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Abstract: This paper investigates the employment of a Genetic Algorithm to optimally configure the parameters of a 
class of weightless artificial neural network architectures. Specifically, the Genetic Algorithm is used to 
vary the parameters of the architecture and reduce the rigidity of the mutation algorithm to allow for a more 
varied population and avoidance of local minima traps. An exemplar of the system is presented in the form 
of an obstacle avoidance system for a mobile robot equipped with ultrasonic sensors. 

1 INTRODUCTION 

The optimisation problem for classes of artificial 
neural networks has been investigated over a number 
of years (Kordík, et al., 2010) (Abraham, 2004) 
(Abraham, 2002). This paper investigates the 
optimisation problem for a class of simple yet 
flexible artificial networks termed RAM based or 
weightless networks. The specific problem 
considered in this paper is that of enabling a mobile 
robot to determine the optimal direction of travel 
using weightless neural networks. This work looks 
at using simple measures fed into the network to 
determine if it can settle on an appropriate obstacle 
avoiding response/route. Adaptive systems offer the 
ability to learn and generalize from a set of known 
examples allowing them to recognize previously 
unseen inputs based on their similarity of 
characteristics with previously seen examples. 
RAM-based weightless neural networks are a type of 
neural network well suited to the expression of 
solutions to such logical problems (McElroy, et al., 
2010). Such neural networks possess many 
advantages over conventional weighted neural 
networks since they allow the possibility of:- 
•   One shot learning – this is an object 

categorization problem of current research 
interest. Usually machine learning based object 
categorization algorithms require a lot of training 
on hundreds or thousands of items, one-shot 
learning attempts to minimize this by having 
sufficient information about the object categories 
from    just    one,    or    only    a   few,   training  

 images/items. 
• Arbitrary mappings from inputs to outputs – the 

system is more robust as it does not require 
specific pathways to be assigned from input to 
output. 

• Easier direct hardware implementation. 

Manual optimisation of the configuration parameters 
of Artificial Neural Networks (ANNs) for a specific 
problem domain currently relies heavily on human 
experts with sufficient knowledge on the different 
aspects of the network as well as the problem 
domain itself (Yao, 1999). As the complexity of the 
problem domain increases and when near-optimal 
networks are desired, manual searching becomes 
more difficult and unmanageable. This paper seeks 
to evaluate the potential of using weightless ANNs 
within a meta-network structure to determine the 
direction of a robot when it encounters an obstacle 
and improve the accuracy of the response generated. 
The paper is structured as follows. Section 1.1 
briefly outlines evolutionary neural networks and 
their advantages. Section 2 describes the robot being 
used and the setup of the sensors. Section 3 goes into 
detail about weightless neural networks and how 
they differ from their weighted counterparts. Section 
4 covers the problem this paper is exploring while 
section 5 explains how the meta-network operates in 
detail. Section 6 shows the experimental setup and 
how the data was encoded, and section 7 displays 
the results. Finally, section 8 concludes the paper 
with finishing remarks. 
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1.1 Evolutionary Artificial Neural 
Networks  

Evolutionary Artificial neural networks (EANNs) 
are a specific type of ANN whereby evolution is 
used as another form of adaptation which 
supplements learning (Abraham, 2004) (Abraham, 
2002) (Slowik, et al., 2008). One distinct feature of 
EANN’s is their adaptability to a dynamic 
environment. EANN’s can adjust to a multitude of 
scenarios as well as changes in the environment. 
There are three significant areas to which evolution 
has been introduced: the connection weights, the 
learning rules and the architectures (Yao, 1999). In 
this paper we deal primarily with the evolution of 
architectures which enables ANN’s to adapt their 
topologies to different tasks without human 
intervention and thus provides an approach to 
automatic weightless ANN design, a class of 
architectures to which this technique has not 
previously been applied. 

2 ULTRASONIC SENSORS 

A robot equipped with seven ultrasonic sensors was 
used in the investigation. Although further sensors 
may prove necessary for a practical system, this 
configuration was used for the purposes of 
evaluating the proposed network configuration as it 
formed a balance between complexity and utility of 
the data. The ultrasonic sensors that adorn the robot 
are shown in figure 1. Each sensor has an associated 
ID which was used to identify them in the data. The 
grey area in Figure 1 shows the approximate cone 
that the sensors operate within. The sensors have a 
maximum range of four metres, and return the 
distance to the closest object within their cone of 
detection. The sensors are set to return data every 
half a second with a distance given in millimetres. 

