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Abstract: Spike-based systems are neuro-inspired circuits implementations traditionally used for sensory systems or 
sensor signal processing. Address-Event-Representation (AER) is a neuromorphic communication protocol 
for transferring asynchronous events between VLSI spike-based chips. These neuro-inspired 
implementations allow developing complex, multilayer, multichip neuromorphic systems and have been 
used to design sensor chips, such as retinas and cochlea, processing chips, e.g. filters, and learning chips. 
Furthermore, Cellular Automata (CA) is a bio-inspired processing model for problem solving. This 
approach divides the processing synchronous cells which change their states at the same time in order to get 
the solution. This paper presents a software simulator able to gather several spike-based elements into the 
same workspace in order to test a CA architecture based on AER before a hardware implementation. 
Furthermore this simulator produces VHDL for testing the AER-CA into the FPGA of the USB-AER AER-
tool. 

1 INTRODUCTION 

Cellular organization in biology has been an 
inspiration in several fields, such as the description 
and definition of Cellular Automata (CA). They are 
discrete models that consist of a regular grid of cells. 
Each cell has an internal state which changes into 
discrete steps and knows just one simple way to 
calculate the new internal state like a rudimentary 
automaton. Cellular activity is carried out 
simultaneously like it occurs in biology. Von 
Neumann referred to this system as a Cellular Space 
that is known currently as Cellular Automata (von 
Neumann, 1966).  

The first self-reproducing CA, proposed by von 
Neumann consisted of a 2D grid of cells, and the 
self-reproducing structure was composed of several 
hundreds of elemental cells. Each cell presented 29 
possible states (Burks, 1970). The evolution rule was 
defined as a function of current state of the cell and 
its neighbours (up, down, and left). Due to the high 
complexity of the model, von Neumann rule has 
never been implemented in hardware, but some 
partial implementations have been obtained 
(Pesavento, 1995).  

A CA hardware implementation consists of a 
regular 2D array of cells. Each cell is connected to a 
neighborhood. The state of each cell is defined by a 
set of bits and varies longitudinally according to an 
evolution rule. This evolution rule should be the 
same for all the cells and it is a function of the 
current internal state of the cell and its 
neighbourhood (von Neumann, 1966), so it does not 
depend on external stimulus. These neighbours are a 
fixed set of cells adjacent to the specified cell. A 
new generation is created every time the rule is 
applied to the whole grid. A global clock signal sets 
when the state of the cell is updated. 

Address-Event- Representation (AER) is a spike-
based representation technique for communicating 
asynchronous spikes between layers of silicon 
neurons or spike-processing cells of different chips. 
The spikes in AER are carried as addresses of 
neurons (called events) on a digital bus. This bio-
inspired approach was proposed by the Mead lab in 
1991 (Sivilotti, 1991). 
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Figure 1: AER inter-chip communication scheme. 

The spikes in AER are carried as addresses of 
sending or receiving cells on a digital bus. Time 
represents itself as the asynchronous occurrence of 
the event. An arbitration circuit ensures that neurons 
do not access the bus simultaneously. This AER 
circuit is usually built using self-timed asynchronous 
logic (Boahen, 1998). 

Every time a cell generates a spike, a digital 
word (address) which identifies the cell, is placed on 
an external bus. A receiver chip connected to the 
external bus receives the event and sends a spike to 
the corresponding cell. In this way, each cell from a 
sender chip is virtually connected to the respective 
cell in the receiver chip through a single time 
division multiplexed bus (See figure 1). 

More active cells access the bus more frequently 
than less active ones, for example, if the AER 
information transmitted by a visual AER sensor is 
coded in gray levels, then the number of events 
transmitted by a pixel through the bus identifies the 
gray level of that pixel. 

These AER chips with adequate AER interfaces 
allow the construction of multilayered, hierarchical, 
and scalable processing systems for visual 
processing (Serrano-Gotarredona et al., 2006). 

There is a world-wide community of AER 
protocol engineers and researchers for bio-inspired 
applications in vision and audition systems and robot 
control, as it is demonstrated by the success in the 
last years of the AER group at the Neuromorphic 
Engineering Workshop series (Cohen et al., 2006) 
and the CapoCaccia Cognitive Neuromorphic 
Engineering Workshop (CNEW, 2011). The goal of 
this community is to build large multi-chip and 
multi-layer hierarchically structured systems capable 
of performing massively-parallel data-driven 
processing in real time. 

