
Circumstantial-evidence-based Judgment for Software 
Effort Estimation 

Zheng Li1,2, Liam O’Brien3,2 and He Zhang1,4 

1 NICTA, Sydney, Australia 

2 School of CS, ANU, Canberra, Australia 
3 CSIRO, Canberra, Australia 

4 School of CSE, UNSW, Sydney, Australia 

Abstract. Expert judgment for software effort estimation is oriented toward di-
rect evidences that refer to actual effort of similar projects or activities through 
experts’ experiences. However, the availability of direct evidences implies the 
requirement of suitable experts together with past data. The circumstantial-
evidence-based judgment proposed in this paper focuses on the development 
experiences deposited in human knowledge, and can then be used to qualita-
tively estimate implementation effort of different proposals of a new project by 
rational inference. To demonstrate the process of circumstantial-evidence-based 
judgment, this paper adopts propositional learning theory based diagnostic rea-
soning to infer and compare different effort estimates when implementing a 
Web service composition project with some different techniques and contexts. 
The exemplar shows our proposed work can help determine effort tradeoff be-
fore project implementation. Overall, circumstantial-evidence-based judgment 
is not an alternative but complementary to expert judgment so as to facilitate 
and improve software effort estimation. 

1 Introduction 

Mathematical effort estimation models have been well documented in academia for 
many years, while the pervasive estimation method in industry is still based on expert 
judgment [1]. One possible reason is that the mental processes software professionals 
use to unfold estimation are more closely related to a case-based reasoning (CBR) 
approach than a regression-based model [2]. However, expert judgment considerably 
depends on experts’ availability and experience, and experts’ knowledge is hardly 
accessed by others [3]. Therefore, expert opinion may be not reliable if it is not sup-
ported by objective or scientific evidences. To reduce the possible bias and uncertain-
ty that happens in expert judgment, practical guidelines claim that estimation experts 
should be selected based on their experience from similar projects [4]. Following the 
practical guidelines, unfortunately, the expert judgment approach could still be in-
feasible if the experts or the past data are not available. 

Basically, expert judgment-based software effort estimation must comply with a 
golden rule: the expert judgment should always require justification rather than gut 

Li Z., O’Brien L. and Zhang H..
Circumstantial-evidence-based Judgment for Software Effort Estimation.
DOI: 10.5220/0003560600180027
In Proceeding of the 1st International Workshop on Evidential Assessment of Software Technologies (EAST-2011), pages 18-27
ISBN: 978-989-8425-58-4
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)



feelings [4]. Inspired by Evidence-Based Software Engineering (EBSE) that is “to 
provide the means by which current best evidence from research can be integrated 
with practical experience and human values in the decision making process regarding 
the development and maintenance of software” [5], we can re-consider the justifica-
tion of expert judgment from an evidence-based perspective. According to the classi-
fication of evidence [6], the results of the CBR-based mental processes in traditional 
expert judgment can be regarded as direct evidence: experts act as witnesses and 
adduce previous cases for the current one. Considering the aforementioned limitation 
of direct evidence collection – the requirement of availability of experts with expe-
rience from similar projects, this paper proposes circumstantial-evidence-based 
judgment for software effort estimation. Benefiting from existing software develop-
ment experiences as circumstantial evidence, we can use diagnostic reasoning to 
qualitatively infer different implementation effort of different proposals of a new 
project. As a result, circumstantial-evidence-based judgment can be used to facilitate 
and improve the final quantitative effort estimation for new software projects. 

This paper is organized as follows. Section 2 makes a comparison between direct 
and circumstantial evidences for effort judgment. Section 3 introduces the method 
and inference procedure that can support circumstantial-evidence-based effort judg-
ment. Section 4 takes Web service composition project as sample to demonstrate the 
process and result of effort judgment with circumstantial evidences. The conclusion is 
drawn, and some future research work is considered in Section 5. 

