
Find the Best Greedy Algorithm with Base Choice
Experiments for Covering Array Generation

Jing Jiang and Changhai Nie

The State Key Laboratory for Novel Software Technique, Nanjing University, Nanjing, China

Abstract. A number of greedy algorithms have been conducted for covering ar-
ray construction, and most of them can be integrated into a framework, and more
approaches can be derived from the framework. However, such a framework is
affected by many factors, which makes its deployment and optimization very
challenging. In order to identify the best configuration, we design Base Choice
experiments based on six decisions of the framework to study systematically, pro-
viding theoretical and practical guideline for the design and optimization of the
greedy algorithms.

1 Introduction

Many modern systems are built by components; unexpected interactions among com-
ponents may cause some potential system failure. Combinatorial testing has been pro-
posed as a means to detect failures triggered by the interactions among components in
Software Under Test (SUT)[2].

For instance, an Internet-based software system in which end-users may use a vari-
ety of web browsers, operating systems, connection types and memory configurations,
as shown in Table 1. To exhaustively test all possible combinations needs34 = 81 test
cases. In this system each component is afactor, and each setting of the component is a
levelfor the factor. As the combinatorial explosion of larger systems prohibits exhaus-
tive testing, it is a challenge to detect failures caused by interactions among the different
factors.

Combinatorial testing has been proposed as a means to offer significant savings. We
reduce to 9 test cases by employing pair-wise interaction testing (shown in Table 2).
All individual pairs are tested instead of testing every combination. Given larger system
with ten factors each having four levels, we only need 25 test cases by employing pair-
wise interaction testing, instead of410 = 1, 048, 576 test cases by exhaustive testing

Table 1.The online system.

Web Browser Operating System Connection Type Memory

Netscape Windows LAN 256MB
IE Macintosh PPP 512MB

Mozilla Linux ISDN 1GB

Jiang J. and Nie C..
Find the Best Greedy Algorithm with Base Choice Experiments for Covering Array Generation.
DOI: 10.5220/0003559200530060
In Proceeding of the 1st International Workshop on Evidential Assessment of Software Technologies (EAST-2011), pages 53-60
ISBN: 978-989-8425-58-4
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

Table 2.The online system.

TestNo. Web Browser Operating System Connection Type Memory

1 Netscape Windows LAN 256MB
2 IE Macintosh LAN 512MB
3 Netscape Macintosh PPP 1GB
4 Mozilla Linux LAN 1GB
5 Netscape Linux ISDN 512MB
6 IE Linux PPP 256MB
7 Mozilla Windows PPP 512MB
8 IE Windows ISDN 1GB
9 Mozilla Macintosh ISDN 256MB

[10]. This sampling approach is scientific and effective. Kuhn et al. examined fault
reports for several systems. They showed that more than 70% of defects can be caught
with 2-way interactions [3].Overall consideration of the cost of testing, the execution
time to generate covering arrays and the array size, pair-wise testing is considered as a
practical method.

In order to generate combinatorial test suites, a combinatorial object called covering
array is often used. Covering arrayMCA(N ; t, k, (v1, v2, · · · , vk) is anN ×k array on
v symbols, wherev =

∑
k

i=1
vi, t is thestrengthof the coverage of interactions, andk

is the number of factors. Each columni (1 ≤ i ≤ k) contains only elements from a set
Vi with |Vi| = vi. The rows of eachN × t sub-array cover all t-tuples of levels from the
columns at least once [2]. Table 2 is a 2-way covering array inwhich all combinations
between every two factors are covered by the nine test cases.

Covering array generation is a key issue in combinatorial testing. Early combina-
torial methods can provide fast generation. However, they depend on the existence of
specific algebraic of combinatorial objects. For example TConfig [4] is a recursive con-
struction method based on orthogonal arrays, and can generate covering array effec-
tively, but it depends on the existence of the correspondingorthogonal array. In terms
of heuristic search, Simulated Annealing [5] and Tabu Search [6] can produce many
small covering arrays, but it is very time-consuming. In addition to heuristic search
methods, there are many greedy methods such as AETG [7, 8], TCG [9], DDA [10],
IPO [11] and so on. We have also proposed some greedy algorithms to generated test
suites [13, 14].

