THE BRAIDED RECONSTRUCTION THEOREMS

Duanliang Liu, Shouchuan Zhang
Department of Mathematics, Hunan University, Changsha, P.R. China

Yange Xu, Guichao Wu
Department of Mathematics, Pingdingshan College, Pingdingshan, P.R. China
Department of Mathematics, Hunan University, Changsha, P.R. China

Keywords: Braided Hopf algebra, (Co)Quasitriangular, Braided reconstruction theorem.

Abstract: In this paper, we introduce the method (transmutation) turning an ordinary (co)quasitriangular Hopf algebra into a braided Hopf algebra, and give the other one which is dual to it.

1 INTRODUCTION

Braided tensor categories become more and more important. They have been applied in conformal field, vertex operator algebras, isotopy invariants of links (see Huang, 2005; Huang and Kong, 2004; Bakalov and Kirillov, 2001; Hennings, 1991; Kauffman, 1997; Radford, 1994). So studying in braided tensor categories is interesting, some jobs have been done(see Zhang, 2003; Shouchuan and Yange, 2008; Xu and Zhang). In this paper, we will turn an ordinary (co)quasitriangular Hopf algebra into a braided Hopf algebra, which is due to S. Majid (Majid, 1995). Of course, our results only hold in symmetric braided tensor categories, others need be studied furthermore. Since every braided tensor category is always equivalent to a strict braided tensor category, we can view every braided tensor as a strict braided tensor and use braiding diagrams freely.

Some Notations. Let \((\mathcal{D}, \otimes, I, C)\) be a braided tensor category, where \(I\) is the identity object and \(C\) is the braiding, with the inverse \(C^{-1}\). For \(f : U \to V\), \(g : V \to W\), \(h : I \to V\), \(k : U \to I\), \(\alpha : U \otimes V \to P\), \(\alpha_i : U \otimes V \to I\) are morphisms in \(\mathcal{D}\), we denote them by:

\[
f = \begin{array}{c}
U \\
V
\end{array},
\]

\[
gf = \begin{array}{c}
U \\
V
\end{array},
\]

\[
h = \begin{array}{c}
U \\
V
\end{array},
\]

\[
k = \begin{array}{c}
U \\
V
\end{array},
\]

\[
\alpha = \begin{array}{c}
U \\
V
\end{array},
\]

\[
\alpha_i = \begin{array}{c}
U \\
V
\end{array}.
\]

\[
C_{U,V} = \begin{array}{c}
U \\
V
\end{array},
\]

\[
C_{U,V}^{-1} = \begin{array}{c}
V \\
U
\end{array},
\]

where \(U, V, W\) are in \(\mathcal{D}\).

Let \(\mathcal{C}\) be a tensor category, the braided bialgebra \((H, R, \hat{\Delta})\) in \(\mathcal{C}\) is called quasitriangular bialgebra, if \((H, \hat{\Delta}, e)\) is a co-algebra and satisfy:

QT1:

\[
\hat{\Delta} = \begin{array}{c}
R \\
H
\end{array},
\]

QT2:

\[
\hat{\Delta} = \begin{array}{c}
R \\
H
\end{array},
\]

QT3:

\[
\hat{\Delta} = \begin{array}{c}
R \\
H
\end{array}.
\]
(H,R,Â) is also named that braided quasitriangular bialgebra in C, with R ∈ Hom C(I,H ⊗ H) has convolution-invertible.

Dually, braided bialgebra (H,r,Î) is called braided co-quasitriangular bialgebra in C, if (H,Î,ε) is an algebra and satisfy:

\[
\text{(CQT1):} \quad H \boxtimes H \rightarrow H, \quad H \boxtimes H \rightarrow H
\]

\[
\text{(CQT2):} \quad H \boxtimes H \rightarrow H, \quad H \boxtimes H \rightarrow H
\]

\[
\text{(CQT3):} \quad H \boxtimes H \rightarrow H, \quad H \boxtimes H \rightarrow H
\]

and r ∈ Hom C(H ⊗ H,I) has convolution-invertible too.

