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Abstract: We propose a new approach to solve target hitting problems, that iteratively approximates capture basins at
successive times, using a machine learning algorithm trained on points of a grid with boolean labels. We
consider two variants of the approximation (from inside and from outside), and we state the conditions on the
machine learning procedure that guarantee the convergence of the approximations towards the actual capture
basin when the resolution of the grid decreases to 0. Moreover, we define a control procedure which uses the
set of capture basin approximations to drive a point into the target. When using the inner approximation, the
procedure guarantees to hit the target, and when the resolution of the grid tends to 0, the controller tends to
the optimal one (minimizing time to hit the target). We use Support Vector Machines as a particular learning
method, because they provide parsimonious approximations, from which one can derive fast and efficient
controllers. We illustrate the method on two simple examples, Zermelo and car on the hill problems.

1 INTRODUCTION

We focus on the problem of defining the control func-
tion for driving a dynamical system to reach a given
target compact set C � K in minimum time, without
going out from K, where K is a given set (called con-
straint set). This problem, often called the reacha-
bility problem, can be addressed by optimal control
methods, solving Hamilton-Jacobi-Bellman (HJB) or
Isaacs (HJI) equations. Several numerical techniques
are available; for example, (Mitchell et al., 2005) pro-
pose an algorithm that computes an approximation for
the backward reachable set of a system using a time
dependent HJI partial differential equation, (Lygeros,
2004) builds the value function of the problem which
can be then used to choose the best action at each time
step.

Reachability problem can also be addressed in the
viability theory framework (Aubin, 1991). To ap-
ply viability theory to target hitting problems, one
must add an auxiliary dimension to the system, rep-
resenting the time elapsed before reaching the tar-
get. The approach computes an approximation of the
envelopes of all t-capture basins, the sets of points
for which there exists a control function that allows

the system to reach the target in a time less than t.
(Frankowska, 1989) shows that the boundary of this
set is the value function in the dynamical program-
ming perspective. Hence, solving this extended via-
bility problem also provides the minimal time for a
state x to reach the target C while always staying in
K (minimal time function JK

C (x) (Cardaliaguet et al.,
1998)). This function can then be used to define con-
trollers that drive the system into the target.

Several numerical algorithms (Saint-Pierre, 1994;
Cardaliaguet et al., 1998) provide an overapproxima-
tion of capture basins. (Bayen et al., 2002) imple-
ment an algorithm proposed by (Saint-Pierre, 2001)
that computes a discrete underapproximation of con-
tinuous minimal time functions (and thus an overap-
proximation of capture basins), without adding an ad-
ditional dimension. (Lhommeau et al., 2007) present
an algorithm, based on interval analysis, that provides
an inner and outer approximation of the capture basin.
In general, capture basin and minimal time function
approximation algorithms face the curse of dimen-
sionality, which limits their use to problems of low
dimension (in the state and control space).

This paper proposes a new method to solve tar-
get hitting problems, inspired by our work on via-
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bility kernel approximation (Deffuant et al., 2007).
The principle is to approximate iteratively the cap-
ture basins at successive times t. To compute time
t-capture basin approximation, we use a discrete grid
of points covering set K, and label +1 the points for
which there exists a control leading the point into the
t�dt-capture basin approximation, and -1 otherwise.
Then, we use a machine learning method to compute
a continuous boundary between +1 and -1 points of
the grid. We state the conditions the learning method
should fulfil (they are similar to the one established to
approximate viability kernels (Deffuant et al., 2007))
in order to prove the convergence toward the actual
capture basins.

We consider two variants of the algorithm: one
provides an approximation that converges from out-
side, and the other from inside. Although no conver-
gence rate is provided, the comparison of the two ap-
proximations gives an assessment of the approxima-
tion error for a given problem. Moreover, we define
a controller that guarantees to reach the target when
derived from the inner approximation.

We consider Support Vector Machines (SVMs
(Vapnik, 1995; Scholkopf and Smola, 2002)) as a rel-
evant machine learning technique in this context. In-
deed, SVMs provide parsimonious approximations of
capture basins, that allow the definition of compact
controllers. Moreover, they make possible to use op-
timisation techniques to find the controls, hence prob-
lems with control spaces in more dimensions become
tractable. We can also more easily compute the con-
trol on several time steps, which improves the quality
of the solution for a given resolution of the grid.

We illustrate our approach with some experiments
on two simple examples. Finally, we draw some per-
spectives.

