FAILURE PREDICTION USING THE COX PROPORTIONAL HAZARD MODEL

Pekka Abrahamsson, Ilenia Fronza and Jelena Vlasenko
Free University of Bolzano-Bozen, Piazza Domenican, Domenikanerplatz 3, I-39100 Bolzano-Bozen, Italy

Keywords: Failure prediction, Cox PH model, Log files.

Abstract: Crashes of software systems may have disruptive, and sometimes tragic effects on users. Being able to forecast such failures is extremely important, even when the failures are inevitable – at least recovery or rescue actions can be taken. In this paper we present a technique to predict the failure of running software systems. We propose to use log messages to predict failures running devices that read log files of running application and warns about the likely failure of the system; the prediction is based on the Cox Proportional Hazards (PH) model that has been applied successfully in various fields of research. We perform an initial validation of the proposed approach on real-world data.

1 INTRODUCTION

Crashes of software systems may have disruptive, and sometimes tragic effects on users. Being able to forecast such failures is extremely important, even when the failures are inevitable – at least recovery or rescue actions can be taken. We propose in this paper a method to predict the failure of running software systems. Often, when developing a software system, developers write log messages to track its actual execution path, to debug it, or to optimize its execution. Our idea proposes to use such messages to predict the future failures. The actualization of such idea will set the path for the development of devices that read logs of running applications and signal the likely crash of such systems.

Methods for the prediction of a failure of systems based on events (in our cases, the log messages) have been proposed in various engineering disciplines. These methods can be classified into design-based methods and data-driven rule-based methods. In a design-based method, the expected event sequence is obtained from the system design and is compared with the observed event sequence (Sampath et al., 1994; Srinivasan and Jafari, 1993; Pandalai and Holloway, 2000). The major disadvantage of these methods is that in many cases, events occur randomly and thus there is no system logic design information available. Data-driven rule based methods do not require system logic design information. These methods are made of two phases: 1) identification of temporal patterns, i.e., sequences of events that frequently occur (Mannila et al., 1997), and 2) development of prediction rules based on these patterns (Li et al., 2007).

In this work we propose to use the Cox PH model. The Cox model has been applied mainly in biomedicine, often for the study of cancer survival (Bovelstad et al., 2007; Hao et al., 2009; Yanaihara et al., 2006; Yu et al., 2008). It has also been applied successfully in various fields of research, such as criminology (Benda, 2005; Schmidt and Witte, 1989), sociology (Agerbo, 2007; Sherkat and Ellison, 2007), marketing (Barros and Machado, 2010; Chen et al., 2009). There are limited uses of the Cox PH model in cybernetic (Li et al., 2007) and also an application to software data (Wendel et al., 2008) where, using as input code metrics, failure time data coming from bug report were analysed.

The paper is structured as follows: In Section 2, we present the Cox PH model; in Section 3, we introduce our approach and we discuss a sample application of it. In Section 4, we discuss our results.

2 THE COX PROPORTIONAL HAZARD MODEL

Cox PH model (Cox, 1972) gives an expression for
the hazard at time t for an individual i with a given specification of p covariates x:

$$h(t|x) = h_0(t)e^{\sum_{i=1}^{p} \beta_i x_i} \quad (1)$$

The Cox model formula says that the hazard at time t is the product of two quantities. The first of them, $h_0(t)$, is called the baseline hazard function and is equal for all individuals; it may be considered as a starting version of the hazard function, prior to considering any of the x's. Cox PH model focuses on estimating regression coefficients β's leaving the baseline hazard unspecified. β is a vector of regression coefficients; in the $p < n$ setting, β's are estimated by maximizing the log partial likelihood, which is given by:

$$I(\beta) = \sum_{i=1}^{n} \left(x_i \beta - \log \left(\sum_{j \neq i} e^{x_j \beta} \right) \right) \quad (2)$$

Where $R(t_i)$ is the risk set at time t_i, i.e. the set of all individuals who are still under study just prior to time t_i.

A parametric survival model is one in which survival time (the outcome) is assumed to follow a known distribution. The Cox PH model is not a fully parametric model; rather it is a semi-parametric model because even if the regression parameters β's are known, the distribution of the outcome remains unknown. The Cox PH model is a “robust” model, since the results obtained from it closely approximate the results of the correct parametric model.