In this paper, we focus on a series of existing greedy methodsincluding AETG [7],
TCG [9] and DDA [10]. Bryce [1] has integrated these methods into a unified frame-
work, these methods can not only be included by this framework, but also more new
approaches can be derived from it. However, such a frameworkis affected by multiple
factors, which makes its deployment and optimization very challenging. Bryce et al.
used ANOVA to analysis the effect of each decision in array size[1], but they did not
give any concrete usable configuration to create effective greedy algorithm from the
framework. We design and conduct Base Choice[12] experiments under the framework
with six decisions. Through the experiments we can find the best configuration to build
the most effective greedy algorithm from the framework. It provides practical guideline
for the design and optimization of the greedy algorithms.

54

The remainder of this paper is organized as follows: Section2 briefly introduces the
greedy algorithm framework, Section 3 describes the Base Choice experiment design,
Section 4 and 5 analyze the experimental data, and Section 6 presents a summary and
the future work.

2 Framework of the Greedy Algorithms

Bryce [1] proposed a four layer framework with six decisionsfrom AETG,TCG and
DDA. Fig. 1 provides the detail of the greedy framework. Six decisions need to be
made (see Table 3), shown in shadows in the skeleton of Fig. 1.For convenience, we
write six decisions asf0, f1, · · · , f5.We will explain them one by one next.

1. Select a factor according to the factor ordering selection criterion.

2. In the case of more factors selected, then choose the factor by factor tie-breaking.

3. Assign a level for the factor according to the level selection criterion.

4. In the case of more levels selected, then choose the level by level tie-breaking.

5. Repeat the process until all factors have been fixed, then create a test case.

6. Repeat the above steps Candidates times, candidate rows are generated.

7. Choose a candidate that covers the most new pairs into the covering array.

8. Repeat the above steps until all pairs have been covered, the covering array is complete.

9. Repeat the above steps Repetitions times, then choose a smallest covering array.

Fig. 1.The framework of greedy algorithm.

– Decision One – Repetitions (f0): Due to the randomness of certain decisions,
smaller covering arrays may be generated by repetitions [1]. In this paper, we only
consider four kinds of repetitions:1, 5, 10and20 repetitions.

– Decision Two – Candidates (f1): The algorithm may generate a number of rows
as candidates, and choose the one adding the most new pairs into the covering array
[1]. Here we set the numbers of candidates as1, 5, 10and20.

– Decision Three – factor Ordering (f2): The factor ordering is the essence of the
framework. Researchers have refined five strategies [1]: (1)uncovered pairs, by
the number of new pairs involving the factor and the fixed factors; (2)density, by
expected number of pairs covered involving both fixed and free factors; (3)level, by
the number of associated levels; (4)random; (5) hybrid, the first factor is selected
by uncovered pairs, and remaining factors are ordered randomly.

– Decision Four – Level Selection(f3): Its goal is to cover the largest number of
new pairs. Bryce has raised three criterions [1]: (1)random; (2) uncovered pairs,
by the number of new pairs involving the level of the current factor and the fixed
factors; (3)density, by the expected number of new pairs associated with fixed and
free factors.

– Decision Five – Factor Tie-breaking (f4): When employing the strategy of factor
ordering, the algorithm may suffer from ties. To break ties,one of the following
methods may be used [1]:take first, random, uncovered pairs.

55

Table 3.The specific strategies of six decisions.

No. f0 f1 f2 f3 f4 f5

0 1 1 random random random random
1 5 5 uncovered uncovered uncovered uncovered

pairs pairs pairs pairs
2 10 10 density density take first take first
3 20 20 level least used
4 hybrid

– Decision Six – Level Tie-breaking(f5): The level tie-breaking is also needed, the
following methods are used [1]:random, take first, uncovered pairsandleast used.

