Find the Best Greedy Algorithm with Base Choice
Experiments for Covering Array Generation

Jing Jiang and Changhai Nie

The State Key Laboratory for Novel Software Technique, Nanjing University, Nanjing, China

Abstract. A number of greedy algorithms have been conducted for covering ar-
ray construction, and most of them can be integrated into a framework, and more
approaches can be derived from the framework. However, such a framework is
affected by many factors, which makes its deployment and optimization very
challenging. In order to identify the best configuration, we design Base Choice
experiments based on six decisions of the framework to study systematically, pro-
viding theoretical and practical guideline for the design and optimization of the
greedy algorithms.

1 Introduction

Many modern systems are built by components; unexpected interactions among com-
ponents may cause some potential system failure. Combinatorial testing has been pro-
posed as a means to detect failures triggered by the interactions among components in
Software Under Test (SUT)[2].

For instance, an Internet-based software system in which end-users may use a vari-
ety of web browsers, operating systems, connection types and memory configurations,
as shown in Table 1. To exhaustively test all possible combinations Béedss1 test
cases. In this system each componentfector, and each setting of the componentis a
levelfor the factor. As the combinatorial explosion of larger systems prohibits exhaus-
tive testing, it is a challenge to detect failures caused by interactions among the different
factors.

Combinatorial testing has been proposed as a means to offer significant savings. We
reduce to 9 test cases by employing pair-wise interaction testing (shown in Table 2).
Allindividual pairs are tested instead of testing every combination. Given larger system
with ten factors each having four levels, we only need 25 test cases by employing pair-
wise interaction testing, instead 6 = 1,048,576 test cases by exhaustive testing

Table 1. The online system.

Web Browser Operating System Connection Type Memory

Netscape Windows LAN 256MB
IE Macintosh PPP 512MB
Mozilla Linux ISDN 1GB

Jiang J. and Nie C..

Find the Best Greedy Algorithm with Base Choice Experiments for Covering Array Generation.

DOI: 10.5220/0003559200530060

In Proceeding of the 1st International Workshop on Evidential Assessment of Software Technologies (EAST-2011), pages 53-60
ISBN: 978-989-8425-58-4

Copyright ¢ 2011 SCITEPRESS (Science and Technology Publications, Lda.)

54

Table 2. The online system.

TestNo. Web Browser Operating System Connection Type Memory

1 Netscape Windows LAN 256MB
2 IE Macintosh LAN 512MB

3 Netscape Macintosh PPP 1GB
4 Mozilla Linux LAN 1GB

5 Netscape Linux ISDN 512MB
6 IE Linux PPP 256MB

7 Mozilla Windows PPP 512MB
8 IE Windows ISDN 1GB

9 Mozilla Macintosh ISDN 256MB

[10]. This sampling approach is scientific and effective hKiet al. examined fault
reports for several systems. They showed that more than T@fects can be caught
with 2-way interactions [3].Overall consideration of thest of testing, the execution
time to generate covering arrays and the array size, pae-teisting is considered as a
practical method.

In order to generate combinatorial test suites, a combiizdttbject called covering
array is often used. Covering arrayC A(N; t, k, (v1,v2, -+, vg) is @anN x k array on
v symbols, where = Zle vy, t IS thestrengthof the coverage of interactions, ahd
is the number of factors. Each colum(il < i < k) contains only elements from a set
V; with |V;| = v;. The rows of eactV x ¢ sub-array cover all t-tuples of levels from the
columns at least once [2]. Table 2 is a 2-way covering arraytiith all combinations
between every two factors are covered by the nine test cases.

Covering array generation is a key issue in combinatorgtlrtg. Early combina-
torial methods can provide fast generation. However, thepyedd on the existence of
specific algebraic of combinatorial objects. For examplei® [4] is a recursive con-
struction method based on orthogonal arrays, and can germoeering array effec-
tively, but it depends on the existence of the corresponditigpgonal array. In terms
of heuristic search, Simulated Annealing [5] and Tabu Seft can produce many
small covering arrays, but it is very time-consuming. Ini&idd to heuristic search
methods, there are many greedy methods such as AETG [7, &, [8{; DDA [10],
IPO [11] and so on. We have also proposed some greedy algariih generated test
suites [13, 14].

