
A MULTI-AGENT SELECTION OF MULTIPLE COMPOSITE WEB
SERVICES DRIVEN BY QOS

Fatma Siala and Khaled Ghedira
University of Tunis – SOIE, Tunis, Tunisia

Keywords: QoS, Web service, Multi-agent system, Composition, Contract-net protocol, Combinations, Execution paths.

Abstract: As the number of functionally similar Web Services from providers with different Quality of Service’s (QoS)
scores is increasing, a selection needs to be made to determine which services are to participate in a given
composite service. Moreover, QoS becomes one of the most important factors for Web Service selection.
Indeed, one of the main assets of service-orientation is a composition to develop higher level services, so-
called composite services, by re-using existing services. However, for a composition, we can have different
combinations and execution paths. Particularly, a composite service can generate different schemes that give
various QoS scores. We propose, in this paper, two frameworks. The first framework deals with the selection
of composite Web services on the base of Multi-Agents negotiation. The objective of these agents is to find
out the best Composite QoS (CQoS) based on Web services availability. The second framework improves the
first one by supporting different combinations and execution paths.
The proposed Multi-Agents frameworks are compared to an existing approach in terms of execution time and
QoS’s score. Experiments have demonstrated that our frameworks provide reliable results in comparison with
the existing approach.

1 INTRODUCTION

Web service technology is greatly contributing to
change the landscape of today’s software engineering.
One of the most promising advantages of the service-
oriented paradigm is related to service run-time dis-
coveries and late binding mechanisms (Canfora et al.,
2008).

Web services are the basis of service-oriented soft-
ware, which is based on network, including simple
standards such as the Web Services Description Lan-
guage (WSDL), the Universal Description, Discov-
ery and Integration (UDDI) and the Simple Object
Access Protocol (SOAP). These standards can help
service publication, service location and use services
through Internet. WSDL is the standard language for
describing a Web service. UDDI is used to register
and search Web services. SOAP, as a transport layer,
is used to send messages between service users and
service providers1. XML is a language to support
these standards.

Indeed, one of the main assets of service’s ori-
entation is composition to develop higher level ser-

1http://www.w3c.org/TR/wsdl

vices. A composite Web service is a collection of sin-
gle Web services that form a new complex service.
Based on a control flow description of the composi-
tion, suitable task candidates must be discovered and
from these candidates, the most suitable must be se-
lected. The flow description with an assignment of
concrete services can be used to parametrise an exe-
cution engine to perform the composition (Jaeger and
Ladner, 2006).

As the most requests concern composite services,
the QoS-based Composition (CQoS) selection be-
comes very important. It is related to the quality of
any elementary service. Notably, a system composed
of services that ensures the individual QoS that should
achieve optimal CQoS is always a problem during the
search. Issues related to the guaranteed QoS com-
positions are as important as the issues related to the
functional services. The Web services QoS focus on
non-functional attributes identified by the W3C2. The
elements of quality include price, availability, relia-
bility, reputation and so on.

Moreover, a composite service can be represented
by a statechart which has multiple execution paths

2http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/

675Siala F. and Ghédira K..
A MULTI-AGENT SELECTION OF MULTIPLE COMPOSITE WEB SERVICES DRIVEN BY QOS.
DOI: 10.5220/0003555306750684
In Proceedings of the 1st International Conference on Cloud Computing and Services Science (MAS-2011), pages 675-684
ISBN: 978-989-8425-52-2
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



when containing conditional branchings. Each execu-
tion path represents a sequence of tasks to complete a
composite service execution. Furthermore, for a com-
posite Web service, we notice that we can have differ-
ent possible combinations.

Our work aims at advancing the current state of
the art in technologies for Web service composition
by first, taking into account the user’s preferences,
second, by using agents to negotiate the QoS value
and dynamically select providers for various services
in the composition (based on availability). Finally, by
proposing a framework that supports different execu-
tion paths and combinations. Our contributions are re-
vealed when negotiating only with available Web ser-
vices providers that give a better Central Processing
Unit (CPU) time and by supporting different execu-
tion paths and combinations for a composition. The
combination concept has never been addressed by any
approach.

The structure of this paper is as follows: The
coming section briefly introduces the main concepts
used in our work. Section 3 presents the major re-
lated works in the area of Web service composition
based on QoS. Section 4 proposes two frameworks
prototypes, an initial framework and its amelioration
for taking into account different execution paths and
combinations in a composition. Section 5 explains
the implementation of these frameworks using a case
study. Accordingly, section 6 presents the experimen-
tation results. After that, the approach is discussed in
section 7 by presenting existing approach limitations
and detailing our contributions and the difference be-
tween the two proposed frameworks. Finally, we con-
clude the whole paper.