One of the first processing layers in the cortex 
consists of applying different kinds of convolution 
filters with different orientations and kernel sizes. 
Complex filtering processing based on AER 
convolution chips have been already implemented, 

which are based on Integrate and Fire (IF) neurons 
(Serrano-Gotarredonda et al., 2006). When an event 
is received, a convolution kernel is added to the 
neighbourhood of the targeted neuron. When a 
neuron reaches a configurable threshold, a spike is 
produced and the neuron is reset. Bi-dimensional 
image convolution is defined mathematically by the 
following equation, being K an nxm convolution 
kernel matrix, X the input image and Y the 
convolved image. 
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Each convolved image pixel Y(i,j) is defined by 
the corresponding input pixel X(i,j) and weighted 
adjacent pixels, scaled by K coefficients. Therefore 
an input pixel X(i,j) contributes to the value of the 
output pixel Y(i,j) and their neighbours, multiplied 
by the corresponding kernel coefficients K. 

Digital frame-based convolution processors 
implemented in FPGA or CPUs usually measure 
their performance by calculating the number of 
operations per second (MOPS). There is a 
comparative study between frame-based and spike-
based convolution processors in (Linares-Barranco 
et al., 2009). In that work, a frame-based 3x3 kernel 
convolution processor in a Spartan-III FPGA that 
yielded 139 MOPS, were compared to a spike-based 
one that yielded 34.61 MOPS for the same kernel. 
Nevertheless, frame-based 11x11 kernel convolution 
processors decreased their performance to 23 
MOPS, while the spike-based processors increased 
their performance to 163.51 MOPS. Therefore, 
spike-based convolution processors may achieve 
higher performances for the same hardware 
availability. This has to be thanked to the fully 
parallel processing allowed by AER or spike-based 
processing.  

In a previous work (Rivas-Perez et al., 2010) we 
presented an AER-CA 3x3 convolution processor 
for visual spike-processing running on a SPARTAN-
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II FPGA at 50MHz, able to yield up to 150 MOPS 
for 3x3 kernel sizes, which could imply a 
performance of up to 2 GOPS for a possible 11x11 
kernel implementation. This work justified the 
potential of AER-CA implementations of spike-
based processing.  

Another interesting approach for frame-based 
neuro-inspired visual processing, and based on 
convolutions with high performances are the 
ConvNets (Farabet et al., 2009 and Farrig et al., 
2008). ConvNets are based on convolutional neural 
networks and have been successfully used in many 
recognition and classification tasks including 
document recognition (LeCun et al., 86), object 
recognition (Huang et al., 2006; Ranzato et al., 2007 
and Jarrett et al., 2009), face detection (Osadchy et 
al., 2004)  and robot navigation (Hadsell et al., 
2009). A ConvNet consists of multiple layers of 
filter banks followed by non-linearities and spatial 
pooling. Each layer takes as input the output of 
previous layer and by combining multiple features 
and pooling over space, extracts composite features 
over a larger input area. Once the parameters of a 
ConvNet are trained, the recognition operation is 
performed by a simple feed-forward pass. A 
hardware implementation of a 7x7 kernel size 
convolver for ConvNets is presented in Farabet et 
al., 2009. This system was synthesized for a Virtex 4 
and it achieves up to 12GOPS with a 250 MHz clock 
that is equivalent to 2.4GOPS for 50MHz clock.  

In order to study and develop the correct 
configuration of spike-base convolutional neural 
networks for a visual processing task based on CA 
and AER, it is very important to be able to make 
simulations evolving several AER-CA convolution 
processors in a network with different kernels.  
In this paper we present an AER-CA simulator 
developed under C# for spiking convolutional neural 
networks that is able to generate VHDL for FPGA 
hardware implementation on USB-AER boards 

(Gomez-Rodriguez et al., 2006).  Next section 
introduces how AER and CA can work together for 
spike-based visual processing. Section 3 presents the 
AER simulator v2.0 with an example for center of 
mass object detection. Finally the conclusions are 
presented in section 5. 

