
A FRAMEWORK FOR SECURITY AND WORKLOAD
GRADUAL ADAPTATION

Antonio Vincenzo Taddeo, Luis Germán Garcı́a Morales and Alberto Ferrante
ALaRI, Faculty of Informatics, University of Lugano, Lugano, Switzerland

Keywords: Gradual adaptation, Framework, Performances, Workload, Security, Adaptation, Self-adaptivity.

Abstract: Providing a balanced trade-off among performances, security, and energy consumption is a key challenge in
embedded systems. Traditional security solutions assume a well-known and static operating environment,
thus leading to a static system configuration that cannot be tailed to the system conditions. Wireless sensor
networks are a good example of typical embedded systems.
In this work we propose a framework that reduces energy consumption in nodes of wireless sensor networks.
The framework allows the system to self-modify its security and workload settings. Adaptations are performed
by moving to adjacent configuration and, thus, this mechanism is namedgradual adaptation. In this paper
we discuss the policies that can be used to control the adaptations and we present the results obtained when
implementing a case study on Sun SPOT nodes. The results show that the use of the framework increases the
energy efficiency of the network nodes. Furthermore, they show the effects of the different policies on the
behavior of nodes.

1 INTRODUCTION

Wireless Sensor Networks (WSN) are composed of a
large number of nodes that are usually able to per-
form some measures through suitable sensors, pro-
cess the gathered data, and send information to other
nodes of the network. A number of more powerful
devices are also usually in the network with the goal
of collecting the data produced by the other nodes.
Nodes are placed in the environment that they have
to sense and, therefore, they are resource-constrained
being limited in terms of area, memory, computation
capabilities, and power. Power consumption is al-
ways among the most important constraints for WSN
nodes (Mura, 2007); power sources can, in some
cases, be recharged by means of local power gener-
ators (e.g., small solar panels). Though, the batteries
might require to last, even for long times, without be-
ing recharged.

An important factor that influences design and
performance of WSNs is communication security. In
particular, security services such as authentication,
confidentiality, and availability are critical for sen-
sor networks operating in hostile environments and,
at the same time, handling sensitive data. Design-
ing a secure system in these conditions is challeng-
ing (Ravi et al., 2004): traditional security solutions

are designed by using ad-hoc approaches which of-
fer specific protection against certain attacks (e.g.,
countermeasures against denial of service attacks).
However, they rely on the assumption that the oper-
ative environment is well-known and quite static as
well. Moreover, some of these technologies have not
been specifically developed for embedded systems;
in many cases, their adoption in the pervasive world
would be impossible due, for example, to high hard-
ware resources requirements (Ferrante et al., 2005).

Typically, when designing secure systems the
worst case scenario is considered: the system has to
guarantee adequate protection against the strongest
possible security attacks. By following this philoso-
phy, security in WSN is typically based on an “on-
off” approach: either security is totally ignored or
it is enabled with the strongest algorithms available,
with a corresponding high consumption of resources.
This is generally in contrast with the requirements of
a resource-constrained devices such as mobility, flex-
ibility, real-time configuration, open and dynamic op-
erative environment (Keeratiwintakorn and Krishna-
murthy, 2006; Grossschädl et al., 2007).

The problem of optimizing resources used for se-
curity, yet providing an adequate level of protection,
is a hot topic at the moment (Ravi et al., 2004). In
particular, the trade-off between energy and perfor-

178 Vincenzo Taddeo A., Germán García Morales L. and Ferrante A..
A FRAMEWORK FOR SECURITY AND WORKLOAD GRADUAL ADAPTATION.
DOI: 10.5220/0003522001780187
In Proceedings of the International Conference on Security and Cryptography (SECRYPT-2011), pages 178-187
ISBN: 978-989-8425-71-3
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

mance requirements of security algorithms is of ut-
most relevance for embedded systems (Chandramouli
et al., 2006). As discussed above, each adopted se-
curity solution should be a good compromise among
factors that are conflicting in nature such as, for ex-
ample, power consumption and performances. This
optimization is a complex task, especially when per-
formed run-time (Chigan et al., 2005; Lighfoot et al.,
2007).