2 MAIN CONCEPTS

In this section, we define three concepts used in the re-
mainder of the paper: execution path, composite Web
service and Web service combination.

To simplify the discussion, we initially assume
that all the statecharts that we deal with are acyclic.
If a statechart contains cycles, a technique for unfold-
ing it into an acyclic statechart needs to be applied be-
forehand detailed by (Zeng et al., 2004). We present
in Fig. 1 an example of a statechart with AND and
OR states.

Figure 1: Example of a statechart.

2.1 Execution Path

If a statechart contains conditional branchings, it has
multiple execution paths. Each execution path rep-
resents a sequence of tasks to complete a composite
service execution. Fig. 2 gives an example of a state-
chart’s execution paths. In this example, since there is
one conditional branching after service ST , there are
three paths, called EP1, EP2 and EP3 respectively. In
the execution path EP1, service SC is executed after
service ST while in the execution path EP2, service
SB is executed after service ST and in the execution
path EP3, service SM is executed after service ST .

Figure 2: Execution paths representation of Fig 1 statechart.

2.2 Composite Web Service

The services composition can be defined as ”the pro-
cess of combining existing services to form new ser-
vices”. These assembled Web services will certainly
play a greater role for communication among applica-
tions. In particular, if non of the services are able to
respond to a request from a user, it will be possible to
combine existing Web services to perform this task.

As shown in Fig. 3, a service composition con-
sists normally of some services linked together, each
of them may be provided by more than one supplier.
For a particular service, many providers may offer
the same functionality but offer different QoS. We as-
sume in Fig.1 that a composite service is composed on
n services and each service Si may be provided from
p providers Si1 to Sip. Let n = 3 and p = 5 (as an ex-
ample), to supply the composite service, we need ser-
vices S1, S2 and S3 in the composition. In addition, S1
may be afforded by service providers S1:1, S1:2, S1:3,
S1:4 or S1:5.

CLOSER 2011 - International Conference on Cloud Computing and Services Science

676



Figure 3: Web service composition.

2.3 Web Service Combination

For a composite Web service, we notice that we can
have different possible combinations. As an exam-
ple, when a user requests a composite Web service,
the same result service can be provided from differ-
ent web services combinations (fig. 1 and fig. 4).
The user will not be aware if the Web service ST is
executed after or before Web services SRL and SRD.
The two combinations give the same result but not the
same QoS.

Figure 4: Example of a combination.

3 RELATED WORKS

Several studies have been made to the services
composition taking into account QoS requirements
(Brandic et al., 2008) (Mukhija et al., 2007) (Kona
et al., 2009). In this section, we review selected works
based on their relevance for our approach.

(Zeng et al., 2004) have presented a solution for
the composition problem by analyzing multiple exe-
cution paths of a composite service which are spec-
ified using UML (Unified Modeling Language) stat-
echarts. They have modeled the composition prob-
lem using different approaches, including a local op-
timization approach and global planning approach us-
ing linear programming.

(Guan et al., 2006) are the first who propose
a framework for QoS-guided service compositions
which uses constraint hierarchies as a formalism for
specifying QoS. They use a branch and bound algo-
rithm that is only capable of solving sequential com-
positions. The authors do not present any empiri-

cal evaluation to demonstrate the optimization perfor-
mance of their approach.

(Rosenberg et al., 2009) have used constraint pro-
gramming and integer programming approach for op-
timizing QoS by leveraging constraints hierarchies as
a formalism to represent user constraints (specified
with a Domain-Specific Language) of different im-
portances.

(Canfora et al., 2008) have proposed an approach
based on genetic algorithms. To determine the opti-
mal set of concretizations, the approach needs to es-
timate the composite service QoS. This is done using
some aggregation formulas.

(Hong and Hu, 2009) have used an ordinary util-
ity function as a numerical scale of ordering local
services and a multi-dimension QoS based local ser-
vice selection model is proposed to provide important
grounds to choose a superior service and shift an in-
ferior one. Secondly, subjective weight mode, objec-
tive weight mode, and subject-objective weight mode
are constructed to determine the weight coefficient of
each QoS criterion, and to show the users’ partiality
and the service quality’s objectivity.

(Alrifai and Risse, 2009) have employed Mixed
Integer Programming (MIP) to find the optimal de-
composition of global QoS constraints into local con-
straints. They have used distributed local selection to
find the best web services that satisfy these local con-
straints.