2 AER PROCESSING BASED  
ON CELLULAR AUTOMATA 

AER neurons carry out an internal processing for 
every arriving spike and can produce an output spike 
or stream of spikes in response. AER chips develop 
hierarchical systems composed of layers of neurons 
like a brain. Results of one layer represent the input 
of the next layer or a feedback of a previous one. 
Furthermore, like in a biological neural system, 
several AER devices such as visual sensors (Retina: 
Costas-Santos et al., 2007), audio sensors (Cochlea: 
Chan et al., 2007), filters (Serrano-Gotarredona, 
2006 and Indiveri et al., 2006) and learning chips 
(Hafliger, 2007) have been developed, as well as a 
set of glue tools (AER tools: Gomez-Rodriguez et 
al., 2006.) which facilitate developing and 
debugging of these spike-based multi-layer 
hierarchical systems, like under the EU CAVIAR 
project (Serrano-Gotarredona et al., 2006).  

The basic operation in visual processing is the 
mathematical convolution. In the previous section 
we introduced how a convolution is done using 
spike-based visual information. When a set of these 
spike-based convolution processors are connected in 
a network, more complex visual filtering can be 
implemented, like in the brain cortex. 
The philosophy of AER systems is lightly different 
from CA but also similar in a certain sense. A CA is 
a cooperative system, whose evolution depends on 
the input, its neighborhood and the time. 

 
Figure 2: AER-CA 3x3 kernel spike based convolution processor scheme. 
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The state of the CA is able to evolve as many times 
as necessary with only one input stimulus that 
typically represents a change in one cell. A CA can 
implement several evolution rules in the same 
implementation. Evolution rules are also present in 
AER systems, but only between layers. The output 
of an AER convolution chip can be seen as the 
evolution of the input information. A feed-back 
connection and a dynamic kernel are necessary in an 
AER convolution processor chip in order to 
implement the evolution rules of a CA. This is not 
implemented nowadays. Therefore, evolution rule is 
found in AER systems between layers of chips, but 
not inside one chip. 
Then, a CA implemented with AER should be able 
to evolve, and take advantage of this evolution 
process to improve present AER processors in one 
chip. 
Let’s suppose a set of spike cells connected in a 2D 
grid as a CA. Each cell of this grid is connected to 
its eight neighbors. A 3x3 kernel memory is visible 
by all the cells. An input spike can be received by 
any of the cells as an input stimulus. Every time a 
cell receives an input stimulus, this cell sends an 
internal stimulus to its eight neighbors and 
furthermore it processes the centre of the kernel. 
When a cell receives a stimulus from a neighbor, 
this cell processes the corresponding element of the 
3x3 kernel depending on the source cell of this 
internal stimulus. The internal process implemented 
by each cell consists of adding the corresponding 
kernel value to the internal state. If the internal state 
is higher than a configurable threshold, this cell 
needs to communicate a new stimulus (a second 
generation internal stimulus). Depending on the 
convolution kernel and the threshold programmed, 
this necessity of communicating a new stimulus can 
reflect the detection of an edge in the input visual 
information, or any other detected feature of a first 
layer of visual processing. 
In the case of an AER chip based on IF neurons, this 
behavior imply the production of an output spike 
(see figure 2). This output information can be the 
input of a second layer that will extract a new 
feature of the visual information.  
In a CA, this situation can be seen as an evolution of 
the state of the CA. So the CA is ready to process a 
second layer of processing using the same set of 
cells thanks to the evolution. 
If we suppose that the first layer is processing edge 
detection (both vertical and horizontal), a second 
layer could be able to detect squares or rectangles if 
the second generation of internal stimulus is 
processed and transmitted between horizontal and/or  

vertical adjacent cells following the next rules:  
- When cell Ca,b receives two different second 

generation internal stimulus from different 
adjacent cells between a configurable time 
window, it means that Ca,b is the geometric 
center between these two detected edges, so a 
new third generation of internal stimulus can 
be produced.  

- If the previous condition is not reached, the 
stimulus has to be retransmitted to the opposite 
adjacent cell in order to allow a future 
detection of the geometrical center by another 
cell.  