In this paper we concentrate on systems that are
able to change their configurations at run-time. In par-
ticular, we propose a run-time mechanism to deal with
the optimization of security and of system workload
in accordance both with application security require-
ments and with system dynamic energy constraints.
Our work is based on the “Adequate Protection Prin-
ciple” (Pfleeger and Pfleeger, 2006) which states that
security should be adequately applied to a given con-
text. We implemented such principle by adopting a
gradual adaptationof application security and of sys-
tem workload: security is adapted by moving between
adjacent configurations that are compatible with ap-
plication requirements. System workload can be re-
duced by modifying task periodicity or by suspending
some of them.

In WSNs composed of nodes that can be
recharged (e.g., by using local generators such as so-
lar cells), our solution increases WSN nodes lifetime
in between recharges. Different strategies are used to
favor either security or system workload. The strat-
egy to be used and the way in which it will be applied
depends on specific node energy conditions and ap-
plicative scenario. The solution proposed in this pa-
per has been implemented on Sun SPOT nodes (Mi-
crosystems, 2008).

In Section 2 we discuss a number of relevant re-
lated works; in Section 3 we introduce our framework
and in Section 4 we describe a number of adaptation
policies that we propose; in 5 we introduce the energy
models used by the framework. In Section 6 we dis-
cuss a case study and we show the results obtained
when applying the framework on a sensor network
based on Sun SPOT nodes.

2 RELATED WORK

The principle ofgradual adaptationdescribed in this
paper can recall the graceful degradation techniques
used in fault tolerant systems; in this kind of systems,
in fact, performance may be degraded to keep the sys-
tem operational even in presence of faults (Herlihy
and Wing, 1991; Li et al., 2006). Typically this ap-
proach does not address the optimization of security.

The challenge of selecting the best set of cryp-
tographic algorithms that optimizes the trade-off be-
tween resource requirements and security provided
has been tackled in many works. Techniques to
minimize the energy consumed by secure wireless
sessions have been proposed in (Karri and Mishra,
2002). The authors investigated the selection of en-
cryption algorithms and of key exchange protocols.
However, they did not provide explicitly a run-time
self-adaptation mechanism; instead, they shown tech-
niques to minimize energy consumption by matching
block sizes of message compression algorithms with
data cache sizes. In (Chandramouli et al., 2006) a bat-
tery power optimizer for wireless networks has been
presented. Authors have performed experiments to
model the relationship between power consumption
and security of cryptographic algorithms. Such infor-
mation have been used to formulate a knapsack prob-
lem and to find the optimal level of vulnerability by
changing the number of rounds in cryptographic al-
gorithms. In contrast with our work, neither appli-
cation requirements nor the possibility of managing
changes in cryptographic algorithms were considered.
In (Chigan et al., 2005) the authors describe a self-
adaptive security framework at protocol level. The
mechanism proposed provides the ability to select the
optimal set of security protocols with the best se-
curity/performance ratio depending on the malicious
level of a node neighbors. However, their adaptation
is not triggered by an energy consumption constraint,
rather on intrusion detection and peer trust evaluation.
On the other hand, their systematic approach to secu-
rity evaluation can be replicated in our framework in
order to better define each security level.

Adaptation of cryptographic primitives is instead
presented in (El-Hennawy et al., 2004), where the ba-
sic idea is to change the AES cryptography key length
according to the confidentiality level required by the
user. The matching between confidentiality level and
key length is done statically and is not changeable at
run-time. Moreover, they mainly lead to improve the
overall system performances in terms of encryption
rate rather than energy consumption.

In (Taddeo et al., 2010) an approach for gradual
adaptation is described; the system considered is a
sensor node that may be used in multimedia appli-
cations. In this paper we propose a more complete
and dynamic framework for gradual adaptation of se-
curity along with a set of policies for the system. This
includes, as explained in the following of this paper:
adaptation of sample period for periodic tasks; dy-
namic energy budget computation; dynamic monitor-
ing period; adaptation decisions policies specified for
each task by means of its requirements.

