resulted in a great deal of communication
efforts to fill in the details for the developers.
Initially, we relied on emails and weekly telephone
meetings. However, due to time zone difference,
often some simple questions would take more than a
working day to be answered.

The lesson learned here is that we cannot expect
a software vendor to build a piece of software
through just a high level SRS. A very detailed SRS
is essential when project needs to outsource.
Without it, any quote on cost estimation is likely a
much lower figure than the final one.

3.4.3 Leadership can be Very Important

Soon after the budget increased close to a million
dollars, the upper management replaced our PM.
The new PM made many changes to quickly move
the project forward. The most important change was
that she listened to her engineers’ and trusted them
in her decisions. She also was willing to work with
the end users to answer their concerns truthfully.

The system was eventually successfully deployed
with fewer features than what was originally
requested, six months late, and cost way more than
initially budgeted. The clients commented that they
would surely not have started the project had they
known its final cost.

3.5 K.I.S.S

When developing a software system, we have to
consider the supporting costs. In this case, the client
had to outsource the support because the complexity
of the backend. Its engineer who managed the
outsourced supporting teams suggested to rewrite
the system again using more suitable server
architecture, namely SQL Server 2005 and C#,
because the supporting costs were too high. His
estimation on the effort was 6-12 person months.
Unwilling to spend more money on the project, this
re-write request was rejected. After a few more
forecasting cycles, the client decommissioned the

software due to its high supporting costs. Lesson
learned: if some simple architecture and tools can
meet the requirements, use them.

4 CONCLUSIONS

We have discussed many factors that may have
negatively affected a project’s costs. We agree that,
there will be cases some of the costs are necessary.
We argue that we need to evaluate the necessarily
and benefit before commit on features or tools
worked with other projects. In our case, the lessons
were learned from real costly mistakes. We do hope
that readers can benefit from our mistakes.

There are many reasons caused the PMs to
request additional funding. Expecting initial funding
to be accurate is unrealistic. However, when the
budget has increased several folds with no major
change in requirements, project owners should look
into the few factors we have discussed here, and
possibly others, to see if the similar mistakes have
been made and to take necessary corrective actions.
We are certain that there are other factors that can
negatively affect a project's cost.

ACKNOWLEDGEMENTS

We would like to thank the Division of Computer
Science at Western Oregon University, especially
Dr. Marsaglia and Dr. Morse, and Oregon
Engineering and Technology Industry Council for
their continuous support of our research.

REFERENCES

Microsoft. (2002). Using .NET to Implement Sun
Microsystems' Java Pet Store J2EE Blue Print
Application http://msdn.microsoft.com/en-us/library/
ms954626.aspx.

Lewis, W. (2004). Software Testing and Continuous
Quality Improvement (2nd ed.). Auerbach
Publications

Laird, L. and Brennan, C. (2006). Software Measurement
and Estimation: A Practical Approach. Wiley-IEEE
Computer Society Press.

Liu, J. and He, J. (2002). Web-Based Software
Development for Today and Tomorrow. Proceedings
of International Conference of Internet Computing.

Liu, J., Marsaglia, J and Olson, D. (2002). Preparing
Software Engineering Students To Be Successful In
The Real World. Proceedings of International
Conference on Software Engineering Research and
Practice.

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

272