Ultrasonic sensors work in a similar way to radar 
or sonar which assess characteristics of a target by 
interpreting the return signal, or ‘echoes’, from radio 
or sound waves respectively. These sensors typically 
produce high frequency sound waves and look for 
the echo from them. The Sensors then have a time 
delay between sending and receiving the echo and 
use this to calculate the distance to the object. Sonar 
sensors are used successfully in a wide variety of 
applications, such as medical imaging,  
non-destructive testing and vehicle ranging systems. 

 
Figure 1: Robot Sensor Setup. 

3 WEIGHTLESS ARTIFICIAL 
NEURAL ARCHITECTURES  

As a class of architectures, Weightless Neural 
Networks were first introduced by Bledsoe and 
Browning in 1959 (Bledsoe, et al., 1959). They 
consist of 'weightless' neurons - neurons that have no 
weight between the input and the node – with the 
inputs and outputs expressed as simple binary 
values.  While their weighted brethren require a lot 
of training, Weightless networks can be trained very 
quickly and installed on much simpler hardware. 
Further, whereas in other neural network models the 
weights are adjusted, WsNNs are trained by 
modifying the composition of the look-up tables. 

The architecture to be employed in this 
investigation is the Generalised Convergent Network 
(GCN) (Howells, et al., 1995 ). It employ layers of 
neurons each independently attached to a given 
sample pattern whose distinct outputs are merged via 
a further layer to produce an output matrix equal in 
dimension to the original sample pattern. A varying 
number of groups of such layers arranged 
sequentially may be employed by the various 
architectures.  

An example GCN architecture is illustrated in 
Figure 2 and it possesses the following general 
properties:- 

• Network neurons are typically arranged in a two 
dimensional layer where each row represents a 
component of the input data. 

• Each element within the pattern is associated 
with a corresponding neuron within each layer.  

• The layers comprising the network are arranged 
in two groups, termed the Pre group and the 
Main group. 
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Figure 2: GCN example layer setup. 

• A further Merge layer exists after each group 
whose function is to combine the outputs of the 
constituent layers of the group. The Merge 
operation is performed on the corresponding 
neurons from each layer within the group and 
for each position within the layer shown in 
figure 3. The number of inputs of a neuron 
comprising a Merge layer is thus equal to the 
number of layers within the group to which it 
pertains. 

• The Merged output of the Main Group is fed 
back, unmodified, to the inputs of each layer 
comprising the group. 

• The number of layers within each group and the 
connectivity of the neurons within differing 
layers are arbitrary and the optimal number of 
each varies with the application area. It is the 
determination of these parameters which forms 
the research focus of this paper. 

• The constituent layers of a group differ in the 
selection of elements attached to the inputs of 
their constituent neurons (termed the 
connectivity pattern). Again, this is a major 
parameter to be optimised within the network 
configuration. 

• However, neurons within a given layer possess 
the same connectivity pattern relative to their 
position within the matrix and this is not a 
network parameter which may be modified. 

The connectivity patterns for neurons of differing 
layers take various forms and hence represents an 
area for optimisation. Further, for each neuron, the 
values comprising the input set are calculated 
modulo the dimensions of the pattern. Therefore 
neurons which, for example, are situated at the right 
edge of a pattern and are virtually clamped to the ‘x’ 
bits on their right will actually be clamped to ‘x’ bits 
at the left side of the pattern. Some layers take inputs 
from non-local areas of the pattern. For the code we  

 
Figure 3: Sample potential layer connectivities. 

are using which has been parsed into a matrix this 
means that each layer will be looking at a slightly 
different ‘picture’ of the same sample, allowing for a 
high chance of recognition should there be a pattern. 

The GCN network architecture employs RAM-
based neurons with varying sized symbol sets which 
are the values stored within rather than more 
conventional Boolean symbol sets employed by 
alternative RAM-based networks (Howells, et al., 
1994 ). The symbol set is extended to allow a 
symbol to represent each pattern class under 
consideration. For example, if ten pattern classes 
representing numerals were being considered, the 
symbols `0' through `9' could be employed 
representing the numerals 0 through 9 respectively. 
In the case of this paper, these ‘symbols’ are 
represented by the sensor data collected from the 
robot. As the network only takes binary as an input, 
this data has to be specially formatted – this is 
discussed in detail in a later section. These symbols 
are referred to as the base symbols of the network.  

A comprehensive description of this architecture 
and its associated training and recognition 
algorithms may be found in (Howells, et al., 1995 ). 

4 THE PROBLEM DOMAIN 

The robot begins in an open area with a few static 
obstacles placed at strategic points in its path. Only 
one obstacle will be negotiated at any given time for 
these experiments. In order to correctly negotiate the 
robot around obstacles, the system must be able to 
identify not only where the object is in relation to 
the robot, but also which way to turn in order to 
avoid it. With data that could be in constant flux 
when in tight areas such as small corridors or 
cluttered environments, the ability to modify the 
neural network to deal with this is incredibly useful. 
These experiments should show that the network can 
identify an object in proximity and correctly 
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determine a new direction in order to avoid the 
obstacle. This is a simple task but the key aim is to 
demonstrate the meta-network’s ability to improve 
the decision making ability of the robot by 
modifying the architecture of the network. 

