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Abstract: In this paper, a method for on-line fault detection and isolation (FDI) of bond graph (BG) modelled 
uncertain parameters systems is proposed. In this case, we don’t have to calculate the Analytical 
Redundancy Relations (RRAs) since residuals are directly generated from the Diagnostic Bond Graph 
(DBG). Detection is based on fuzzy logic approach. For isolation, two methods exploiting the causal 
properties of the BG model are used: Fault Signature Matrix (FSM), and exoneration. A real simulation 
example is provided to show the efficiency of the proposed methods. 

1 INTRODUCTION 

Presently, Fault Detection and Isolation (FDI) is an 
increasingly active research domain. FDI consists in 
identifying when a fault has occurred, the type of 
fault and its location. A widespread solution for FDI 
consists in comparing the behaviour of the real 
system to a theorical model. 

FDI methods can be divided into three 
categories: quantitative methods, qualitative 
methods and process history based methods 
(Staroswiecki, 2000); (Venkatasubramanian, 
2003.a); (Venkatasubramanian, 2003.b); (Venkata-
subramanian, 2003.c). 

The most frequently quantitative diagnosis 
approaches are based on Analytical Redundancy 
Relations (ARRs), Kalman filters and parameter 
estimation. The ARRs are relations comparing 
informations given by the real process to those 
generated by the theorical model. 

The qualitative methods are based on qualitative 
models such as causal graphs, fault trees or 
abstraction hierarchies … (Montmain and Gentil, 
1999). These models are obtained by analyzing the 
cause and effect relationships in the process and the 

association of observations (symptoms) to failures 
using qualitative operators.  

Because of its behavioural, structural and causal 
properties, the BG tool is used in complex processes 
modelling and FDI (Samantaray and  al., 2008); 
(Dauphin-Tanguy, 2000); (Dauphin-Tanguy and 
Tagina, 2000). Its causal properties are used to 
determine the fault origins; Bond Graph is exploited 
in both qualitative and quantitative diagnosis 
methods (Samantaray et al., 2008). 

Qualitative methods transform the BG model to a 
qualitative model expressing the states of variables 
with qualitative states ([+], [-] or 0) (Montmain and 
Gentil, 1999). When an inconsistency (fault) is 
detected, backward and forward propagation 
procedure can be used for isolation. The BG model 
can also be transformed to a Temporal Causal Graph 
(TCG) or tree graph that can be used for FDI 
(Samantaray et al., 2008). 

In quantitative approaches, many methods are 
proposed. By covering the causal paths in the BG 
model, Analytical Redundancy Relations (ARRs) 
can be derived from the energy conservation laws in 
junctions 0 and 1, the principle of fault signature can 
then be used to isolate the fault affecting sensors and 
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actuators (Tagina, 1995). In (Samantaray et al., 
2006), residuals are directly generated in the 
Diagnostic Bond Graph (DBG), and a fault signature 
matrix (FSM) is elaborated by covering causal paths 
from residuals detectors to the components. 

Therefore, the efficiency and robustness of these 
methods depend on the model’s accuracy.  

In case of uncertain parameters systems, (Djeziri, 
2007); (Djeziri et al., 2009) proposed a robust 
diagnosis algorithm, from a BG model in Linear 
Fractional Transformations (LFT) form. They 
derived ARRs in which they separated the quantity 
of energy given by the uncertain part from the 
residual to be evaluated, this idea allows the 
generation of adaptive thresholds for fault detection. 
A study of sensitivity was elaborated to deduce 
detectability indexes defining the detectable value of 
the residual in case of faults and parameters 
uncertainties. In (Bouallègue et al., 2010), a method 
for robust fixed and adaptive thresholds is proposed. 
This method exploits the sensitivity of residuals to 
different system parameters in order to determine 
their thresholds; the FSM is used for isolation. In 
(Bouslama-Bouabdallah et al., 2006), a fuzzy logic 
approach applied to residuals deduced from the BG 
model is used in detection stage. For isolation, the 
FSM is transformed into inference rules allowing the 
determination of the fault’s origin.  

The main contribution of this paper is to use the 
bond graph model directly in the task of robust FDI 
in case of uncertain parameters systems. The 
detection module is based on a fuzzy logic system. 
For isolation, two causal reasoning based methods 
were proposed. 

This paper is organized as follows: Section 2 
details the notion of DBG used to generate directly 
the residuals in the BG model. Section 3 describes 
the proposed fuzzy detection method. Section 4 
presents two isolation methods: signature matrix and 
exoneration. Section 5 describes the hydraulic 
benchmark composed of three tanks. Finally, 
different results and their interpretations are given in 
section 6. 