2 Direct vs. Circumstantial Evidence for Effort Judgment 

As an analogue of similar forensic scenarios, the traditional CBR-based expert judg-
ment can be viewed as using direct evidence to estimate implementation effort of a 
software project. In forensic science, as the name suggests, direct evidence is evi-
dence that proves a fact without requiring inference or presumption [6]. In other 
words, direct evidence immediately and precisely establishes a bridge between judge 
and fact. An example of direct evidence could be a witness's observation or personal 
knowledge of a certain fact. The defendant involved in the past fact is the exact one 
involved in the judgment. In the context of effort estimation, different from law, the 
new project to be judged is obviously none of the past ones. Nevertheless, to some 
extent, experts inevitably view the similar projects as the same one when doing effort 
estimation based on their experiences. For example, as suggested by Jørgensen [4], 
the actual effort of similar projects or similar activities in other projects will be re-
ferred to as justifications for expert judgment for new project. Therefore, it is reason-
able to consider that in traditional expert judgment experts use their observation on 
past projects as direct evidences to estimate effort of new project. 

Contrasted with direct evidence, circumstantial evidence does not prove fact in a 
straightforward sense, while it requires the intervening or additional evidence infe-
rence to confirm the fact. In forensic science, the most obvious difference between 
direct and circumstantial evidence is that “direct evidence is a verbal representation of 
a crime itself, whereas circumstantial evidence is an abstract statement about the 
connection between the defendant and an incriminating physical trace of the crime” 

19



[7]. Usually, circumstantial evidence is not sufficient, but increases the probability of 
the defendant’s guilt, for example blood or fingerprints. Similarly, unlike the direct 
evidence in expert judgment that directly gives the estimated effort, circumstantial 
evidence for effort judgment must be effort-related abstract statements. Suppose each 
finished software project deposits some development experience in the human know-
ledge, similar projects or similar activities should have similar development expe-
riences. Different experiences can then be abstracted into different assertions as scat-
tered fingerprints of existing software projects. As such, different from human beings, 
similar software projects or development activities may share the same fingerprints.  

To sum up, when estimating effort for a new project, similar projects’ or activi-
ties’ actual effort can be viewed as direct evidence, while existing development expe-
riences can be considered as circumstantial evidence. In forensic science, both direct 
and circumstantial evidences are used to draw categorical, yes-no type, conclusions. 
In the context of software effort estimation, direct evidence brings quantitative effort 
estimate for a particular project proposal, while circumstantial evidence can give 
qualitative comparison between effort estimates of different development proposals.  

3 Effort Judgment with Circumstantial Evidence 

3.1 Collecting Circumstantial Evidences 

When it comes to collecting evidences for effort estimation, direct evidence collection 
is to gather detailed software project data, while circumstantial evidence collection is 
to gather generic software development experiences. Compared with the straightfor-
ward process of direct evidence collection, searching and identifying circumstantial 
evidences could be more complicated. We propose to use a systematical method that 
is to apply systematic literature review (SLR) in the evidence space formed by all the 
effort factors. SLR is the main methodology applied for EBSE, which can be natural-
ly used to collect and justify different effort-related hypothesis aiming at different 
effort factors. The justified effort-related hypothesis can then be used as circumstan-
tial evidences for effort judgment. As for the effort factors, we can directly borrow 
ideas from existing effort estimation work, such as parametric estimation models. For 
example, 15 effort multipliers like Product Complexity and Programmers’ Capability 
are employed in COCOMO [20], and each of them can be viewed as an effort factor 
towards which we may identify a corresponding circumstantial evidence through 
SLR. 

3.2 Utilizing Circumstantial Evidences 

As specified previously, circumstantial evidences cannot be used without rational 
inference to proven facts. The rational inference can be realized as a cascaded process 
of diagnostic reasoning. A possible guideline for using circumstantial evidences to do 
diagnostic reasoning is the theory of propositional learning (TPL) [15]. TPL is origi-
nally used for belief revision, which comprises three elements: (1) the association 

20



between a possible clue and a possible cause; (2) the forward implication from the 
actual cause to the possible clue; (3) the backward implication from the clue to the 
possible cause. The clues are circumstantial evidences like fingerprints, while the 
causes are suspects’ actions by which the fingerprints are left. When implementing 
diagnostic reasoning with TPL, the inference process of diagnostic reasoning can then 
be established through the linkage of aforementioned elements, as illustrated in Fig. 
1. 