2 PROBLEM DEFINITION

We consider a controlled dynamical system in dis-
crete time (Euler approximation), described by the
evolution of its state variable x 2K� Rn. We would
like to define the set of controls to apply to the sys-
tem starting from point x in order to reach the target
C�K in minimal time:(

x(t +dt) = x(t)+j(x(t);u(t)) :dt; if x(t) =2 C
x(t +dt) = x(t); if x(t) 2 C
u(t) 2 U;

(1)

where j is a continuous and derivable function of x
and u. The control u must be chosen at each time step
in the set U of admissible controls.
The capture basin of the system is the set of states
for which there exists at least one series of controls

such that the system reaches the target in finite time,
without leaving K. Let G(x;(u1; ::;un)) be the point
reached when applying successively during n time
steps the controls (u1; ::;un), starting from point x. Let
the minimal time function (or hitting time function) be
the function that associates to a state x 2K the mini-
mum time to reach C:

JK
C (x) = inffnj9(u1; ::;un) 2 Un

such that G(x;(u1; ::;un)) 2 C

and for 1� j � n;G(x;(u1; ::;u j)) 2K
	
:

(2)

This is the value function obtained when solving HJB
equations in a dynamic programming approach. It
takes values in N+ [+¥, specifically JK

C (x) = 0 if
x 2 C and JK

C (x) = +¥ if no trajectory included in K
can reach C. The capture basin of C viable in K is
then defined as:

Capt(K;C) =
n

x 2KjJK
C (x)<+¥

o
; (3)

and we can also define the capture basin in finite time
n:

Capt(K;C;n) =
n

x 2KjJK
C (x)� n

o
: (4)

To solve a target hitting problem in the viability per-
spective, one must consider the following extended
dynamical system (x(t);y(t)) when x(t) =2 C:�

x(t +dt) = x(t)+j(x(t);u(t)) :dt
y(t +dt) = y(t)�dt: (5)

and (x(t +dt) = x(t);y(t +dt) = y(t)) when x(t)2 C.
(Cardaliaguet et al., 1998) prove that approximating
minimal time function comes down to a viability ker-
nel approximation problem of this extended dynam-
ical problem. In a viability problem, one must find
the rule of controls for keeping a system indefinitely
within a constraint set. (Bayen et al., 2002; Saint-
Pierre, 2001) give examples of such an application of
viability approach to solve a target hitting problem.

(Deffuant et al., 2007) proposed an algorithm,
based on (Saint-Pierre, 1994), that uses a machine
learning procedure to approximate viability kernels.
The main advantage of this algorithm is that it pro-
vides continuous approximations that enable to find
the controls with standard optimization techniques,
and then to tackle problems with control in large di-
mensional space. The aim of this paper is to adapt
(Deffuant et al., 2007) to compute directly an approx-
imation of the capture basin limits, without adding the
auxiliary dimension, and then to use these approxima-
tions to define the sequence of controls.
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3 MACHINE LEARNING
APPROXIMATION OF VALUE
FUNCTION CONTOURS AND
OPTIMAL CONTROL

For simplicity, we denote Capt(K;C;n:dt) = Captn.
In all the following, continuous sets are denoted by
rounded letters and discrete sets in capital letters.
We consider function G:

G(x;u) =
�

x+j(x;u):dt if x =2 C
x if x 2 C

(6)

We suppose that G is µ-lipschitz with respect to x:

8(x;y) 2K2;8u 2U jG(x;u)�G(y;u)j< µjx� yj:
(7)

We define a grid Kh as a discrete subset of K, such
that:

8x 2K;9xh 2 Kh such that jx� xhj � h: (8)

Moreover, we define an algebraic distance da(x;¶E)of
a point x to the boundary ¶E of a continuous closed set
E, as the distance to the boundary when x is located
inside E, and this distance negated when x is located
outside E:

if x 2 E;da(x;¶E) = d(x;¶E); (9)
if x =2 E;da(x;¶E) =�d(x;¶E): (10)

3.1 Capture Basin Approximation
Algorithms

In this section, we describe two variants of an algo-
rithm that provides an approximation Cn

h of the cap-
ture basin at time n:dt, one variant approximates the
capture basins from outside and the other one from
inside. At each step n of the algorithm, we first build
a discrete approximation Cn

h �Kh of the capture basin
Captn, and then we use a learning procedure L (for in-
stance Support Vector Machines, as shown below) to
generalise this discrete set into a continuous one Cn

h:

Cn
h = L(Cn

h) (11)

To simplifying the writing, we first define:

Cn
h = fxh 2 Kh s.t. xh =2Cn

hg ; (12)