The key assumption of the Cox PH model is proportional hazards; this assumption means that the hazard ratio (defined as the hazard for one individual over the hazard for a different individual) is constant over time.

Cox PH model is widely used because of its characteristics: 1) even without specifying $h_0(t)$, it is possible to find the β's, 2) no particular form of probability distribution is assumed for survival times, and 3) it uses more information – the survival times – than the logistic model, which considers a (0,1) outcome and ignores survival times and censoring. Therefore it is preferred over the logistic model when survival time is available and there is censoring (Kalbfleisch and Prentice, 2002).

3 THE PROPOSED APPROACH

The approach proposed in this work is a technique to predict the failure of a running software systems using log files. The idea is to develop devices that read logs of running applications and signal the likely crash of such systems. In this Section, we describe the structure of the approach and of the monitoring process, and we show the results of the sample applications.

3.1 Structure of the Approach

Figure 1 presents a schematic view of the proposed approach.

While the system is running, log data are collected to track the actual execution path (Coman and Sillitti, 2007; Coman et al., 2009; Moser et al., 2006; Scotto et al., 2004; Scotto et al., 2006; Sillitti et al., 2003; Sillitti et al., 2004). In this work, we look at the running system as a “black box”, meaning that we do not have any other information about the system except the log files.

The monitoring process takes log data as input, basing on the analysis performed, gives to the supervisor a message indicating the “likely failure” for the running application.

The supervisor can act directly on the running system to avoid the predicted failure, or send an alert to the outside world. Possible actions could be to abort the running system, to restart it, to dynamically load components, or to inform the running system if it was a suitably structured autonomic system (Müller et al., 2009). Thus waste of time may be reduced (Sillitti and Succi, 2005).

3.2 Structure of the Monitoring Process

The monitoring process is based on the Cox PH model; we chose this model because in our type of data:

- Survival time is available;
- Censoring is present.

An advantage of Cox PH model is that no assumption of a parametric distribution for the event
sequence data is needed, which could result in the discovery of information that may be hidden by the assumption of a specific distribution (Yu et al., 2008); results comparable to the parametric model are obtained even without this assumption (Kalbfleisch and Prentice, 2002).

3.2.1 Dimensional Reduction of the Problem and Data Preparation

As first, the monitoring process performs an automatic pre-processing phase (Zheng et al., 2009) to get temporal event sequences from raw logs of the application. This system works as follows:
1. data are parsed to extract operations together with their associated time stamps and severities for each event in the log file;
2. duplicate rows are deleted together with logs that are missing information in one or several of the fields Operation, Time stamp, Severity;
3. sequences of activities are extracted: a new sequence starts either if there is a ‘Log in’ operation or if the day changes. Failures are defined as sequences containing at least one severity “Error”.

Table 1 summarizes the definitions used in this work.

<table>
<thead>
<tr>
<th>Notion</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>Application</td>
</tr>
<tr>
<td>Sequence</td>
<td>A chronologically ordered set of log entries in the maximum time frame of 1 day. Two sequences are separated by a “Log in” operation.</td>
</tr>
<tr>
<td>Failure</td>
<td>A sequence containing at least one severity “Error”</td>
</tr>
</tbody>
</table>

Afterwards, the monitoring process prepares the input for the Cox PH model (Table 2). Each sequence i is described by \((x_i, t_i, d_i)\), where: 1) \(x_i = (x_{i1}, ..., x_{ip})\) and \(x_{ij}\) is the multiplicity of operation \(j\) in sequence \(i\), 2) \(t_i\) is the lifetime of the sequence, defined as the difference between the last time stamp and the first time stamp of sequence \(i\), and 3) \(d_i = 1\) when the event is “observed” (failure sequences) and \(d_i = 0\) elsewhere (censored observations). Our type of censoring is type II with a percentage of 100% (Lee and Wang, 2003), meaning that \(d_i\) is never equal to zero because of the end of the observation period.