(Yan et al., 2007) have presented a framework in
which the service consumer is represented by a set
of agents who negotiate QoS constraints specified us-
ing SLA (Service Level Agreement), with the service
providers for various services in the composition ap-
plying the Contract-Net protocol. Their idea of using
Multi-Agents System and the Contract-Net protocol
is in line with the work presented in this paper. How-
ever, the authors do not deal with the the Web dy-
namism (the availability concept) so their approach
takes a large CPU time. Moreover, their framework
does not support the different execution paths and
combinations.

The majority of these approaches does not take
into account that for a composite service we can have
an execution plan that generates different execution
paths. These approaches deal only with the optimiza-
tion problem itself (finding the best CQoS) without
giving prominence for this aspect. Some approaches
deal with this aspect but repeating each time the gen-
eration of all the elementary Web services. More-
over, all these approaches do not take into consider-
ation that for a composite Web service we can have
different combinations. This concept has never been
addressed by any approach. By using Multi-Agents

A MULTI-AGENT SELECTION OF MULTIPLE COMPOSITE WEB SERVICES DRIVEN BY QOS

677



System, we generate all the execution paths and com-
binations in parallel and select the best execution path
or combination, so we gain in terms of CPU time.

We also take into consideration the importance of
the Web services’ availability since the Web is a dy-
namic environment. By considering only available
Web services we also improve the CPU time. Our
approach allows to find the best CQoS by consider-
ing different execution paths and combinations and
by also taking into account the dynamical aspect of
the Web (the web service availability changes) which
directly influences the CPU time.

4 THE PROPOSAL
FRAMEWORKS

The first step towards autonomously establishing QoS
value for a service composition is to have a support-
ing framework. This framework should be able to ad-
dress the special requirements for establishing QoS
value for a service composition. For the composition
process, we use (Lajmi et al., 2006) technique.

Our goal is to propose an approach to the Web
services composition that guarantees non functional
properties (QoS). This approach must also support
different execution paths and combinations. We
present, in the following, two frameworks. The first
framework allows to select the best elementary Web
services in terms of QoS based on Web services avail-
ability. The second framework offers all first frame-
work’s functionalities but also supports different ex-
ecution paths and combinations. Several motivations
lead to use Multi-Agent Systems (MAS) (Barbuceanu
and Fox, 1996). In fact, a Web service is passive until
it is invoked, have only a knowledge of himself and is
not adaptable and is not able to benefit of new capa-
bilities of the environment (Charif et al., 2010).

We propose to represent each service by an agent.
In the MAS field, negotiation is a core component
of agents interactions. Indeed, since agents are au-
tonomous, there is no imposed solution in advance,
but agents must reach solutions dynamically while
solving problems. The basic assumption of this ap-
proach is that each elementary Web service has an
agent responsible to it. The objective of these agents
is to find out the best CQoS. They aware available
providers also represented with agents.

In this context, we propose two global frame-
works. The first one optimizes the QoS criteria for a
composite service provision. The second framework
improves the first one by considering different execu-
tion paths and combinations for a given statechart.

4.1 The First Framework

To better explain our approach, we present in Fig 5
the first framework associated to Fig 3. This frame-
work consists of an Interface Agent (IA) and a set of
Negotiator Agents (NAs) that negotiate with a set of
Web Service Agents (WSAs).

The IA associates an NA for each elementary ser-
vice in the composition. These NAs negotiate via
the Contract-Net (CNET) protocol with WSAs (the
providers) to find the best elementary Web service and
send the response to the IA which evaluates the results
and either confirms the acceptance or repeat the nego-
tiation.

Figure 5: The First Framework.

4.1.1 The Interface Agent

The Interface Agent (IA) represents the interface that
allows the user to access the framework for specify
the desired service and QoS criteria. In fact, the user
can specify each criterion with a weight since differ-
ent users may have different requirements and prefer-
ences regarding QoS. For example, a user may require
to minimize the execution time, while another user
may give more importance to the price than to the ex-
ecution time. The selection process is based on the
weight assigned by the user to each criterion. The IA
computes the CQoS score using a formula proposed
by (Zeng et al., 2004). The IA will then, provide the
expected service with the required QoS criteria.

We should note that the system can allow a user
to define constraints expressed using a simple expres-
sion language. Examples of constraints that can be
expressed include duration constraints and price con-
straints.