Cn
h = fx 2K s.t. x =2 Cn

hg : (13)

The two variants differ on the conditions for defining
the discrete set Cn+1

h from Cn
h , and on the conditions

the learning procedure L must fulfil. For both variant,
we construct an increasing sequence of approxima-
tions at time n:dt, by adding the points of the grid for
which there exists at least one control that drives the

system not too far away (in an algebraic sense - nega-
tive distance in the outer case and positive distance in
the inner one) from the boundary of the previous ap-
proximation. They also both require conditions on the
learning procedure, in order to guarantee the conver-
gence toward the actual capture basin when the step
of the grid h decreases to 0. In the inner approxima-
tion case, the condition is stricter on set Cn

h and more
relaxed on set Cn

h, while the outer case requires con-
verse conditions. We now describe in more details
both variants and conditions.

3.1.1 Outer Approximation

Given initial sets C0
h = C\Kh, C0

h = C, and supposing
that we define continuous approximations Cn

h from Cn
h

(eq. (11)), we define discrete sets Cn
h as follows:

Cn+1
h =Cn

h
S�

xh 2Cn
h s.t. 9u 2U;

da(G(xh;u);¶Cn
h)��µh

	
:

(14)

Proposition. If the learning procedure L respects the
following conditions:

8x 2 Cn
h;9xh 2Cn

h s.t. jx� xhj � h (15)
9l� 1s.t.8h;8x 2 Cn

h;9xh 2Cn
h s.t. jx� xhj � lh (16)

then the convergence of the approximation from out-
side is guaranteed:

8n;Captn � Cn
h; (17)

Cn
h!Captn when h! 0: (18)

Proof. The proof is given on appendix 5.

3.1.2 Inner Approximation

Given initial sets C0
h = C\Kh, C0

h = C, and supposing
that we define continuous approximations Cn

h from Cn
h ,

we define discrete sets Cn
h as follows:

Cn+1
h =Cn

h
S�

xh 2Cn
h s.t. 9u 2U;

da(G(xh;u);¶Cn
h)� µh

	
:

(19)

Proposition. If the learning procedure L respects the
following conditions:

8x 2 Cn
h;9xh 2Cn

h s.t. jx� xhj � h (20)

9l� 1s.t.8h;8x 2 Cn
h;9xh 2Cn

h s.t. jx� xhj � lh (21)

and that the dynamics are such that:

8x 2K with da
�
x;¶Captn+1

�
> 0;

9u 2 U j da (G(x;u);¶Captn)> 0: (22)

then the convergence of the approximation from in-
side is guaranteed:

8n;Cn
h �Captn; (23)

Cn
h!Captn when h! 0: (24)
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Proof. Convergence proof of the algorithm from in-
side requires an additional condition on the dynamics
(eq. (22)): a point x of the interior of capture basin
at time (n + 1):dt, should be such that there exists
y 2 G(x) belonging to the interior of capture basin at
time n:dt (and not on ¶Captn). The proof of conver-
gence is on appendix 5.

3.2 Optimal Control

The aim of the optimal controller is to choose a
control function that reaches the target in minimal
time, without breaking the viability constraints. The
idea is to choose the controls which drive the system
to cross Cn

h boundaries in a descending order.

Proposition. Consider x0, such that x0 2 Cn+1
h and

x0 =2Cn
h. The procedure which, for i= 0 to n computes

u�(xi) defined such that xi+1 = G(xi;u�(xi)) 2 Cn�i
h ,

converges to the control policy minimizing the hitting
time, when h and dt tend to 0.

Proof. By construction, if xi 2 Cn+1�i
h and xi =2 Cn�i

h ,
there exists a control value u�(xi) such that xi+1 =
G(xi;u�(xi)) 2 Cn�i

h (see Appendix 5, part I.). There-
fore, the procedure leads to the target in n+ 1 time
steps, i.e. in (n+1):dt time. Moreover, by definition,
the optimum time for reaching the target from a point
x located on the boundary of capture basin Captn is
n:dt. Hence, the optimum time for reaching the tar-
get from point x such that x2Captn+1 and x =2Captn,
with the dynamics defined by j, is between n:dt and
(n+1):dt. Then, the fact that Cn

h converges to Captn

when h tends to 0, ensures that the number of time
steps needed by the procedure applied to this point x
will tend to (n+1):dt. When dt tends to 0, the differ-
ence with the optimum time to reach the target, which
is smaller than dt, tends to 0.