 

 

Fig. 1. The inference process of diagnostic reasoning. 

For software effort judgment, the first-hand clues are existing software projects, 
while the actual cause is the requirement of a new project. When doing backward 
implication, benefiting from the techniques of EBSE [5], the original clues can be 
collected and used to extract effort-related assertions. Note that, different from the 
work in [2] that collects the actual effort of similar projects, EBSE used for circums-
tantial-evidence-based judgment focuses on the generic relationships between effort 
and different development actions, namely development experiences. When doing 
forward implication, on the other hand, the profile of a concrete project will be ex-
plored to identify possible development actions. The identified possible development 
actions can be used to build an association between previous projects and the current 
one to further facilitate effort judgment. In general, the association is built by a cas-
caded inference. In a cascaded inference, the conclusion of one inference acts as a 
premise for the subsequent inference, while the final conclusion will be the qualita-
tively estimated effort. 

In practice, there is usually a set of circumstantial evidences for one effort judg-
ment task. These circumstantial evidences can be either consistent with or contrary to 
each other. Here we define different evidences are consistent when the same conclu-
sion can be drawn in an effort judgment, or contrary when different conclusions are 
drawn in the judgment. Generally, consistent circumstantial evidences can help con-
firm and reinforce the same conclusion. For contrary circumstantial evidences, we 
would have to give further judgment based on the amount and weight of different 
standpoints, which is similar to the reality in a forensic trial proceeding. 

4 An Exemplar 

To better comprehend circumstantial-evidence-based effort judgment, we employ one  

21



Web service composition project as an example to explain the judgment process. 
Considering our work is still in the early stage, here we directly choose five hypo-
theses of development experience as original circumstantial evidences. In practice, 
however, development experiences should be justified through the evidence collec-
tion approach supplied by EBSE.  

4.1 Five Circumstantial Evidences 

In software engineering, effort of a task is generally accounted by calculating how 
long and how many workers are needed to finish the task. In other words, the amount 
of human activities in a project is proportional to the amount of effort required to 
finish the project. Therefore, for a certain software project, one basic circumstantial 
evidence (CE) can be: 

CE1. In general, the increase of required human activities in a project will have a 
proportional impact on the final effort. 
 

Human activities include both physical and mental activities. Since software devel-
opment is a knowledge-intensive undertaking, software product/service is a type of 
intellectual property produced by human mental activities. Unfortunately, within a 
given time span people have limited mental capability to deal with information [8]. 
For every single person, the increased amount of information beyond a certain point 
may even defeat his/her mental ability, and hence result in errors [10]. As a result, the 
more information that exists in a project, the more people and human activities might 
be required to perform accurate manipulations. Together with CE1, therefore, we can 
find a new circumstantial evidence: 

CE2. In general, the increase of information in a project will have a proportional 
impact on the final effort. 

Based on our common experience, the adoption of sophisticated tools usually implies 
much information we have to deal with in a project. However, tools are essentially 
developed and used to save human activities. For a certain project, the more work the 
tools can fulfill, the less human activities the project will require. Consequently, also 
together with CE1, a tool-related circumstantial evidence is: 

CE3. In general, the increase of work that tools can fulfill in a project will have an 
inversely proportional impact on the final effort. 

In the software economics field, complexity has been viewed as an inherent property 
of the functional requirements of a software product, which cannot be reduced or 
simplified beyond a certain threshold [19]. Moreover, complexity has been proved to 
be a significant and non-negligible factor that influences software development and 
maintenance [11]. In fact, the more complexity involved in a system, the more diffi-
culty the designers or engineers have to understand the implementation process and 
thus the system itself [9], and hence the greater mental effort people have to exert to 
solve the complexity [8]. 