4.1.2 The Negotiator Agent

A Negotiator Agent (NA) is responsible of a Web ser-
vices set offering the same functionality. This agent
is in charge of negotiating with providers for a service
from the composition in order to optimize the QoS.
We use a variant of the CNET protocol, the directed

CLOSER 2011 - International Conference on Cloud Computing and Services Science

678



award where the critical information which must be
aware by the NA is the availability. So, the NA ac-
quaintances are the available Web service providers.
For a negotiation, the NA must consult its list con-
taining available Web services.

4.1.3 The Web Service Agent

A Service Level Agreements (SLA) defines the terms
and conditions of service quality that a Web service
delivers to service requesters. The major constituent
of an SLA is the QoS information. There are a num-
ber of criteria (e.g., execution time, availability) that
contribute to a QoS in an SLA. Web service providers
publish QoS information in SLAs.

Each Web Service Agent (WSA) represents a Web
service. This Web service belongs to a Web services
class where an NA is responsible. For example, a
travel service provider may specify that it supports the
Trip-planning service and belongs to the service class
FlightTicketBooking. Service class describes the ca-
pabilities of Web services and how to access them.

The NA has a list that he consult whenever he be-
gins a negotiation. In this list there is the available
WSAs. By this method, we also take into account the
failure cases.

We note that in Fig 5, there is unavailable Web
services represented by agents that will not negotiate
with the NA.

4.2 The Negotiation

4.2.1 Negotiation Protocol

The negotiation protocol is the way and manner the
negotiating parties interact and exchange information.
It includes the way in which the offers and messages
are sent to opponents. There are various negotia-
tion protocols available in the research community.
In this paper, we propose to use the CNET Protocol,
designed by (Smith, 1980), and especially a variant
named directed award where the manager must have a
table of acquaintances that contains knowledge about
other agents (eg, skills, knowledge, value judgments
about these agents). In this protocol, one agent (the
initiator) takes the role of manager which wishes to
have a task performed by the other agents (the partic-
ipants) and further wishes to optimize a function that
characterizes this task. We use the function proposed
by (Zeng et al., 2004). For a given task, any number
of the participants may respond with a proposal, the
rest must refuse.

4.2.2 Negotiation Coordination

The IA coordinates multiple negotiations for various
services in the composition. The purpose of the co-
ordination is to ensure that the results of these multi-
ple negotiation can collectively fulfill the end-to-end
QoS. The first task that the IA performs is to attribute
a Web service with its QoS weights to the NAs. The
second task that the IA performs is to confirm nego-
tiation results. As the extended negotiation protocol
suggests, when various NAs get the best deals, they
consult the IA for confirmation. The IA evaluates the
results and either confirms the acceptance or amends
the reserve values to continue the negotiation. The
QoS aggregation refers to the QoS model proposed in
(Zeng et al., 2004).

The NA sends a CFP message only to the avail-
able Web Service Agents. When The proposals and
counter proposals are then communicated iteratively
between the NAs and the service providers (WSAs),
following the standard FIPA protocol, until the best
deal is reached (i.e. the proposals offered by one
or more providers can satisfy the negotiation objec-
tives) or the timeout occurs. The NA block the se-
lected WSA. At this time, the best deal is sent to the
IA. If the overall QoS requirements are satisfied, the
IA confirms to each NA that the current deal is ac-
ceptable. Subsequently, the NA acknowledges the
acceptance of the proposal to the selected providers
(WSAs). When the user finish using Web services,
the IA inform the NA to unlock the selected WSA.

In the case that the overall QoS requirements are
not satisfied based on the current best deals, the user
should modify the requirements and the IA amends
the reserve values for the NA to re-start negotiation.
Each corresponding NA then sends the modified CFP
to WSA and begins a new negotiation process

This research refers to the QoS model presented
in (Zeng et al., 2004) which consider five quality at-
tributes but other quality dimensions can be used in-
stead without any fundamental changes. The dimen-
sions are numbered from 1 to 5, with 1 = price, 2 = du-
ration, 3 = availability, 4 = success rate, and 5 = repu-
tation. Given a task t j in a composite service, there is
a set of candidate (elementary) Web services S j =fs1 j,
s2 j, . . . , sn jg that can be used to execute this task. By
merging the quality vectors of all these candidate Web
services, a matrix Q = (Qi; j;1� i� n;1� j � n).

In this case n=5. This matrix is built, in which
each row Q j corresponds to a Web service si j while
each column corresponds to a quality dimension.