3 Experimental design

In this paper, we compare the performance of the greedy algorithms on the size of
the generated covering array, and aim to answer the following questions: (1) does the
configuration of the framework affect the size of the generated covering array? (2) If
the configuration of the framework has an impact on the performance of the generated
covering array size, can we find an optimal configuration to generate smaller covering
arrays for some systems? (3) If the optimal configuration exists in some specific sys-
tems, is it able to construct smaller covering arrays for theother systems? (4) Is the
optimal configuration of the framework competitive with AETG, TCG and DDA?

To address these questions, we employ a sampling method –Base Choice to study
all kinds of methods based on the framework. We produce a configuration set with
Base Choice method, this method starts by identifying a baseconfiguration, subsequent
configurations are constructed by varying the choices of onedecision at a time and
keeping the choices of the other decisions fixed on the base configuration [12]. The
process is not finished until the configuration set covers allchoices for the six decisions.
For example, we select base configuration randomly as B1 = (2,2, 1, 1, 2, 0), Table 4 is
a configuration set generated by Base Choice strategy. (We use natural numbers (No.)
to denote each choice of the decisions in Table 3, B1 = (2, 2, 1,1, 2, 0) represents the
configuration (10, 10, uncovered pairs, uncovered pairs, take first, random).)

4 Experimental Analysis

Using the Base Choice configuration set (Table 4), we configure the framework and get
18 greedy algorithms, then generate covering arrays with them for five systems listed in
the first row of Table 5, and record thesizeof the generated covering array respectively
in Table 5. For example, for the system3445 (which means a system with 9 factors, 4
factor having 3 levels, 5 factors having 4 levels), we can get24 test cases with configu-
ration B1. The letter”f” denotes that the greedy method is failed to generate a covering
array.The results in Table 5 demonstrate that the configurations of the framework have
a significant impact on the performance of the generated covering array size. The ex-
perimental results are analyzed in the following.

56

Table 4.Base Choice configuration set.

No. f0 f1 f2 f3 f4 f5 No. f0 f1 f2 f3 f4 f5

B1 2 2 1 1 2 0 B10 2 2 3 1 2 0
B2 0 2 1 1 2 0 B11 2 2 4 1 2 0
B3 1 2 1 1 2 0 B12 2 2 1 0 2 0
B4 3 2 1 1 2 0 B13 2 2 1 2 2 0
B5 2 0 1 1 2 0 B14 2 2 1 1 0 0
B6 2 1 1 1 2 0 B15 2 2 1 1 1 0
B7 2 3 1 1 2 0 B16 2 2 1 1 2 1
B8 2 2 0 1 2 0 B17 2 2 1 1 2 2
B9 2 2 2 1 2 0 B18 2 2 1 1 2 3

Table 5.Results for Base Choice experiments.

5
1
3
8
2
2

3
4
4
5

9
4

6
4

8
6
7
5

5
1
3
8
2
2

3
4
4
5

9
4

6
4

8
6
7
5

B1 20 24 94 42 97 B10 20 23 97 43 102
B2 21 26 94 42 97 B11 20 25 93 41 101
B3 20 24 93 42 97 B12 29 33 132 55 173
B4 19 23 92 41 97 B13 20 24 95 43 97
B5 21 25 102 44 106 B14 20 23 92 42 97
B6 20 24 93 43 99 B15 20 23 93 43 97
B7 20 24 93 42 95 B16 20 25 100 44 103
B8 21 25 94 41 101 B17 f f f f f

B9 20 22 93 41 96 B18 21 f f 44 f

– Repetitions (f0): The configurations B1, B2, B3 and B4 only vary the number of
repetitionsin B1. The numbers ofrepetitionsare studied using settings of10, 1, 5
and20. From Table 5, we can find that by increasing the number of repetitions, the
array size can reduce slightly, it improves the size performance at the cost of time.
For example, with configuration B2, the greedy algorithm cangenerate a covering
array of 26 test cases in .437s for3445, with B4, the size is 23 in 8.25s. As the
tradeoff between the time and the generated covering array size,f0 = 20 is the best
choice.