In this paper, we focus on a series of existing greedy metimatisding AETG [7],
TCG [9] and DDA [10]. Bryce [1] has integrated these methads & unified frame-
work, these methods can not only be included by this framlewmrt also more new
approaches can be derived from it. However, such a frameis@ftected by multiple
factors, which makes its deployment and optimization vévgllenging. Bryce et al.
used ANOVA to analysis the effect of each decision in arrag[di], but they did not
give any concrete usable configuration to create effectieedy algorithm from the
framework. We design and conduct Base Choice[12] expetinerder the framework
with six decisions. Through the experiments we can find tis denfiguration to build
the most effective greedy algorithm from the frameworkrtvpdes practical guideline
for the design and optimization of the greedy algorithms.

55

The remainder of this paper is organized as follows: Se&ibnefly introduces the

greedy algorithm framework, Section 3 describes the BasgcElexperiment design,
Section 4 and 5 analyze the experimental data, and Sectioesés a summary and
the future work.

2 Framework of the Greedy Algorithms

Bryce [1] proposed a four layer framework with six decisidram AETG,TCG and
DDA. Fig. 1 provides the detail of the greedy framework. Secidions need to be
made (see Table 3), shown in shadows in the skeleton of Figorlconvenience, we
write six decisions agy, f1, - - -, f5.We will explain them one by one next.

. Select a factor f; according to the factor ordering selection criterion.

. In the case of more factors selected, then choose the factor f; by factor tie-breaking.
. Assign alevel l;for the factor f; according to the level selection criterion.

In the case of more levels selected, then choose the level 1; by level tie-breaking.

. Repeat the process until all factors have been fixed, then create a test case.

! Repeat the above steps Candidates times, candidate rows are generated.

Choose a candidate that covers the most new pairs into the covering array.

. Repeat the above steps until all pairs have been covered, the covering array is complete.

- R Y B SRR C R

. Repeat the above steps Repetitions times, then choose a smallest covering array.

Fig. 1. The framework of greedy algorithm.

Decision One — Repetitions fy): Due to the randomness of certain decisions,
smaller covering arrays may be generated by repetitionsrithis paper, we only
consider four kinds of repetitiong; 5, 10 and20 repetitions.

Decision Two — Candidates f;): The algorithm may generate a number of rows
as candidates, and choose the one adding the most new paitsdrcovering array
[1]. Here we set the numbers of candidate4 & 10 and20.

Decision Three — factor Ordering (f2): The factor ordering is the essence of the
framework. Researchers have refined five strategies [1]uritpvered pairsby
the number of new pairs involving the factor and the fixeddes;t(2) density by
expected number of pairs covered involving both fixed anelfimetors; (3Jevel by

the number of associated levels; (Ahdom (5) hybrid, the first factor is selected
by uncovered pairsand remaining factors are ordered randomly.

Decision Four — Level Selectionfs): Its goal is to cover the largest number of
new pairs. Bryce has raised three criterions [1]:rfd)dom (2) uncovered pairs

by the number of new pairs involving the level of the currexttér and the fixed
factors; (3)density by the expected number of new pairs associated with fixed and
free factors.

Decision Five — Factor Tie-breaking {4): When employing the strategy of factor
ordering, the algorithm may suffer from ties. To break ti@se of the following
methods may be used [1hke first random uncovered pairs

56

Table 3. The specific strategies of six decisions.