A Simple Additive Weighting (SAW) technique is
used to select an optimal Web service. There are two
phases in applying SAW:

A MULTI-AGENT SELECTION OF MULTIPLE COMPOSITE WEB SERVICES DRIVEN BY QOS

679



� Scaling Phase:
Some of the criteria could be negative, i.e., the higher
the value, the lower the quality. This includes criteria
such as execution time and execution price. Other cri-
teria are positive, i.e., the higher the value, the higher
the quality. For negative criteria, values are scaled ac-
cording to (1). For positive criteria, values are scaled
according to (2).

Vi; j =

8<:
Qmax

j �Qi; j

Qmax
j �Qmin

j
if Qmax

j �Qmin
j 6= 0

1 if Qmax
j �Qmin

j 6= 0
(1)

Vi; j =

8<:
Qi; j�Qmin

j

Qmax
j �Qmin

j
if Qmax

j �Qmin
j 6= 0

1 if Qmax
j �Qmin

j 6= 0
(2)

hspace-1cm In the above equations, Qmax
j is the maxi-

mal value of a quality criteria in matrix Q, i.e., Qmax
j =

Max(Qi; j);1� i� n.
While Qmin

j is the minimal value of a quality crite-
ria in matrix Q, i.e.,

Qmin
j = Min(Qi; j);1� i� n.

By applying these two equations on Q, we obtain
a matrix V = (Vi; j;1� i� n;1� j � n),

in which each row Vj corresponds to a Web ser-
vice sij while each column corresponds to a quality
dimension.

� Weighting Phase :

The following formula is used to compute the overall
quality score for each Web service:

score(pi) =
n

å
j=1

(Vi j �Wj) (3)

where Wj 2 [0;1] and
n

å
j=1

Wj = 1.

Wj represents the weight of criterion j. End users
express their preferences regarding QoS by providing
values for the weights Wj.

For a given task, the NA will choose the Web ser-
vice which satisfies all the user preferences for that
task and which has the maximal score. If there are
several services with maximal score, one of them is
selected randomly. If no service satisfies the user
preferences for a given task, an execution exception
will be raised and the IA will propose the user to
change his preferences.

4.3 The Second Framework

We propose an improvement for the first framework
to enable the support of different execution paths and

combinations (second framework represented in fig
6). We add a new agent category, the Combination
Coordination Agent (CCA).

Figure 6: Second Framework.

First, the user specify the desired composite Web
service and the associated requirements. Then, The
IA charges each CCA for an execution path or com-
bination of the statechart, Second, the IA negotiates
via the CNET protocol for the best execution path.
Finally, the IA returns to the user the best Web ser-
vice composition. We explain in the following the
role or each agent. We explain the negotiation process
through an AUML protocol diagram (Fig 7). The ne-
gotiation between the other agents is like to the first
framework.

Figure 7: Negotiation protocol success.

In the case that the overall QoS requirements are
not satisfied based on the current best deals, the user
modify the requirements and the IA amends the re-
serve values for the NA to re-start negotiation. Each
corresponding NA then sends the modified CFP to
WSA and begins a new negotiation process, as shown
in Fig 8).

CLOSER 2011 - International Conference on Cloud Computing and Services Science

680



Figure 8: Negotiation protocol failure.

4.3.1 The Interface Agent

The Interface Agent (IA) represents the interface that
allows the user to access the framework to specify
the desired service and QoS criteria. In fact, the user
can indicate each criterion with a weight since differ-
ent users may have different requirements and prefer-
ences regarding QoS. The IA charge each CCA for an
execution path or combination of the statechart and
will, thereafter, select using the CNET protocol the
best proposal from CCAs.

4.3.2 The Combination Coordinator Agent

The Combination Coordinator Agent (CCA) interacts
with the IA to receive an execution path or combi-
nation of the statechart for the service composition
and the user requirements. Each CCA is responsible
for an execution path or combination of a composi-
tion. This agent attributes a NA for each Web ser-
vices and computes the CQoS score using a formula
proposed by (Zeng et al., 2004) when it receives their
responses. Finally, the CCA negotiates with the IA
using the CNET protocol to provide its proposal.

4.3.3 The Negotiator Agent

A Negotiator Agent (NA) has the same role as in the
first framework however, in this case, it negotiates
with the CCAs instead of the IA. The selected WSA
is blocked (reserved).

The Web Service Agent saves the same role as in
the first framework. Once again, we note that in Fig
6, there are unavailable Web services represented by
agents that will not negotiate with the NA. The WSA
has the same role as in the first framework.

When the user finishes using the Web services, the

IA inform the NA which should also inform the WSA
to unlock the WSA.