2 RESIDUALS GENERATION 
FROM DBG 

The generation of Analytical Redundancy Relations 
(ARRs) from the bond graph model uses the 
structural relations given by the conservation law in 
all 0 and 1 junctions and aims to express the 
unknown variables by those known (inputs and 
sensors). This method cannot deal with algebraic 

loops, so, unknown variables cannot be eliminated. 
So, the structural independence of the different 
residuals has to be checked with existing residuals. 

In (Samantaray et al., 2006), a direct method for 
ARR generation from BG model is proposed. The 
causality inversion of detectors (which are 
considered as sources) has been proposed as a 
unified approach to generate residuals. 

When the bond graph model is assigned 
preferred differential causality and using inversion 
of sensor causalities, if necessary, the following five 
compositions are possible (Samantaray et al., 2006):  

1. Inverted causality in effort sensor (De), 
2. Inverted causality in flow sensor (Df), 
3. non-inverted causality in effort sensor (De), 
4. non-inverted causality in flow sensor (Df), 
5. Inversion of signal sensor, Ds, to signal 

source, Ss (for controllers). 
Let us consider the case of inverted causality in 

the effort sensor, De, (see Figure 1). This sensor will 
be equivalent to an effort source (measurements 
from real process), so expression of the source 
loading flow variable is equated to zero (Samantaray 
et al., 2006). This expression is a residual (it does 
not involve any states, since all storage elements are 
in differential causality) which’s measured by a 
virtual flow sensor (Samantaray et al., 2006). 

 
Figure 1:  (a) Sensor e in behavioral model, (b) inverted 
causality in e and (c) substituted representation for 
inverted causality in e. 

The bond graph of the system with these 
substitutions using preferred derivative causality is 
called the Diagnostic Bond Graph (DBG) 
(Samantaray et al., 2008). 

3 DETECTION USING FUZZY 
LOGIC APPROACH 

In ideal conditions, residual value is equal to zero in 
fault free context. In practice, due to the uncertainty 
and the measurement noise, residuals are different 
from zero. Thresholds are used to deduce whether 
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systems are in normal functioning mode or faulty 
mode. Unfortunately, thresholds near to zero can 
cause false alarms problems because of noise 
variation; and assigning larger thresholds reduce the 
fault detection sensitivity (Frank et al., 1997). 

Fuzzy logic is the most common solution to 
overcome the uncertainty problems. Many works 
used this approach in residuals processing in order to 
know the system state (Evsukoff et al., 2000) 
(Bouslama-Bouabdallah et al., 2006).  

In this work, we propose fuzzy processing of 
residuals generated by the DBG in the task of fault 
detection in case of parameters uncertainty.  

From residuals values, two features can be 
extracted: 

• The absolute value of the residuals: r 
• Residual variation over a sliding time 

window: d 
11 1

t N

i t
d r( i ) r( i )

N

+ −

=

= − −∑  

The choice of the parameter N depends on the 
residual variation and the noise effects, it is fixed 
experimentally until we can get clearly the signal 
trend. 

The descriptor sets associated with each feature 
fuzzy partition are: 

r= {“SMALL”, “LARGE”} 
d= {“SMALL”, “LARGE”} 
These two variables are fuzzified using two 

trapezoidal membership functions (Figure 2). So, 
four parameters have to be determined for each 
function. 

 
Figure 2: Fuzzy sets of the residuals. 

The trapezoidal boundaries of the set SMALL are 
given by: 

r : μsmall=[0, 0, r-max, Rmin] 
d : μsmall=[0, 0, d-max, Dmin] 

And for the set LARGE, they are given by: 
r : μLarge=[r-max, Rmin, Rmax, Rmax] 
d : μLarge=[d-max, Dmin, Dmax, Dmax] 

Where: 
r-max respectively d-max is the maximum value 

of   the  residual  respectively  residual  variation   in 

normal operating mode 
Rmin = Kr* r-max. 
Dmin= Kd*d-max ,  
Kr, Kd is fixed experimentally. 
Rmax respectively Dmax: is the maximum value 

respectively variation of residual in faulty case. 
For each residual, we have established a set of 

inference rules which are presented in the following 
table: 

Table 1: Rules base of the fuzzy system. 

r               
d Small Large 

Small Normal Fault 
Large Fault Fault 

Rules are obtained using MIN-MAX inference 
method, the MIN operator represents the logic 
function AND, and the MAX operator for the logic 
function OR. 

The output of this fuzzy system is a fault index 
indicating whether the concerned residual is in 
normal operating mode or faulty mode (Figure 3). 

 
Figure 3: Residual defuzzification. 