Weightless Neural Networks typically take 
binary as inputs and as such the data must to be 
parsed – this is shown in a later section. For this 
particular experiment, the network will be analysing 
the distances and determining a direction from this. 
As a comparison, a GCN network using randomly 
generated architectures will be employed to see how 
effective the meta-network is at improving the 
accuracy of the results. 

5 META-NETWORK 

As stated above, to combat the problem of finding a 
practically employable architecture for a weightless 
neural network, a genetic algorithm was chosen. The 
framework used in the present work is a layered 
process of an evolutionary search of ANNs, as 
illustrated in Figure 4.  

 
Figure 4: Basic Diagram depicting the various processes 
involved. 

As mentioned in the introduction, architecture 
design is crucial to the successful application of a 
weightless ANN because it has significant impact on 
the network’s information processing capabilities. 
With a variable number of layers, neurons per layer, 
and neuron placement, the number of potential 
architectures is potentially very large. For a 
particular learning scenario, a network with 
relatively few connections may imply it will be 
unable to perform the task due to its limited 
capability. Conversely, a network with a large 
number of connections may add noise to the training 
data and fail to generalise appropriately –a balance 
must be struck. To combat the problem of finding a 
practical architecture for a weightless neural 

network, the following Genetic Algorithm was 
employed. 

There are several variables that can be modified 
when using the GCN architecture, including input 
size, number of layers, number of neurons (per 
layer), and the size of the training set size. For these 
experiments, the size of the training set and the input 
size were set to seven and 6x7 respectively. The 
reason for the input size is described in a later 
section. This paper investigates the use of a Genetic 
Algorithm to optimise the parameter configuration 
for employment in an obstacle avoidance task.  

There were some inherent problems with using at 
standard genetic algorithm as a base however: 

5.1 Inputs 

Typically the inputs to a genetic algorithm are 
strings or numbers which are the parameters the 
genetic algorithm can modify. However, for this 
experiment, numbers would not suffice due to the 
complexity of the problem – It needed to modify 3 
component parameters of information. The first is 
the number of layers, the second is the number of 
neurons within each of these layers, and the third is 
the placement of these neurons. As such, a custom 
input was defined as shown in Figure 5. On the left, 
Figure 5 shows 3 ‘layers’– each pair of zeros 
represents the relative coordinates for a neuron from 
which its inputs will be derived, remembering that 
the dimensions of the layer and input pattern are 
identical. As described in the previous section 
discussing the weightless neural architecture, the 
pattern ‘wraps’ around, meaning that neurons on the 
right side of the pattern are virtually clamped to 
those on the left. If a coordinate given exceeds the 
boundaries of the matrix, it simply wraps around. So 
the layer on the right in Figure 3 translates as a 
straight line of neurons for that layer for the element 
in the centre of the layer. 

5.2 Initial Population 

The initial population is created using a random 
generator for both the number or layers and how 
many neurons will be in each individual layer. 
Subsequently, tests are carried out on the data and 
the error rate is returned for each individual.  The 
error rates are then multiplied by a factor of their 
complexity – each additional layer adds a 0.05 to a 
value that the error rate will be multiplied by, so that 
smaller networks with similar results will edge out 
those with larger networks. For example, if there are 
two architectures – A and B -  each with an error 
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rate of 10%, but A has 3 layers while B has 5, A has 
a better fitness rating (10*1.15=11.5) than B 
(10*1.25=12.5) and as such, the genetic algorithm 
will favour it in selection. These fitness ratings are 
then ranked, and the bottom 50% are pruned. 

            
Figure 5: (Left) Shows input design for the genetic 
algorithm. (Right) Shows graphic translation of 
coordinates to layer. 

5.3 Crossover 

Crossover takes selected individuals and ‘mates’ 
them by taking the first half of each layer of the first 
individual and the second half of each layer of the 
second individual, as shown in figure 6. This creates 
a new individual (representing an architecture) 
which is then added to the next generation for 
testing. 

 
Figure 6: During Crossover, top of parent A combined 
with bottom half of parent B for each layer. 

5.4 Mutation  

Mutation is employed to a few individuals via slight 
modifications to create new architectures. This is 
achieved by adding a matrix of integers that range 
between -1 and 1, as shown in figure 7. 

 
Figure 7 : Each layer has a matrix of the same size added 
to it. This layer has values between -1 and 1. 