4 EXPERIMENTS

4.1 SVM as a Learning Procedure

We use Support Vector Machines (Vapnik, 1995;
Scholkopf and Smola, 2002) as the learning proce-
dure L to define capture basin approximations Cn

h =
L(Cn

h). At each iteration, we construct a learning set:
let Sn

h be a set of couples (xh;yh), where xh 2 Kh and
yh =+1 if xh 2Cn

h and�1 otherwise. Running a SVM
on learning sets Sn

h provides a separating function f n
h

between points of different labels and hence, allows
us to define a continuous approximation Cn

h of Cn
h as

follows:
Cn

h = fx 2 K such that f n
h (x)� 0g : (25)

Points x of the boundary ¶Cn
h are those such that

f n
h (x) = 0. The fulfilment of the conditions guaran-

teeing convergence is discussed in (Deffuant et al.,
2007) and the same arguments hold in both variants
of the algorithm.
In the following examples, we use libSVM (Chang
and Lin, 2001) to train the SVMs. As we did in (Def-
fuant et al., 2007), we use the SVM function as a
proxy for the distance to the boundary, in order to
simplify the computations.

4.2 Zermelo Problem

The state (x(t);y(t)) of the system represents the po-
sition of a boat in a river. There are two controls: the
thrust u and the direction q of the boat. The system
in discrete time defined by a time interval dt can be
written as follows:�

x(t +dt) = x(t)+(1�0:1y(t)2 +ucosq):dt
y(t +dt) = y(t)+(usinq):dt; (26)

where u 2 [0;0:44] and q 2 [0;2p]. The boat must
remain in a given interval K = [�6;2]� [�2;2], and
reach a round island C= B(0;0:44). We suppose that
the boat must reach the island before time T = 7.
For this simple system, it is possible to derive ana-
lytically the capture basin, hence we can compare the
approximations given by the two algorithms with the
actual capture basin. Figure 1 compares some results
obtained with the outer and inner approximation. In
any cases, the quality of the approximation can be as-
sessed by comparing both approximations: by con-
struction, the contour of the actual capture basin is
surrounded by inner and outer approximations. A ex-
ample of a optimal trajectory defined with the optimal
controller is also presented: with the inner approx-
imation, the trajectory will enable the boat to reach
the target, while it is not guaranteed in the outer case.

4.3 Car on the Hill

We consider the well-known car on the hill problem.
The state is two-dimensional (position and velocity)
and the system can be controlled with a continuous
one-dimensional action (thrust). For a description of
the dynamics and the state space constraints, one can
refers to (Moore and Atkeson, 1995). The aim of the
car on the hill system is to keep the car inside a given
set of constraints, and to reach a target (the top of the
hill) as fast as possible. Figure 2 shows the approx-
imation of the contours of the value function using
outer and inner variants of the algorithm, with an ex-
ample of optimal trajectories.
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Figure 1: Approximation from inside (top) and from outside
(bottom) for Zermelo problem. The horizontal axis repre-
sents the position x and the vertical one position y. K is
the rectangle. The capture basin is represented in blue. The
black thick line limits the boundary of the actual capture
basin. The level lines represent approximation of the con-
tours of the capture basins for successive time steps. The
grid contains 41 points by dimension. The optimisation is
made on 4 time steps, with dt = 0:05. Each figure presents
an example of trajectory (in green) using the SVM optimal
controller.

5 DISCUSSION

We proposed an algorithm that approximates capture
basins and minimal time functions, using a classifi-
cation procedure, in two variants (inner and outer).
The inner approximation can be used to define a opti-
mal controller that guarantees to find a series of con-
trols that allows the system to reach the target. SVMs

Figure 2: Inner (top) and outer (bottom) approximation for
the car on the hill problem. The grid contains 51 points by
dimension. The optimisation is made on 2 time steps. An
example of an optimal trajectory is depicted in green.

appear as a particularly relevant classification proce-
dure for this approach, because they provide parsimo-
nious representations of the capture basins and en-
able to use optimization techniques to compute the
controls. This latter point is particularly important to
deal with high dimensional control space. The parci-
monious property may allow to define compact and
fast controller, even for high dimensional state space.
However, although we generally manage to find pa-
rameters in which the result respect the conditions of
convergence, this is not guaranteed. Therefore, con-
sidering other learning algorithms that would be even
more appropriate seems a relevant research direction.
A second direction of research is to investigate other
problems that could be solved by this approach. For
instance in the definition of resilience proposed by

ICINCO 2011 - 8th International Conference on Informatics in Control, Automation and Robotics