No. fo S fo f3 fa f5

0 1 1 random random random random

1 5 5 uncovered uncovered uncovered uncovered
pairs pairs pairs pairs

2 10 10 density density take first take first

3 20 20 level least used

4 hybrid

— Decision Six — Level Tie-breaking(s): The level tie-breaking is also needed, the
following methods are used [1fandom take first uncovered paireindleast used

3 Experimental design

In this paper, we compare the performance of the greedy itigms on the size of
the generated covering array, and aim to answer the folpwirestions: (1) does the
configuration of the framework affect the size of the gerestatovering array? (2) If
the configuration of the framework has an impact on the perémrce of the generated
covering array size, can we find an optimal configuration toegate smaller covering
arrays for some systems? (3) If the optimal configuratiostexih some specific sys-
tems, is it able to construct smaller covering arrays fordtier systems? (4) Is the
optimal configuration of the framework competitive with AGTTCG and DDA?

To address these questions, we employ a sampling methoe -Buasce to study
all kinds of methods based on the framework. We produce agumatiion set with
Base Choice method, this method starts by identifying a basgguration, subsequent
configurations are constructed by varying the choices ofdewsion at a time and
keeping the choices of the other decisions fixed on the bas#gooation [12]. The
process is not finished until the configuration set covershalices for the six decisions.
For example, we select base configuration randomly as B12; 2,1, 2, 0), Table 4 is
a configuration set generated by Base Choice strategy. (@/eatsral numberd\o.)
to denote each choice of the decisions in Table 3, B1 = (2, 2, 2, 0) represents the
configuration (10, 10, uncovered pairs, uncovered paiks, fiest, random).)

4 Experimental Analysis

Using the Base Choice configuration set (Table 4), we cordithe framework and get
18 greedy algorithms, then generate covering arrays witinttor five systems listed in
the first row of Table 5, and record th&zeof the generated covering array respectively
in Table 5. For example, for the systedtu® (which means a system with 9 factors, 4
factor having 3 levels, 5 factors having 4 levels), we car?geest cases with configu-
ration B1. The lettetf” denotes that the greedy method is failed to generate a caveri
array.The results in Table 5 demonstrate that the configmsbf the framework have

a significant impact on the performance of the generatedrcayarray size. The ex-
perimental results are analyzed in the following.

57

Table 4.Base Choice configuration set.

No. fo fi fo fs fa fs No. fo fi fo f3 fa fs
BT 2 2 1 1 2 0 B10 2 2 3 1 2 O
B2 0 2 1 1 2 0 B11 2 2 4 1 2 O
B3 1. 2 1 1 2 0 B12 2 2 1 0 2 O
B4 3 2 1 1 2 0 B13 2 2 1 2 2 O
B5 2 0 1 1 2 0 B14 2 2 1 1 0 O
B6 2 1 1 1 2 0 B15 2 2 1 1 1 O
B7 2 3 1 1 2 0 Bl 2 2 1 1 2 1
B8 2 2 0 1 2 0 B17 2 2 1 1 2 2
B9 2 2 2 1 2 0 B18 2 2 1 1 2 3
Table 5.Results for Base Choice experiments.
513822 3%4° o9* 6* 857° 513822 3%45 9t 6* 8°7°

Bl 20 24 94 42 97 B10 20 23 97 43 102
B2 21 26 94 42 97 Bil1 20 25 93 41 101
B3 20 24 93 42 97 B12 29 33 132 55 173
B4 19 23 92 41 97 B13 20 24 95 43 97

B5 21 25 102 44 106 B14 20 23 92 42 97

B6 20 24 93 43 99 BI15 20 23 93 43 97

B7 20 24 93 42 95 Bl16 20 25 100 44 103
B8 21 25 94 41 101 B1l7 f f f f f

B9 20 22 93 41 096 B18 21 f f 44 f

— Repetitions (fp): The configurations B1, B2, B3 and B4 only vary the number of
repetitionsin B1. The numbers afepetitionsare studied using settings 96, 1, 5
and20. From Table 5, we can find that by increasing the number oftitéges, the
array size can reduce slightly, it improves the size perforoe at the cost of time.
For example, with configuration B2, the greedy algorithm ganerate a covering
array of 26 test cases in .437s f8#4°, with B4, the size is 23 in 8.25s. As the
tradeoff between the time and the generated covering amayfs = 20 is the best
choice.