 

22



 

Fig. 2. The hockey stick function. 

The hockey stick function [13] vividly depicts the relationship between complexi-
ty and effort of a software project, as illustrated in Fig. 2. The amount of required 
effort may suddenly increase when the corresponding project exceeds a certain level 
of complexity. Overall, the circumstantial evidence related to complexity can be 
summarized as: 

CE4. In general, the increase of complexity in a project will have a proportional im-
pact on the final effort. 

When it comes to project complexity, one of the main contributors is the complexity 
of the methods that target achieving the project goals [12]. The methods of software 
development are mainly reflected by the techniques used to implement a correspond-
ing project. In particular, techniques have been viewed as internal environment of a 
system (organization), while the system’s complexity is considered a response to the 
environmental complexity [13]. Consequently, the complexity of techniques involved 
in a software project will positively influence the complexity of the project. There-
fore, together with CE4, we can identify the circumstantial evidence CE5: 

CE5. In general, the increase of difficulty of techniques in a project will have a pro-
portional impact on the final effort. 

4.2 Circumstantial-evidence-based Judgment for a Web Service Composition 
Project 

By using an effort-oriented classification matrix [16], existing approaches to Web 
service composition can be classified according to different type of contexts and 
techniques. For example, we can distinguish between Orchestration and Choreogra-
phy in consideration of composition pattern, Syntactic and Semantic compositions 
according to the semiotic context, or REpresentational State Transfer (RESTful) and 
Simple Object Access Protocol (SOAP) based compositions according to the compo-
sition mechanism.  Since different types of Web service composition require different 

23



development activities, a part of the profile exploration of a Web service composition 
project can be done as follows. 

Orchestration vs. Choreography: Orchestration normally describes and executes a 
centralized process flow that acts as a coordinator to the involved Web services. The 
central coordinator explicitly specifies the business logic and controls the order of 
invocation of Web services. Choreography represents collaboration between web 
services that focuses on the peer-to-peer message exchange. The collaboration is 
decentralized where all participating Web services work equally and do not rely on a 
central controller. Since distributed processing would be inevitably more complicated 
than non-distributed processing [14], generally speaking, for the same Web service 
composition project the choreography-based implementation will be more complex 
than the orchestration-based implementation. Meanwhile, as the current de facto stan-
dard of orchestrating Web services, Business Process Execution Language (BPEL) 
stemmed from existing languages and tools and has been widely accepted, whereas 
the choreography language Web Services Choreography Description Language (WS-
CDL) was developed without any prior implementation and is still far from mature 
[17]. Considering this technical influence, the implementation of choreography will 
be more difficult than that of orchestration. Consequently, if holding the other aspects 
of one particular Web service composition project constant, development actions 
(DA) can be abstracted and compared between orchestration and choreography: 

DA1. In general, the implementation of choreography is more complex than that of 
orchestration. 

DA2. In general, the techniques used for choreography are more difficult than that for 
orchestration. 

Syntactic Composition vs. Semantic Composition: The syntactic Web, for example 
the current World Wide Web, was designed primarily for human interpretation and 
conveying information. The lack of machine-readable semantics then requires human 
intervention for Web service discovery and composition, and therefore hampers the 
usage of Web services in complex business environment. On the contrary, the seman-
tic Web and semantic Web service were proposed through incremental and informa-
tion-added adjustments. Since semantic Web and semantic Web services are sup-
posed to automate service discovery, selection, composition and execution by adding 
the inherent meanings [18], human activities within semantic compositions will be 
decreased while the involved information will be increased. However, the increased 
information in semantic Web service composition is for machine interpretation rather 
than human intervention. Meanwhile, syntactic and semantic Web services share the 
unified Web infrastructure and both use markup language based techniques to de-
scribe information. It can then be stated that the difficulty levels of techniques 
adopted in both syntactic and semantic Web service compositions are similar. There-
fore, for proposals with different semiotic context for a particular Web service com-
position project, we can assert: 

DA3. In general, the implementation within syntactic context requires more human 
interventions than that within semantic context. 