5 IMPLEMENTATION AND CASE
STUDY

To show the key ideas presented in this paper, a
prototype has been implemented for the proof-of-
concept purpose using the FIPA compliant JADE
Agent Framework 3 which is a middleware that im-
plements an agent platform and a development frame-
work. This framework supports agents’ negotiations
through an Agent Communication Language (ACL).

During the negotiation, the IA, the CCAs, the NAs
and the WSAs exchange a number of messages.

We explain our approach through a case study.
A simplified statechart specifying a scenario in the
tourism industry composite Web service is depicted
in Fig 1. In this scenario, a tourist who holds a mobile
device can request the full description of the route in-
formation from his/her current position to a selected
attraction. We have height different services, that will
be invoked, defined as follows:

� A Phone Location Service(SPL): to find the cur-
rent position of the tourist.

� A Route Calculation Service (SRL): to calculate
the route from the tourist’s position to the attrac-
tion.

� A Route Description Service(SRD): to generate
and present graphical and textual description of
the route to the tourist.

� A Traffic Service (ST ): to present the traffic of the
route from the tourist’s position to the attraction.

� A Car Service (SC): to generate the duration that
could be taken at this moment from the tourist’s
position to the attraction, if the tourist uses a car.

� A Bus Service (SB): to generate the duration that
could be taken at this moment from the tourist’s
position to the attraction, if the tourist uses a bus.

� A Metro Service (SM): to generate the dura-
tion that could be taken at this moment from the
tourist’s position to the attraction, if the tourist
uses a metro.

� A Metro Service (SP): to generate the cost that the
tourist should pay.

3JADE (Java Agent Development Framework), Tele-
com Italia Lab, version available at: http://sharon.cselt.it/
projects/jade/

A MULTI-AGENT SELECTION OF MULTIPLE COMPOSITE WEB SERVICES DRIVEN BY QOS

681



In this example, after the service SPL is completed, the
service SRL is done in parallel with SRD. After these
services are completed, the ST is triggered and either
SC, SB or SM is invoked. Finally, the service SP is
generated (Fig 1).

The tourist can also specify some QoS require-
ments when making his/her request. For example, the
tourist can request that the score of CQoS is delivered
with a value top then 70. Obviously, the tourist can
also require the QoS score for the elementary Web
services such SV , SB, SM , etc.

The tourist should also indicate the weight asso-
ciated to each QoS attribute. Example of weights
values : price=0.15, duration=0.35, success rate=0.40
and reputation=0.10. These weights will be used for
the computation of the QoS score of each elementary
Web services using formula 3. If the user does not
specify weights, the system will consider a weight
value = 0.25 for each criterion.

So, each IA send at the same time a CFP to the
CCAs for an execution path or combination in the
statechart of the composition. In our case (Fig 2), we
have three execution paths. Each NA (height NAs) as-
sociated to an elementary Web service negotiates with
the available WSAs for one service in the composi-
tion. The WSAs randomly generate proposals (QoS
score) with the value between 10 and 100.

Each NA negotiates with providers simultane-
ously. The negotiation results for each service are
summarized in Table 1. After the reception of offers
from available WSAs, the height NAs select the best
offer, block the WSAs associated to the selected
Web services and return their best offers to the
CCAs. Each CCA (three CCAs) calculates its CQOS
score. Supposing that we have these results after the
negotiation, EP1= 65; EP2 = 84 and EP3=40. The
IA will choose the EP2 that has the best CQoS. The
whole process is simulated using the prototype.
The following results are confirmed:
Metro Service (SPL) : 66
Phone Location Service (SRL) : 98
Metro Service (SRD) : 80
Phone Location Service (ST ) : 79
Route Calculation Service (SC) :87
Route Description Service (SB) : 73
Traffic Service (SM) : 85
Bus Service (SP) :92

These results are associated to the best QoS of
each elementary Web service. Finally, the IA checks
if the best offers can jointly fulfill the user’s request
(the desired value of CQoS is 75) using a formula also
proposed by (Zeng et al., 2004).

When the tourist finishes using the Web service,

the IA informs the NA to unlock the selected (re-
served) WSA.

Table 1: QoS values (negotiation results) for each WSA.

S PL S RL S RD S T S C S B S M S P
1 65 46 80 25 35 73 85 92
2 33 39 40 48 28 54 77 45
3 66 24 50 38 66 49 76 22
4 40 45 26 79 32 46 80 21
5 22 98 44 75 87 24 37 64

6 EXPERIMENTATION

The first series of tests were conducted to compare
the CPU time of our approach with the approach of
(Yan et al., 2007) to find the best QoS for each ele-
mentary service and to perform the CQoS of the first
framework.