— Candidates (f1): The configurations B1, B5, B6 and B7 just change the number
of candidateslts settings ard.0, 1, 5 and20 respectively. The results in Table 5
indicate that more candidates can reduce the array sizewBen the candidates
are increased to some extent, the performance tends totedititg. Moreover the
increase of candidates wastes time. Also as the trade-nfElea the size and time
cost, f1 = 20 is the best choice.

— Factor Ordering (f2): The difference of the configurations B1, B8, B9, B10 and
B11 is only the choice dffactor ordering Their choices arencovered pairsran-
dom density level and hybrid respectivelyDensityin B9 appears to be the best
choice, anduncovered pairdactor ordering is competitive. Onlgandomfactor
ordering produces the worst results. The performance @rdtto choices is the
average. S¢> = density is the best choice.

58

— Level Selectionf3): There are thretevel selectiormethods under the configura-
tions B1, B12 and Bl3uncovered pairsrandomanddensity From Table 3, B12
with randomlevel selection always generate the largest covering aBath den-
sityin B13 anduncovered pairin B1 have good performance. Howevarcovered
pairs level selection is a little better thatensity so we letfs=uncovered pairbe
the best choice.

— Factor Tie-breaking (f4): The choices of théactor tie-breakingn the configu-
rations B1, B14 and B15 ateke first random anduncovered pairsespectively.
From Table 5, the three choices have similar performanceiesiet f,=take first
randomor uncovered pairs

— Level Tie-breaking(fs): The choices of thievel tie-breakingn configurations B1,
B16, B17 and B18 areandom uncovered pairstake firstandleast usedTake first
yields very poor performance, frequently suffering fromead loop. In addition
the methods that udeast usedvould fail occasionally. We can fine the optimal
choice for level tie-breaking igs=random.

Based on the above analys®) repetitions 20 candidatesdensityfactor order-
ing, uncovered pairbased on level selection, free choices for factor tie-brepknd
randomlevel tie-breaking can be the optimal choice for each dexisiotally we can
obtain three best configuratiofi®stl = (3,3, 2, 1,0, 0),Best2 =(3,3,2,1,1,0) and
Best3 =(3,3,2,1,2,0).

Table 6. Comparison with published results.

Bestl Best2 Best3 DDA AETG TCG

313 18 18 18 18 15 20
513822 19 20 19 21 19 20
6151463823 33 33 34 34 34 33
514431195 26 26 26 27 30 30
415317929 34 34 34 35 41 35
76151453823 42 42 42 43 45 45
440 43 44 44 43 42 46

5 Verifying Experiments

To verify the optimal configurations Bestl1, Best2 and Be$tthe above experiments,
we make some verifying experiments, and examine the foligwivo aspects: 1) are the
optimal configurations able to generate smaller coveringyarfor the other systems;
2) are they competitive with the existing methods AETG, TG@ BDA?

For evaluation, we generate covering arrays with them feisttven systems in the
first column of Table 6, and the experiments confirm that thiéntgd configurations
also do well in generating covering array for the systemsaddition, we compare the
published results for AETG, TCG and DDA in the literature9710]. From Table 6,
we can see that the configuration Bestl is a little better tthar two configurations,
so we select Bestl as our optimal configuration. We can findtiesoptimal configu-
ration Bestl is competitive in generating covering arr&ygs.example, for the system

59

514431125 the size of the generated covering array by Best1 is 26jzkédy AETG is
30, the size by TCG is 30, and the size by DDA is 27.

6 Conclusions

We studied a greedy framework with six decisions built by @&ry1]. Thousands of
greedy methods can be derived from this framework. In orddind the best algo-
rithm, we employ Base Choice method [12] to systematicamgle an amount of
greedy algorithms derived from the framework. Accordinghe experimental results,
we can draw the following conclusions: (1) the configuradiohthe framework have a
significant impact on the performance of the covering arizg;$2) We can obtain an
optimal configuration in some specific systems, and (3) thengh configuration can

work for the other systems as well; (4) Comparing the opticgaifiguration with the

existing methods AETG, TCG and DDA, we find that the optimaifagguration has its

advantages, it can generate smaller covering array thaexiséng methods.