DA4. In general, the implementation within semantic context involves more informa-

24



tion for machine interpretation than that within syntactic context. 

DA5. In general, the difficulty of techniques used for syntactic implementation is 
similar to that for semantic implementation. 

RESTful Composition vs. SOAP-based Composition: RESTful Web service compo-
sition integrates normally disparate Web resources to create a new application. These 
resources can be the exposure of pure data or traditional application functionality. 
SOAP/WS-* based Web service composition is a collection of related, structured 
activities or tasks that produce a specific service or product for a particular customer. 
Compared with RESTful compositions, SOAP-based compositions employ more 
sophisticated techniques including heavyweight protocols, a set of WS-* stack, and 
more Message Exchange Patterns (MEPs), which can satisfy more QoS requirements 
while also deal with more information. Therefore, if the requirement of a particular 
Web service composition project can be satisfied by using either RESTful or SOAP-
based approach, we can assert: 

DA6. In general, the techniques used for the SOAP-based implementation are more 
difficult than that for the RESTful implementation. 

DA7. In general, the SOAP-based implementation deals with more information than 
the RESTful implementation does. 

To summarize, DA1~DA7 are analysis results drawn from characteristics of different 
types of Web service composition projects. These analysis results can be viewed as 
abstracts of different development actions, and act as possible inference bridges be-
tween real development actions and the identified circumstantial evidences. Benefit-
ing from TPL based diagnostic reasoning, therefore, we can conveniently and qualita-
tively judge the effort of these composition types. For example, the forward implica-
tion from (DA1, DA2) to (CE4, CE5) can infer that choreography requires more 
effort than orchestration does when implementing a particular Web service composi-
tion project, or “ECh > EOr” for short. Similarly, we can also give qualitative effort 
judgment for the other composition types mentioned in this Section, as shown in 
Table 1. Note that not all the circumstantial evidences are applicable in this case. 

Table 1. Circumstantial-evidence-based effort judgment for different types of Web service 
compositions. 

 Development Actions Circumstantial Evidences Effort Judgment 
Orchestration 

(DA1, DA2) (CE4, CE5) ECh > EOr Choreography 
Syntactic 

DA3 CE1 ESy > ESe Semantic 
RESTful 

(DA6, DA7) (CE5, CE2) ESO > ERE 
SOAP-based 

5 Conclusions 

Expert  judgment is the widely adopted technique for software effort estimation in in- 

25



industry. From an evidence-based perspective, expert judgment relies on direct evi-
dences that require the availability of both experts and past project data. Considering 
the lack of suitable experts and available data in the current practice of software engi-
neering, we propose circumstantial-evidence-based judgment to facilitate qualitative 
effort estimate of a new software project. Compared with direct evidences that focus 
on actual effort of past projects, circumstantial evidences for effort judgment are 
abstracts of existing software development experiences. Before implementing a new 
project, identified circumstantial evidences can be combined with the profile of new 
project by rational inferences to qualitatively compare the efforts of different devel-
opment proposals. As such, circumstantial-evidence-based judgment can not only 
help settle implementation design for software project, but also act as complementary 
to expert judgment for the implementation effort. Moreover, the circumstantial evi-
dences in the context of effort judgment can be accumulated and deposited as general 
knowledge to further guide and assess individual expert judgments. SLR, as the main 
methodology applied for EBSE, can be an effective approach to evidence collection 
for circumstantial-evidence-based judgment. All the development experiences men-
tioned in this paper do need the support by further evidences that can be identified 
and synthesized by this EBSE methodology. Therefore, our future work will try to 
apply SLR to this novel effort judgment method. Moreover, we also plan to use prop-
ositional calculus to formalize the rational inference taking place during judgment 
processes. 

Acknowledgements 

NICTA is funded by the Australian Government as represented by the Department of 
Broadband, Communications and the Digital Economy and the Australian Research 
Council through the ICT Centre of Excellence program. 