4 THE PROPOSED FAULT 
ISOLATION METHODS 

Many procedures issued from FDI and Artificial 
Intelligence communities were proposed in the task 
of Fault Isolation. Causal properties of the BG tool 
could be used in many methods such as Fault 
Signature Matrix (FSM) and the exoneration 
algorithm. In this work, these two methods are 
combined with fuzzy reasoning in order to improve 
FDI efficiency. 

4.1 Signature Matrix 

In FDI terminology, the Fault Signature Matrix 
(FSM) crosses ARRs in rows and faults in column 
(Cordier et  al., 2004) (Biswas et al., 2009). Fault 
isolation  uses structural properties of the ARR 
expressed in terms of a binary fault signature matrix 
S, which describes the participation of various 
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components (physical devices, sensors, actuators and 
controllers) in each residual and forms a structure 
that links the discrepancies in components to 
changes in the residuals (Cordier et al., 2004). 

Let us consider that fj is a fault affecting 
component Cj, then in the binary fault signature 
matrix F is, 

0

1

,  if  the occurence of  fault  fj  does not  affect  ARRi

,   if  the fault  fj  will  violate ARRi
F ij =

⎧
⎨
⎩

 

From the DBG model, the analysis of the causal 
paths to each residual is used to generate these 
signatures (Samantaray et al., 2006). In fact, every 
component causally linked to the residual detector 
can affect its value. Let us consider the DBG of 
Figure 4: 

 
Figure 4: Example of DBG. 

If we consider residual detector r1, the next causal 
paths can be found: 

C f4 f2 f1 r1 

R f5 f2 f1 r1 

P e6 e2 e4 C f4 f2 f1 r1 

Then, any variation in components C, R and 
sensor P can affect the value of residual r1. In the 
same way, and using all residuals, we can deduce the 
FSM. 

In this work, fuzzy detection module output is 
exploited in isolation task. So, a fuzzy fault 
signature matrix F is defined as follows: 

Small ,    if  the occurence of  fault  fj  does not  affect  ARRi

L arg e,   if  the fault  fj  will  violate ARRi
Fij =

⎧
⎨
⎩

 

4.2 Exoneration 

4.2.1 Principle of Exoneration 

Exoneration principle is a fundamental concept that 

is often used implicitly in diagnosis (Cordier et al., 
2004); (Fagarasan et al., 2004). It uses consistency 
of tests (residuals) to check if its support can be 
faulty or not. The supports of a residual are variables 
that can affect it and change its value.  The 
exoneration algorithm manages two lists, a list of 
components whose state is normal, LN and a list of 
suspect components LS. LS is made by the union of 
the inconsistent test supports that are not exonerated 
by the consistent tests (Fagarasan et al., 2004).  

The steps of the algorithm are the followings 
(Fagarasan et al., 2004): 

1. Initialize LN and LS to the empty list ܮே ௌܮ= = {Ø}. 
2. At each sampling time and for each test Ti: 
 

2.1. IF Ti result is consistent, THEN Ti support Ci 
is considered normal thus added to LN, LN={CiᴗLN} 
and deleted from LS, LS=LS\Ci 
 

2.2. IF Ti result is inconsistent, Ti support Ci is 
suspected of being faulty and its components that 
are not in LN are added to LS,LS={CiᴗLS}\LN. 

Finally, after the analysis of the tests, the 
components in LS represent the final diagnosis. 

4.2.2 Exoneration Improved by Fuzzy Logic 

This algorithm is based on fuzzy logic to check the 
consistency of the residuals. To use the fuzzy 
detection module results, some improvements have 
to be done. 

1. Initialize LN and LS to the empty list ܮே ௌܮ= = {Ø} 
2. At each sampling time and for each test Ti: 

2.1. IF Ti result is NORMAL, then Ti 
support Ci is considered normal thus added to 
LN, LN={CiᴗLN} and deleted from LS, LS=LS\Ci 

 

2.2. IF Ti result is FAULT, then Ti support 
Ci is suspected of being faulty and its 
components that are not in LN are added to 
LS,LS={CiᴗLS}\LN 

5 APPLICATION EXAMPLE 

5.1 Test Bench Presentation 

Let us consider the following hydraulic system 
(Figure 5):  
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Figure 5: Real system. 

This system is composed of three tanks T1, T2 
and T3 respectively of diameters D1, D2 and D3; 
water level in tanks, H1, H2 and H3 (proportional 
respectively to the pressures P1, P2 and P3) is 
measured by level sensors. This system is fed by two 
pumps which deliver flows Sf1 (flow of entrance at 
T1) and Sf2 (flow of entrance at T3). 

Tanks T1 and T2 communicate through valve 
V12 and tanks T2 and T3 through valve V23 of 
diameter Sv. Each tank has a draining valve noted 
Vi (i=1 to 3). Flow going out from valves V1 and 
V2 is measured by flow sensors f1 and f2. 