3.2.2 Training of the Model and Analysis of the Results

Following the guidelines of (Hao et al., 2009; Yanaihara et al., 2006; Yu et al., 2008), the training includes the following steps:
1. The Schoenfeld test (Hosmer et al., 2008; Kalbfleisch and Prentice, 2002; Kleinbaum and Klein, 2005) is applied to select the operations satisfying the PH assumption.
2. The Cox PH model is applied and operations that are significantly associated to failures are identified.
3. For each sequence a risk score is evaluated according to the exponential value of a linear combination of the multiplicity of the operation, weighted by the regression coefficients derived from the aforementioned Cox PH model.
4. The following values are extracted: 1) \(m\), the third quartile of risk scores of non failure sequences, and 2) \(M\), maximum risk score of non failure sequences.
5. The risk score \(RS\) is then evaluated for the actual sequence of the running application, as in point 4. One of the following messages is given as output to the supervisor about the running application:
 i. “likely no failure” if \(RS \leq m\),
 ii. “likely failure” if \(RS \geq M\), and
 iii. “still unknown” if \(m < RS < M\).

3.3 Sample Application

To assess the suitability of our approach, we have tested it with real-world data. We use log files collected during approximately 3 months of work in an important Italian company that prefers to remain anonymous.

The dataset was prepared using the pre-processing phase of the monitoring process presented in Section 3.2. Sequences were randomly assigned to training set (60%) or test set (40%).

Table 3 contains the summary of the results of pre-processing the training set.

<table>
<thead>
<tr>
<th>Type of event</th>
<th>(n)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failures*</td>
<td>28</td>
<td>12.8</td>
</tr>
<tr>
<td>Censored</td>
<td>157</td>
<td>72.0</td>
</tr>
<tr>
<td>Total</td>
<td>185</td>
<td>100.0</td>
</tr>
</tbody>
</table>

* Dependent variable: survival time
Six out of the eight initial operations were satisfying the proportional hazards assumption and were therefore kept in the input dataset for the Cox PH model. Table 4 contains the output of this model.

Table 3: Output of the Cox PH model on training set.

<table>
<thead>
<tr>
<th>Operation</th>
<th>β</th>
<th>sig</th>
<th>exp(β)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation 1</td>
<td>-0.40</td>
<td>0.013</td>
<td>0.961</td>
</tr>
<tr>
<td>Operation 2</td>
<td>0.06</td>
<td>0.015</td>
<td>1.006</td>
</tr>
<tr>
<td>Operation 3</td>
<td>-0.52</td>
<td>0.050</td>
<td>0.592</td>
</tr>
</tbody>
</table>

Three-operations signature risk scores were calculated for all the sequences in the test set. The comparison between failures and non failures shows that higher risk scores have been assigned to failure sequences (Figure 2). So, altogether we obtained a value of $m = 0.59$ and $M = 1.85$.

In the test set, the comparison of the risk scores with m and M gives the following results: in 40 % of the cases our approach is able to predict correctly the failure and only in 1% of the cases a predicted failure is not a failure; this means that a message of expected failure is quite reliable. On the contrary, the prediction of non failures is not as reliable: 48% of the failing sequences are predicted as non failing.

Altogether, the results from this analysis appear quite interesting.

4 CONCLUSIONS

In this work we propose to develop devices that read logs of running applications and warn the supervisor about the likely failure.

Results show that higher risk scores are assigned to failure sequences in the test set; 40% of failures are correctly identified.

These devices are intended to become an incremental failure prediction tool which is built after each end of a sequence of operations and uses data from previous iterations to refine itself at every iteration.

Our goal now is to study more in-depth our promising model to determine if we can generalize our results. To this end, we plan to replicate the analysis on more industrial datasets.

Another aspect that we will evaluate is the possibility of predicting the occurrence of a failure analysing only an initial portion of a sequence, so that there could be an early estimation of failure, providing additional time to take corrective actions.

We are also considering additional models to see if we can achieve higher levels of precisions:

- Cox PH model with strata to analyse covariates not satisfying the PH assumption;
- Specific techniques to manage datasets with a limited number of cases (Bøvelstad, 2010).

Finally, we are now investigating how we could consider other “black-box” properties or applications to predict failures; candidate properties include memory usage, number of open files, processor usage.

We will also deal with the bias introduced when calculating survival time without considering the duration of the last operation.

Finally, the proposed model could be particularly useful dealing with autonomic systems. Autonomic systems could be instructed to receive signals of likely failures and upon reception of such signals could start a suitable recovery procedure (Müller et al., 2009).

ACKNOWLEDGEMENTS

We thank the Autonomous Province of South Tyrol for supporting us in this research.

REFERENCES