In the experimentation, we have calculated the
CPU time of each approach (the Yan et al.’s approach
(Yan et al., 2007), the first and the second frame-
works) by fixing the number of elementary services
in a composition to 25 and varying the number of ser-
vice providers from 10 to 100 with steps of 10 for 50
execution paths. We have calculated the CPU dura-
tion 10 times for each case considering the average.
The results of these experiments are presented via a
chart (Fig. 9).

Figure 9: Comparison of CPU time.

These experiments show that by increasing the
number of Web services providers, the CPU time
also increases for each approach. The first frame-
work takes a largely better CPU time than (Yan et al.,
2007)’s approach but the second framework takes a
little more time than (Yan et al., 2007)’s approach.
This result is evident since the Yan et al.’s approach
and the first framework does not take into account dif-
ferent execution paths and combinations. Moreover,
the first framework sends the CFP only to the avail-
able WSAs. On the other hand, the second framework
supports different execution paths and combinations
in a composition by also sending the CFP only to the
available WSAs.

We compare in Fig. 10 the quality score given by

CLOSER 2011 - International Conference on Cloud Computing and Services Science

682



each approach by also fixing the number of elemen-
tary services in a composition to 25 and varying the
number of service providers from 10 to 100 with steps
of 10. obviously, the first framework and the (Yan
et al., 2007)’s approach give the same quality score.
However, the second framework gives a largely better
CQoS score since it supports different execution paths
and combinations and chooses the best.

Figure 10: Comparison of QoS score.

By comparing only the CPU time or only the
CQoS score, we cannot conclude either the first
framework is better than the second framework or
the contrary. That’s what we propose to use the for-
mula (4) which calculates a ratio between the time
and the quality. We show through Fig. 11, that the
ratio between the time and the QoS is largely lower
than 1. This explains that although the second frame-
work takes more CPU time than the first framework,
it greatly improves the CQoS score.

Ratio =

8>>>>>>><>>>>>>>:

T2�T1
T min
2 �T min

1
Q2�Q1

Qmin
2 �Qmin

1

if T min
2 �T min

1 6= 0

andQmin
2 �Qmin

1 6= 0

1 if T min
2 �T min

1 = 0
andQmin

2 �Qmin
1 = 0

(4)

In the above equation, T1 is the average of CPU
time (we test 10 values in the experimentation for the
same case) taken by the first framework, T min

1 is the
minimum value of CPU time between the 10 values
taken in the experimentation for the first framework.
Q1 is the average of CQoS taken by the first frame-
work, Qmin

1 is the minimum value of CQoS between
the 10 values taken in the experimentation for the first
framework. The same notions are respectively taken
for T2, T min

2 , Q2 and Qmin
2 to the second framework.

7 DISCUSSION

We compare our proposed frameworks with Yan et
al.’s one (Yan et al., 2007). To the best of our knowl-
edge, their work is the sole which uses agent technol-

Figure 11: Comparison of ratio between the first and the
second frameworks.

ogy. (Maamar et al., 2005) have used MASs for Web
service composition but they don’t consider the QoS.

The (Yan et al., 2007) approach represents some
limitations, when the CNET protocol is used. The NA
has no knowledge about the agents. It will then send
the CFP to all service providers, and thus can cause
network congestion.

Our first framework improves the work of (Yan
et al., 2007) in terms of CPU time. In fact, we de-
crease the number of negotiations (we alleviate the
network) by using a variant of the Contract-Net pro-
tocol, called the directed award and sending the CFP
only to the available Web Service Agents. This con-
tribution gains on CPU time.

On the other hand, our second framework im-
proves the work of (Yan et al., 2007) and the first pro-
posed framework in terms of QoS by supporting mul-
tiple execution paths and combinations for a composi-
tion. By using formula (1), we have demonstrated that
the difference of CPU time is negligible compared to
the improvement of QoS. Supporting different com-
binations for a composition is a novel idea introduced
by our work. The greatest limitation of the second
framework is its lack of scalability. Therefore, we
are preparing a new scalable framework using Case
Based Reasoning.

The first framework optimizes the QoS at the lo-
cal level and verify after that if it ensures the QoS at
the global level (CQoS). On the other side, the second
framework, by considering different execution paths
and combinations, has more chances to ensure the
QoS at the global level.

Note that our approach supports as more attributes
of QoS (price, duration, reputation, success rate,
availability, etc.) as we want.