2 THE BRAIDED RECONSTRUCTION THEOREMS

(i) There exists a bialgebra B (braided Hopf algebra if H has left dual), written as B(H, f,H), living in (H,M,C B). Here B(H,f,H) = H as algebra, its counit is ε H, and its comultiplication and antipode are:

\[
\text{Proof (i):} \quad \text{Set } C = H \mathcal{M}, \mathcal{D} = (H, \mathcal{M}, C B). \text{ Let } F \text{ be the functor by pull-back along } f. \text{ That is, for any } (X, \alpha_X) ∈ H \mathcal{M}, \text{ we obtain an } H_1\text{-module } (X, \alpha_X) \text{ with } \alpha_X = \alpha_X(f \otimes id_X), \text{ written as } (X, \alpha_X) = F(X). \text{ For any morphism } g ∈ Hom C(U,V), \text{ define } F(g) = g. \text{ B is a left } B\text{-module by adjoint action. Let } B_L\text{ denote the left regular } B\text{-module. Obviously, } \alpha \text{ is a natural transformation from } B \otimes F \text{ to } F. \text{ Now, we show that } \theta_H \text{ is injective for any } V ∈ H_1 \mathcal{M}. \text{ If } \theta_H(g) = \theta_H(h). \text{ It is straightforward since } g \text{ and } h \text{ are } H_1\text{-module homomorphisms from } V \text{ to } B. \text{ Similarly, we can show that } \theta_V^{(2)} \text{ and } \theta_V^{(3)} \text{ are injective.}

\text{Obviously, } B \text{ is a braided bialgebra living in } (H_1 \mathcal{M}, C B) \text{ determined by braided reconstruction.}
Now we prove that, the comultiplication of B is the same as stated. That is, we need to show that:

$$
\theta_B^X(\Delta_X)^{\otimes r} = \alpha_{\otimes r} \mu^{-1}
$$

which show that the definition of the antipode of B is reasonable.

If H has left dual, set $\mathcal{C} = \{M \in \mathcal{H} \mid M \text{ has left dual}\}$, it is clear that \mathcal{C} is a rigid tensor category (every object has a left dual). Thus B is a braided Hopf algebra.

And

If H is a quasitriangular Hopf algebra, $\mathcal{H}^\mathcal{M}$ is braided tensor category by lemma 2.1, then by proposition 1.1 (iii), B is a quasitriangular Hopf algebra. If $H_1 = H$, F is identical functor in $\mathcal{H}^\mathcal{M}$, and let $\Delta = \Delta_B = \Delta_B = \eta \otimes \eta$, then H is a braided group.

□
3 THE BRAIDED RECONSTRUCTION THEOREM II

The notation like $C, D, (F, μ, ν), Nat(G, T)$ are same as stated in section 1. Assume that B is a object of D, and $φ$ is natural transformation in $Nat(F, B ⊗ F)$. Here $(B ⊗ F)(X) = B ⊗ F(X)$ for any $X ∈ D$.

Theorem 3.1. Let X be a symmetric braided tensor category, H be a Hopf algebra and (H_{1}, r) be a coquasitriangular Hopf algebra in X. Let f be a bialgebra homomorphism from H_{1} to H. Then

(i) There exists a bialgebra $B(braided Hopf algebra if H has right dual), written as $B(H_{1}, f, H)$, living in (H_{1}, S_{H}, C'). Here $B[H_{1}, f, H] = H$ as coalgebra, its unit is $η_{H}$, and its multiplication and antipode are:

(ii) If H is a braided coquasitriangular bialgebra, then B is a braided coquasitriangular bialgebra. In particular, when $H = H_{1}$ and $f = id_{H}$, $B(H_{1}, f, H)$ is a braided group, called the braided group analogue of H and written as H.

REFERENCES