5.2 System BG Modelling 

A procedure described in (Tagina, 1995) allows 
elaborating the BG model of the system in integral 
causality (Figure 6) as well as the corresponding 
model in derivative causality (Figure 7). 

 
Figure 6: BG model in preferred integral causality. 

 
Figure 7: BG model in preferred differential causality. 

The coupling between the two precedent models 
produces the DBG of Figure 8: 

  
Figure 8: DBG of the three tanks system. 

From Figure 8, the following FSM can be 
determined: 

Table 2: Fault signature matrix of the three tanks system. 

 r1 r2 r3 r4 r5 
Sf1 1 0 0 0 0 
Sf2 0 0 1 0 0 
V1 1 0 0 1 0 
V12 1 1 0 0 0 
V2 0 1 0 0 0 
V23 0 1 1 0 0 
V3 0 0 1 0 1 

The supports of each residual deduced from the 
DBG are given below: 

C1:{Sf1, V1, V12} 
C2:{V12, V2, V23} 
C3:{Sf2, V23, V3} 
C4:{V1} 
C5:{V3} 

6 EXPERIMENTAL RESULTS 

6.1 Case of Normal Operating Mode 

In Figure 9, different residuals in normal operating 
mode are presented.  

We notice that residuals have low values around 
zero; this variation is due to parameters 
uncertainties.  

From Figure 9, we can deduce different 
boundaries numeric values of the trapezoidal 
memberships functions in the fuzzy detection 
module. Different isolation methods were applied 
with those boundaries. The results are given in 
Figure 10. All the fault indexes of different methods 
are equal to zero  indicating that there are no faulty  
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components. 

 
Figure 9: Residuals evolution in normal operating mode. 

 
Figure 10: Fault indexes with fault signature and 
exoneration.  

6.2 Case of Faulty Operating Mode 

In case of faulty operating mode, some residuals 
deviate from their normal values and isolation 
methods are then used to identify the faulty 
component.  

6.2.1 First Case: Fault affecting Valve V12 

We totally fill in valve V12 at time 5000s; Figure 11 
illustrates the evolution of the different residuals. 

We notice, at the occurrence of the fault, 
residuals sensors r1 and r2 deviation; all the other 
residuals do not exceed normal functioning 
thresholds, the signature (1, 1, 0, 0, 0) is equivalent 
to fault in component V12 (Table 2). 

Figure 12 represents the fault indexes generated 
by the fuzzy FSM method. We notice that fault’s 
origin is perfectly identified. In fact, fault index 
DefR12 passes to 1 at instant 5000s. 

 
Figure 11: Residuals evolution in case of V12 fault. 

Figure 12 represents the fault indexes generated 
by the fuzzy FSM method. We notice that fault’s 
origin is perfectly identified. In fact, fault index 
DefR12 passes to 1 at instant 5000s. 

 
Figure 12: Fault indexes with fault signature matrix. 

The results of localization by exoneration 
algorithm are shown in Figure 13. In this case, the 
fault indexes of components SF1, V2 and V12 
passed to 1 at time 5000s. Then, we obtain 3 
candidates components: {SF1, V2, V12}. 

 
Figure 13: Fault indexes with exoneration algorithm. 
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6.2.2 Second Case: Fault Affecting Valve V3 

We suppose that valve V3 is closed at instant 5000s, 
Figure 14 presents the evolution of the different 
residuals in this case. 

 
Figure 14: Residuals evolution in case of V3 fault. 

We notice that residuals r3 and r5 are affected by 
this fault and make a distinctive variation from their 
normal values. The signature (0, 0, 1, 0, 1) 
represents fault in component V3 (Table 2) 

In Figure 15, fault indexes obtained by signature 
matrix method are shown. This method localizes 
perfectly the faulty component (V3). 

 
Figure 15: Fault indexes with fault signature matrix. 

Localization indexes determined by exoneration 
procedure are given in Figure 16. They identify two 
candidates to the fault: SF2 and V3. 

 
Figure 16: Fault indexes with exoneration algorithm. 

7 CONCLUSIONS 

In this paper, fuzzy logic approach and causal 
properties of the BG model are combined for FDI. 
The residuals generated from the DBG are processed 
in the fuzzy detection module. Output is a fault 
index indicating whether the residual is faulty or it is 
in fault free case. 

Causal properties of the BG model allow using 2 
localization methods: FSM and exoneration 
algorithm.  Our principle criterion to judge proposed 
methods performances is the false alarm rate. The 
FSM has proved its superiority in case of single fault 
hypothesis. Exoneration methods give a conflict set 
composed of more than one element in most cases. 
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