Our conclusion is a complementary and verification to Brycesults. We find more
repetitions and candidates may decrease the covering sim@ybut it requires more
time cost. Moreover, while these two factors are increasesbime extent, the size no
longer decreases. We also find thadomfactor ordering yields very poor performance.

In the future work, we plan to conduct more profound and cahpnsive studies
on the greedy framework, which may include: (1) considerarairoices of the frame-
work; (2) employ other more scientific sampling methods ttrojze the framework;
(3) consider the cases of seeds and constraints in coveraggeneration.

Acknowledgements

This work was supported by the National Natural Science Bation of Jiangsu province
(BK2010372), the National Natural Science Foundation ah@k60773104,60721002),
863 high technical plan of China (2009AA012143).

References

1. R.C. Bryce, C. J. Colbourn, M. B. Cohen: A Framework of @seklethods for Construct-
ing Interaction Test Suite. In: Proceedings of 27th intdamal conference on software en-
gineering (ICSE2005). St. Louis, Missouri, USA, May 15-2005:146-155.

2. Changhai Nie, Hareton Leung: A suvery of combinatorisiitey. ACM Computing Survey,
2011, 43(2).

3. D. Kuhn and M. Reilly. An investigation of the applicabjliof design of experiments to
software testing. Proc. 27th Annual NASA Goddard/IEEE Bafe Engineering Workshop,
October 2002.

4. A.W.Williams, R. L. Prober. A Practical Strategy for TiegtPair-wise Coverage of Network
Interfaces. In Proceedings of 7th International Symposiar8oftware Reliability Engineer-
ing (ISSRE1996), White Plaints, NY, USA, October 30-Novem®, 1997: 246-254.

5. M. B. Cohen, P. B. Gibbons, W. B. Mugridge, C. J. Colboureng&tructing Test Suites
for Interaction Testing. In Proceedings of the 25th Intéomal Conference on Software
Engineering (ICSE2003), Portland, Oregon, USA, May 3—D032 38—48.

60

10.

11.

12.

13.

14.

K. J. Nurmela. Upper Bounds for Covering Arrays by Tabur8eaDiscrete Applied Math-
ematics, 2004, 138(1-2): 143-152.

. D. M. Cohen, S. R. Dalal, M. L. Fredman, G. C. Patton: The &ESystem: an approach

to testing based on combinatorial design. IEEE Transestimm Software Engineering,
23(7):437-44, October 1997.

. D. M. Cohen, S. R. Dalal, M. L. Fredman, J. Parelius, and QRd&iton. The combinatorial

design approach to automatic test generation. IEEE Sddtvi®(5):82—88, October 1996.

. Y. Tung, W. Aldiwan: Automating test case generation far hew generation mission soft-

ware system. IEEE Aerospace Conf. , pages 431-37,2000.

R. C. Bryce, C. J. Colbourn: The density algorithm fompée interaction testing. Journal
of Software Testing, Verification, and Reliability, 2007.

K. C. Tai, Y. Lei. A Test Generation Strategy for PairwiEesting. IEEE Transaction on
Software Engineering, 2002, 28(1): 109-111.

M. Grindal, B. Lindastrom, A. J. Offutt, S. F. Andler: Awv&uation of COmbination Strate-
gies for Test Case Selection. Empirical Software Engimeg2006,11:583—611.

C. H. Nie, B. W. Xu, Z.Y. Wang, L. Shi. Generating Optimaist Set for Neighbor Factors
Combinatorial Testing. QSIC 2006: 259—-265.

C. H. Nie, B. W. Xu, L. Shi, Z. Y. Wang. A new Heuristic for §ieSuite GEneration for
Pair-wise Testing. SEKE 2006:517-521.