6 EXPERIMENTATION 

The robot needed to be able to identify an obstacle 
and turn in the correct direction in order to avoid it. 
As such data needed to be collected from the sensors 
so that it could be analysed and parsed. If the object 
is a medium distance away for example, it should 
take less drastic action than if it was a short distance 
away. 

Data was collected from the sensors during a test 
run of the robot which lasted for 37 seconds. 518 
readings were taken during this time, or 74 per 
sensor. The data format is shown below in Table 1.  
From this simulated data was created representing 
different scenarios the robot would encounter. 

Table 1: Example data collected. 

Sensor ID Distance (mm) 
48 1982 
50 2967 
52 3001 
54 4371 
56 2489 
58 1001 
60 443 

The distance needed to be converted into a Gray 
code (Gilbert, 1958) so that it could be fed into the, 
network. This was necessitated as it is required for 
codes representing similar values to possess similar 
binary encodings. This is not the case with natural 
binary due to the severe changes evident when going 
from certain numbers, for example 31 to 32 shown 
in figure 8. 

 
Figure 8: Difference between normal binary code and gray 
code. 

Since the network works by finding similarities 
in the patterns, similar distances must be represented 
by similar encoded data, which is not the case in 
binary. Figure X shows how the data was quantized 
into 64 equidistant parts ranging between 0(0) – 
4500(63), representing the range of distances found 
in the data. This number was then encoded using the 
above method for each of the sensors, forming a 6x7 
matrix displayed in figure 9. 
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Figure 9: Showing how the data is encoded. 

Each row in the above binary directly relates to a 
sensor and the distance recorded at that particular 
interval. 

Five classes were created each representing a 
direction the robot should take. The reason for using 
five is to show that the network can discern the 
difference between taking a small change in 
direction as opposed to a large one. These were; left 
(-90 ̊ -45)̊ slightly left (-44-̊1 ̊), straight (0)̊, slightly 
right (1-̊44 ̊) and right (45-̊90)̊. Each category was 
allocated a training set containing 7 encoded 
matrices. These included examples of an obstacle at 
varying distances from the sensor in different 
locations. A test set for each direction was also 
derived from the data collected were selected 
however, only ‘simple’ examples were taken, where 
there could only logically be ‘one’ obstacle (adjacent 
sensors ‘hit’). 

7 RESULTS AND DISCUSSION 

The meta-network was applied to the training data 
derived from the mobile robot.  The initial 
population was set to 30, and the architectures were 
limited to a maximum of 12 layers. The reason for 
this is to ensure that the genetic algorithm doesn’t 
create overly large, time consuming networks. The 
results show that the system finds a result that has an 
error rate of 4.75% in just 21 generations. The 
fitness value on the Y axis represents error rate 
multiplied by a factor of the architectures 
complexity, as described at the start of section 4. 

To further determine the usefulness of this 
approach, the test set for each class was increased to 
3, meaning that each architecture would see a total 
of 15 different scenarios. The results from this can 
be seen in figure 11, which show little change in the 
best individual. 
However, as the generation average is much lower 
than that in figure 10, it is possible the initial system 
configuration was in a near optimal state, meaning 
that there was little room for improvement. A 
comparison can be seen in Table 2, which shows the 

differences between the experiments. The initial 
means differ quite substantially, meaning that the 
initial population from the second experiment out-
performed those from the first.  

 
Figure 10: Results from initial experiments. 

Figure 11: Results from experiment with increased test set. 

Table 2: Comparison of results. 

Comparison of experiments 

# of 
Test-
cases 

Initial 
Mean 

Initial 
Best 

Individual 
Final 

Individual 

Standard 
Deviation 

of Best 
Individuals 

1 41 18.5 5.9 3.4 
3 29.8 10.9 9.1 0.6 

It was found that increasing the number of 
generations past 30 did not yield better results, and it 
would eventually stop due to there being no 
improvement in fitness over a set number of 
generations. For both experiments the best 
architecture found had 5 layers, indicating a balance 
between network complexity and fitness (more 
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complex architectures with similar accuracies were 
discarded). 

 
Figure 12: Using GCN without the meta-network. 

When drawing a comparison with using the GCN 
network without the meta-network the differences 
are clear. Using the same data and test cases as the 
second experiment, the GCN was used on its own. 
The number of layers and the number of neurons per 
layer must be set manually, and a random 
architecture is derived from this. Figure 12 shows 
that over a multitude of different layer and neuron 
configurations, it fails to find an architecture that 
comes close to that displayed in figures 10 and 11. 

8 CONCLUSIONS 

The paper has investigated the use of a Genetic 
Algorithm to optimise the configuration of a simple 
weightless neural architecture. The results indicate 
that this approach possesses potential merit. A major 
advantage is the simple nature of both the parsed 
data input and the network being used.  
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