A MULTI-AGENT SELECTION OF MULTIPLE COMPOSITE WEB SERVICES DRIVEN BY QOS

683



8 CONCLUSIONS

In service-oriented computing, adequate support for
the service consumers and the service providers to
achieve agreements on QoS values is highly de-
manded. This important issue becomes more complex
in the context of service composition provision, where
the service consumer needs to achieve a set of in-
terrelated agreements with various services providers
in order to collectively fulfill the end-to-end QoS re-
quirements. Moreover, for a composite Web service,
we notice that we can have different possible combi-
nations and multiple execution paths since it contains
conditional branchings.

This paper exploits the agent technology to ad-
dress this crucial issues. A first framework is pro-
posed using agents that are able to negotiate with ser-
vice providers, in a coordinated way, to ensure end-
to-end QoS. Based on this framework, the negotiation
follows an extended FIPA protocol. So, agents can ex-
change meaningful messages with service providers
in a defined order. A contract Net protocol vari-
ant, called the directed award based on Web services
providers availability is used. A second framework
is proposed to support different execution paths and
combinations for a composition.

Our approach advances the current state of the art
by taking into account the Web services availability
and supporting different execution paths and combi-
nations for a composition. The proposed framework
is not scalable since the number of combination or ex-
ecution paths can be exponential. In the future work,
we will propose a new scalable framework which im-
proves our second framework by using Case Based
Reasoning.

REFERENCES

Alrifai, M. and Risse, T. (2009). Combining global opti-
mization with local selection for efficient qos-aware
service composition. In WWW, pages 881–890.

Barbuceanu, M. and Fox, M. S. (1996). The design of a co-
ordination language for multi-agent systems. In ATAL,
pages 341–355.

Brandic, I., Pllana, S., and Benkner, S. (2008). Speci-
fication, planning, and execution of qos-aware grid
workflows within the amadeus environment. Con-
currency and Computation: Practice and Experience,
20(4):331–345.

Canfora, G., Penta, M. D., Esposito, R., and Villani, M. L.
(2008). A framework for qos-aware binding and re-
binding of composite web services. Journal of Sys-
tems and Software, 81(10):1754–1769.

Charif, Y., Stathis, K., and Mili, H. (2010). Towards antici-
patory service composition in ambient intelligence. In
NOTERE, pages 49–56.

Guan, Y., Ghose, A. K., and Lu, Z. (2006). Using con-
straint hierarchies to support qos-guided service com-
position. In ICWS, pages 743–752.

Hong, L. and Hu, J. (2009). A multi-dimension qos based
local service selection model for service composition.
JNW, 4(5):351–358.

Jaeger, M. C. and Ladner, H. (2006). A model for the aggre-
gation of qos in ws compositions involving redundant
services. JDIM, 4(1):44–49.

Kona, S., Bansal, A., Blake, M. B., Bleul, S., and Weise, T.
(2009). Wsc-2009: A quality of service-oriented web
services challenge. In CEC, pages 487–490.

Lajmi, S., Ghedira, C., Ghédira, K., and Benslimane, D.
(2006). Wescocbr: How to compose web services via
case based reasoning. In ICEBE, pages 618–622.

Maamar, Z., Mostéfaoui, S. K., and Yahyaoui, H. (2005).
Toward an agent-based and context-oriented approach
for web services composition - appendices. IEEE
Trans. Knowl. Data Eng., 17(5).

Mukhija, A., Dingwall-Smith, A., and Rosenblum, D. S.
(2007). Qos-aware service composition in dino. In
ECOWS, pages 3–12.

Rosenberg, F., Celikovic, P., Michlmayr, A., Leitner, P., and
Dustdar, S. (2009). An end-to-end approach for qos-
aware service composition. In EDOC, pages 151–160.

Smith, R. G. (1980). The contract net protocol: High-level
communication and control in a distributed problem
solver. IEEE Trans. Computers, 29(12):1104–1113.

Yan, J., Kowalczyk, R., Lin, J., Chhetri, M. B., Goh, S.,
and Zhang, J. Y. (2007). Autonomous service level
agreement negotiation for service composition provi-
sion. Future Generation Comp. Syst., 23(6):748–759.

Zeng, L., Benatallah, B., Ngu, A. H. H., Dumas, M.,
Kalagnanam, J., and Chang, H. (2004). Qos-aware
middleware for web services composition. IEEE
Trans. Software Eng., 30(5):311–327.

CLOSER 2011 - International Conference on Cloud Computing and Services Science

684