38



(Martin, 2004), there is a problem of target hitting in
which a cost function is associated with the states. We
think that our approach could easily be adapted to this
problem.
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APPENDIX

Proof of Proposition 3.1.1

Part I. First, let us prove by induction that 8h >
0;Captn � Cn

h.
By definition, Capt0 = C = C0

h. Suppose that at step
n, Captn � Cn

h. Consider x 2 Captn+1. Let us recall
that G(x;u) = x+j(x;u):dt when x =2 C.
Defining Bh(x;d) the set of points of Kh such that
jx� xhj � d, we can easily show that condition (16)
can be rewritten as:

Bh(x;h)�Cn
h ) x 2 Cn

h: (27)

By definition, we know that there exists u 2 U such
that G(x;u) 2 Captn, which implies that for all
xh 2 Bh(x;h), d (G(xh;u);Captn) � µh, because G is
µ-Lipschitz.
Moreover, for all xh 2 Bh(x;h), d(G(xh;u);Cn

h) � µh,
because, by hypothesis, Captn � Cn

h. Thus xh 2Cn+1
h .

Therefore, x 2 Cn+1
h (because of condition (27)).

We can thus conclude Captn+1 � Cn+1
h .

Part II. Now, we prove by induction that for
any n, Cn

h!Captn when h! 0.
Suppose now that for a given value n, Cn

h ! Captn

when h! 0.
Because Captn � Cn

h, we have:
8x 2K j x =2Captn; 9h > 0 j x =2 Cn

h:

Now, consider x 2K such that x =2Captn+1.
This implies that for all u 2 U such that
d (G(x;u);Captn) > 0. One can choose h0 > 0 and h
such that for all u 2 U, d (G(x;u);Captn)> h0+µlh.
Condition (15) can be rewritten as:

Bh(x;lh)�Cn
h ) x 2 Cn

h: (28)

In this case, for all xh 2 Bh(x;lh), all u 2 U,
d (G(xh;u);Captn)> h0, because G is µ-Lipschitz.
Since Cn

h ! Captn when h! 0, there exists h, such
that, for all xh 2 Bh(x;lh), and all u 2 U, G(xh;u) 2
Cn

h, hence xh 2 Cn
h. Hence, there exists h such that

x =2 Cn
h (because of condition 27).

Therefore Cn+1
h !Captn+1 when h! 0.

Conclusion. Captn � Cn
h and Cn

h!Captn then Cn
h is

an outer approximation of the capture basin at time
n:dt, which tends to the actual capture basin when the
resolution of the grid h tends to 0.
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Proof of Proposition 3.1.2

Part I. We begin to show by induction that Cn
h �

Captn.
Suppose that Cn

h �Captn and consider x 2 Cn+1
h .

Because of condition (20):

9xh 2Cn+1
h such that jx� xhj< h:

By definition of Cn+1
h :

9u 2U such that da (G(xh;u);Cn
h)> µh:

By hypothesis of induction Cn
h � Captn, hence

: da (G(xh;u);Captn) > µh. By hypothesis
on G, jG(xh;u) � G(x;u)j < µjxh � xj, hence
da (G(x;u);Captn)> 0. Therefore x 2Captn+1. Thus
Cn+1

h �Captn+1.

Part II. We prove by induction that, when h ! 0,
Cn

h!Captn .
Suppose that Cn

h!Captn when h! 0.
Because Cn

h �Captn, we have:

8x 2Captn j da(x;¶Captn)> 0;9h > 0 j x 2 Cn
h:

We use the rewriting of condition (21):

Bh(x;lh)\Cn
h ) x 2 Cn

h: (29)

Consider x 2Captn+1 such that da(x;¶Captn+1) > 0
. One can choose h such that da(x;¶Captn+1) >
(µ+l)h. With such a choice, for each xh 2 Bh(x;lh),
da(xh;¶Captn+1) > µh, hence, there exists u 2 U
such that da (G(xh;u);Captn)) > 0 (because G is µ-
Lipschitz).
By induction hypothesis, there exists h such that
da
�
G(xh;u);Cn

h

�
> µh, hence xh 2 Cn+1

h . Taking the
smallest value of h this is true for all xh 2 Bh(x;lh).
Therefore x 2 Cn+1

h (because of condition (29)).
Therefore Cn+1

h !Captn+1 when h! 0.
Conclusion. Cn

h � Captn and Cn
h ! Captn then Cn

h
is an inner approximation of the capture basin in fi-
nite time n:dt, which tends to the actual capture basin
when the resolution of the grid tends to 0.
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