– Candidates (f1): The configurations B1, B5, B6 and B7 just change the number
of candidates. Its settings are10, 1, 5 and20 respectively. The results in Table 5
indicate that more candidates can reduce the array size. Butwhen the candidates
are increased to some extent, the performance tends toward stability. Moreover the
increase of candidates wastes time. Also as the trade-off between the size and time
cost,f1 = 20 is the best choice.

– Factor Ordering (f2): The difference of the configurations B1, B8, B9, B10 and
B11 is only the choice offactor ordering. Their choices areuncovered pairs, ran-
dom, density, level andhybrid respectively.Densityin B9 appears to be the best
choice, anduncovered pairsfactor ordering is competitive. Onlyrandomfactor
ordering produces the worst results. The performance of other two choices is the
average. Sof2 = density is the best choice.

57

– Level Selection(f3): There are threelevel selectionmethods under the configura-
tions B1, B12 and B13:uncovered pairs, randomanddensity. From Table 3, B12
with randomlevel selection always generate the largest covering array. Both den-
sity in B13 anduncovered pairsin B1 have good performance. Howeveruncovered
pairs level selection is a little better thandensity, so we letf3=uncovered pairsbe
the best choice.

– Factor Tie-breaking (f4): The choices of thefactor tie-breakingin the configu-
rations B1, B14 and B15 aretake first, random anduncovered pairsrespectively.
From Table 5, the three choices have similar performance, sowe letf4=take first,
randomor uncovered pairs.

– Level Tie-breaking(f5): The choices of thelevel tie-breakingin configurations B1,
B16, B17 and B18 arerandom, uncovered pairs, take firstandleast used. Take first
yields very poor performance, frequently suffering from a dead loop. In addition
the methods that useleast usedwould fail occasionally. We can fine the optimal
choice for level tie-breaking isf5=random.

Based on the above analysis,20 repetitions, 20 candidates, densityfactor order-
ing, uncovered pairsbased on level selection, free choices for factor tie-breaking and
randomlevel tie-breaking can be the optimal choice for each decision, totally we can
obtain three best configurationsBest1 = (3, 3, 2, 1, 0, 0),Best2 = (3, 3, 2, 1, 1, 0) and
Best3 = (3, 3, 2, 1, 2, 0).

Table 6.Comparison with published results.

Best1 Best2 Best3 DDA AETG TCG

3
13 18 18 18 18 15 20

5
1
3
8
2
2 19 20 19 21 19 20

6
1
5
1
4
6
3
8
2
3 33 33 34 34 34 33

5
1
4
4
3
11
2
5 26 26 26 27 30 30

4
15
3
17
2
29 34 34 34 35 41 35

7
1
6
1
5
1
4
5
3
8
2
3 42 42 42 43 45 45

4
40 43 44 44 43 42 46

5 Verifying Experiments

To verify the optimal configurations Best1, Best2 and Best3 of the above experiments,
we make some verifying experiments, and examine the following two aspects: 1) are the
optimal configurations able to generate smaller covering arrays for the other systems;
2) are they competitive with the existing methods AETG, TCG and DDA?

For evaluation, we generate covering arrays with them for the seven systems in the
first column of Table 6, and the experiments confirm that the optimal configurations
also do well in generating covering array for the systems . Inaddition, we compare the
published results for AETG, TCG and DDA in the literature [7,9, 10]. From Table 6,
we can see that the configuration Best1 is a little better thanother two configurations,
so we select Best1 as our optimal configuration. We can find that the optimal configu-
ration Best1 is competitive in generating covering arrays.For example, for the system

58

514431125, the size of the generated covering array by Best1 is 26, the size by AETG is
30, the size by TCG is 30, and the size by DDA is 27.