References 

1. Jørgensen, M., Shepperd, M.: A Systematic Review of Software Development Cost Estima-
tion Studies. IEEE Trans. Software Eng. 33, 1 (2007) 33-53. 

2. Menzies, T., Hihn, J.: Evidence-Based Cost Estimation for Better-Quality Software. IEEE 
Softw. 23, 4 (2006) 64-66. 

3. Keung, J.: An Alternative Approach to Software Cost Estimation: Reasoning by Analogy. 
In: Presentations of Australian Conference on Software Measurement (ACOSM 2007), 
Sydney, Australia (2007). 

4. Jørgensen, M.: Practical Guidelines for Expert-Judgment-Based Software Effort Estima-
tion. IEEE Softw. 22, 3 (2005) 57-63. 

5. Dybå, T., Kitchenham, B. A., Jørgensen, M.: Evidence-Based Software Engineering for 
Practitioners. IEEE Softw. 22, 1 (2005) 58-65. 

6. Siegel, J. A., Knupfer, G. C., Saukko, P. J., Saukko, P. J.: Encyclopedia of Forensic 
Sciences. Academic Press, San Diego, CA (2000). 

7. Heller, K. J.: The Cognitive Psychology of Circumstantial Evidence. Mich. L. Rev. 105, 2 
(2006) 241-306. 

26



8. Globerson, T.: Mental Capacity, Mental Effort, and Cognitive Style. Dev. Rev. 3, 3 (1983) 
292-302. 

9. Cardoso, J.: How to Measure the Control-Flow Complexity of Web Processes and 
Workflows. In: Workflow Handbook 2005. Layna Fischer, Lighthouse Point, Florida 
(2005) 199-212. 

10. Miller, G. A.: The Magical Number Seven, Plus or Minus Two: Some Limits on Our Ca-
pacity for Processing Information. Psychol. Rev. 63, 2 (1956) 81-97. 

11. Francalanci, C., Merlo, F.: The Impact of Complexity on Software Design Quality and 
Costs: An Exploratory Empirical Analysis of Open Source Applications. In: Proceedings of 
the 16th European Conference on Information Systems (ECIS 2008), Galway, Ireland 
(2008) 1442-1453. 

12. Turner, J. R., Cochrane, R. A.: Goals-and-Methods Matrix: Coping with Projects with Ill-
defined Goals and/or Methods of Achieving them. Int. J. Project Manage. 11, 2 (1993), 93-
102. 

13. Dooley, K.: Organizational Complexity. In: International Encyclopedia of Business and 
Management, M. Warner, Ed. Thompson Learning, London (2001) 5013-5022. 

14. Josuttis, N. M.: SOA in Practice: The Art of Distributed System Design. O'Reilly Media, 
Inc., Sebastopol, CA (2007). 

15. Carlson, R. A., Dulany D. E.: Diagnostic Reasoning with Circumstantial Evidence. Cogni-
tive. Psychol. 20, 4 (1988) 463-492. 

16. Li, Z., O’Brien, L., Keung, J., and Xu, X.: Effort-Oriented Classification Matrix of Web 
Service Composition. In: Proceedings of the Fifth International Conference on Internet and 
Web Applications and Services (ICIW 2010), Barcelona, Spain (2010) 357-362. 

17. Barros, A., Dumas, M., Oaks, P.: Standards for Web Service Choreography and Orchestra-
tion: Status and Perspectives. Lect. Notes. Comput. Sc. 3812/2006 (2006) 61-74. 

18. Hepp, M.: Semantic Web and Semantic Web Services: Father and Son or Indivisible 
Twins? IEEE. Internet. Comput. 10, 2 (2006) 85-88. 

19. Raymond, E. S.: The Art of UNIX Programming. Addison-Wesley Professional, Boston, 
MA (2004). 

20. Boehm, B.: Software Engineering Economics. Prentice Hall, Upper Saddle River, NJ 
(1981). 

27