By a correct configuration of these time windows 
and directions of retransmission of second, third, 
fourth … generation stimulus between adjacent cells 
it is possible to detect any shape. Third, fourth, 
generations could be used to join basic shapes into 
complex ones in order to recognize faces, words, etc. 

3 THE C# AER SIMULATOR 2.0. 

The simulator architecture is based on two main, 
separate but coordinated blocks: a graphical unit 
interface (GUI) that allows an easy interaction with 
the simulator, and the AER simulator. Figure 3 
shows a block diagram example of AER scenario 
software architecture of the simulator; and a 
captured screen of the GUI. Once the AER system to 
be simulated is designed, the user can easily 
construct the setup using the mouse and modifying 
some parameters through the GUI. This simulator is 
composed of several basic library blocks:  
- Sequencer for AER traffic production from 

static bitmaps. 
- Switch for easy AER traffic splitting and 

merging. 
- Framegrabber for monitoring AER traffic 

histograms for a period of time. 
- Prototype block for manipulating events. This 

block can be configured as a 3x3 AER-CA 
convolution based filter, or as a second 
generation propagation of stimulus for second, 
third… layer operations, as mentioned in the 
previous section. 

For simulating an AER-CA system with several 
layers that will be implemented in hardware with the 
same 2D array of cells but with different generations 
of stimulus transmissions, in the simulator, for 
simplicity, this is shown as several blocks connected 
in sequence. 

Figure 4 shows a working example simulation 
where   a    sequencer  is   loaded  with a bitmap that 
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Figure 3: AER Simulator 2.0 block diagram. 

produces AER traffic only for those events whose 
addresses represent the circle. This AER traffic is 
sent to the3x3 AER-CA convolver through a 
memory buffer. Those cells that produce output 
AER traffic represent the second generation 
stimulus. These stimuli are propagated through the 
perpendicular neighbors in order to look for a cell 
where several second generation stimuli arrive from 
different directions. This or these particular cells 
represent the center of mass of the object and 
produce the third generation of events. In figure 4, 
the simulation box number 1 is simulating the 
perpendicular propagation of AER, and it is 
producing output AER traffic of the center of mass, 
but it is also passing through the input events. 
Inside the simulator, each box or component block 
of the GUI is able to receive or transmit AER from 
and to memory buffers. So the AER bus is 
implemented in the simulator as memory. The time 
information of the spikes is not represented with 
timestamps in memory, but it is conserved 
depending on when the new AER event is stored on 
a buffer and read from it. Every box of the simulator 
is implemented as an object. Each object has its own 
class depending on the component (sequencer, 
Framegrabber, switch or prototype). Each object is 
executed with different and independent processes 
that communicate with each other through the 
memory buffers. A process associated with a box 
that produces events stores them on their 
corresponding output buffers. And a process 
associated with the receiver box will take the next 
event on the input buffer and it will execute 
necessary operations. When it is necessary this AER 
receiver process will generate an output event and 
then it will try to process the next input event. If a 
buffer is full, the process that is writing events on it 
is sent to sleep. If the buffer is empty, the process 
reading from it is sent to sleep. 
GUI is periodically accessing the bitmaps stored in 
all the Framegrabber boxes and they are updated on 
the screen. 

 
Figure 4: AER-CA simulation of 2 generations for AER 
based center of mass detection. 

4 CONCLUSIONS 

This paper presents the AER simulator 2.0 for 
neuro-inspired AER based system simulations. The 
simulator has an easy GUI that allows fast 
simulations using sequencer and monitors of events 
for input and output AER traffic managing, and a 
configurable and expandable block that can 
implement 3x3 spike-based convolutions for image 
filtering inspired on Cellular Automata (AER-CA) 
with several generations of stimulus propagations. 
This philosophy allows not only detecting edges on 
an image, but also to find the center of mass of basic 
shapes. Third, fourth, generations could be used for 
object recognitions that are composed of basic 
shapes. AER-CA hardware implementations have 
demonstrated for 3x3 kernel convolutions 
competitive performances of 150MOPS for 50MHz 
clocks for small FPGAs (Spartan II 200) that could 
be easily improved to more than 2GOPs for 
200MHz clocks and 7x7 kernel sizes in higher 
capacity and faster FPGAs. 
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