6 Conclusions

We studied a greedy framework with six decisions built by Bryce [1]. Thousands of
greedy methods can be derived from this framework. In order to find the best algo-
rithm, we employ Base Choice method [12] to systematically sample an amount of
greedy algorithms derived from the framework. According tothe experimental results,
we can draw the following conclusions: (1) the configurations of the framework have a
significant impact on the performance of the covering array size; (2) We can obtain an
optimal configuration in some specific systems, and (3) the optimal configuration can
work for the other systems as well; (4) Comparing the optimalconfiguration with the
existing methods AETG, TCG and DDA, we find that the optimal configuration has its
advantages, it can generate smaller covering array than theexisting methods.

Our conclusion is a complementary and verification to Bryce’s results. We find more
repetitions and candidates may decrease the covering arraysize, but it requires more
time cost. Moreover, while these two factors are increased to some extent, the size no
longer decreases. We also find therandomfactor ordering yields very poor performance.

In the future work, we plan to conduct more profound and comprehensive studies
on the greedy framework, which may include: (1) consider more choices of the frame-
work; (2) employ other more scientific sampling methods to optimize the framework;
(3) consider the cases of seeds and constraints in covering array generation.

Acknowledgements

This work was supported by the National Natural Science Foundation of Jiangsu province
(BK2010372), the National Natural Science Foundation of China (60773104,60721002),
863 high technical plan of China (2009AA01Z143).

References

1. R. C. Bryce, C. J. Colbourn, M. B. Cohen: A Framework of Greedy Methods for Construct-
ing Interaction Test Suite. In: Proceedings of 27th international conference on software en-
gineering (ICSE2005). St. Louis, Missouri, USA, May 15-21,2005:146–155.

2. Changhai Nie, Hareton Leung: A suvery of combinatorial testing. ACM Computing Survey,
2011, 43(2).

3. D. Kuhn and M. Reilly. An investigation of the applicability of design of experiments to
software testing. Proc. 27th Annual NASA Goddard/IEEE Software Engineering Workshop,
October 2002.

4. A. W. Williams, R. L. Prober. A Practical Strategy for Testing Pair-wise Coverage of Network
Interfaces. In Proceedings of 7th International Symposiumon Software Reliability Engineer-
ing (ISSRE1996), White Plaints, NY, USA, October 30-November 2, 1997: 246–254.

5. M. B. Cohen, P. B. Gibbons, W. B. Mugridge, C. J. Colbourn. Constructing Test Suites
for Interaction Testing. In Proceedings of the 25th International Conference on Software
Engineering (ICSE2003), Portland, Oregon, USA, May 3–10, 2003: 38–48.

59

6. K. J. Nurmela. Upper Bounds for Covering Arrays by Tabu Search. Discrete Applied Math-
ematics, 2004, 138(1–2): 143–152.

7. D. M. Cohen, S. R. Dalal, M. L. Fredman, G. C. Patton: The AETG system: an approach
to testing based on combinatorial design. IEEE Transactions on Software Engineering,
23(7):437–44, October 1997.

8. D. M. Cohen, S. R. Dalal, M. L. Fredman, J. Parelius, and G. C. Patton. The combinatorial
design approach to automatic test generation. IEEE Software, 13(5):82–88, October 1996.

9. Y. Tung, W. Aldiwan: Automating test case generation for the new generation mission soft-
ware system. IEEE Aerospace Conf. , pages 431–37,2000.

10. R. C. Bryce, C. J. Colbourn: The density algorithm for pairwise interaction testing. Journal
of Software Testing, Verification, and Reliability, 2007.

11. K. C. Tai, Y. Lei. A Test Generation Strategy for PairwiseTesting. IEEE Transaction on
Software Engineering, 2002, 28(1): 109–111.

12. M. Grindal, B. Lindastrom, A. J. Offutt, S. F. Andler: An Evaluation of COmbination Strate-
gies for Test Case Selection. Empirical Software Engineering, 2006,11:583–611.

13. C. H. Nie, B. W. Xu, Z. Y. Wang, L. Shi. Generating Optimal Test Set for Neighbor Factors
Combinatorial Testing. QSIC 2006: 259–265.

14. C. H. Nie, B. W. Xu, L. Shi, Z. Y. Wang. A new Heuristic for Test Suite GEneration for
Pair-wise Testing. SEKE 2006:517–521.

60