A FRAMEWORK FOR SECURITY AND WORKLOAD GRADUAL ADAPTATION

179

3 THE FRAMEWORK

In this section we describe our framework for gradual
adaptation. This framework has been designed for ex-
tending battery lifetime in WSN nodes, yet respecting
the constraints fixed by the application designers.

Our framework contains a number of software
components that monitor the execution of the tasks
in the nodes, decides the possible adaptations on sys-
tem configuration, and applies them. The current
node conditions and thepolicies– directives and con-
straints previously defined by system and application
designers – are used to decide when an adaptation is
necessary and how it should be performed. Adapta-
tions consist in changing task parameters such as level
of security, execution period, and execution state. The
purpose of the framework is to set the best security
configuration, and, at the same time, extend the bat-
tery life. Figure 1 shows a general scheme for the
framework with its main blocks. The framework is
composed of two main blocks: the centralized con-
troller and the task library.

3.1 Centralized Controller

The centralized controller monitors the system be-
havior periodically and performs suitable downgrades
or upgrades on the task parameters with the goal of
meeting the battery lifetime defined by system de-
signers. The controller computes the energy available
in each monitoring period by considering the energy
remaining in the battery and the lifetime constraint.
This amount of energy is calledEnergy Budget. When
the energy consumption is higher than the energy bud-
get, the controller downgrades the parameters (secu-
rity, execution period, or execution status) of some
tasks to reduce energy consumption. In the same way,
when the energy consumption is lower than the en-
ergy budget, the controller upgrades the parameters of
tasks to bring them closer to their ideal configuration.
The parameters to be changed for each task are de-
termined by the controller depending on the policies
defined by application designers. These policies are
calledTasks Policies. The tasks are selected for adap-
tation based on a node-level policy namedFramework
Policy and on a task energy estimator. The estima-
tor monitors the execution of tasks and it provides the
energy figures of each one of them. Policies are dis-
cussed in Section 4.

3.2 The Task Library and Resources
Interface

The task library and resources interface provides the

ability to install applications and to define their poli-
cies. Furthermore, this library is used to determine
the energy spent by tasks during their execution.

The task library is composed of a collection of
methods and properties. The tasks are created by ex-
tending one of the objects provided in this library.
The designer, while extending these objects, needs to
specify the kind of task to be created (periodic or non
periodic) and the required policies.

Additionally, the framework provides a resource
interface that makes easy the access to the different
software and hardware resources (e.g. security algo-
rithms). This interface is composed of a collection of
functions named “intermediate functions”. They are
in charge of calling the real resources and also collect-
ing the execution behavior of every resource with the
intention of estimating the energy spent by each one.
This information collected and the resource model are
used by the estimator when the monitoring process is
being performed.

3.3 Security Services

Security can be provided through suitable services
called security services. These services can be
of different kinds such as, for example, encryp-
tion/decryption, authentication, and access control. In
this work we only consider encryption algorithms as
possible security services. Authentication algorithms
could be considered as well without any change in the
framework. Other services are not relevant in the ap-
plication field considered in this work.

We divided the encryption algorithms considered
in three groups, depending on their level of security.
These algorithms are defined to have a high, medium,
or low level of security based on their resistance to
known attacks: the higher the number of combina-
tions to be tried for breaking the algorithm, the higher
its security. Inside each group a sorting is performed
based on the energy consumption measured while en-
crypting/decrypting each byte for each algorithm.

Each task has a range of security levels defined by
the application programmers. At the beginning of the
execution, the framework assigns to the task the best
security algorithm available and compatible with this
range. When a downgrade on security is required for
the considered task another security algorithm might
be selected. Some degradations areintra-level (i.e.,
a new, less energy hungry, security algorithm is se-
lected, but the algorithm belongs to the same security
level), while some others areinter-level(i.e., the new
security algorithm may belong to a different security
level). The same applies for security upgrades.

SECRYPT 2011 - International Conference on Security and Cryptography

180

Figure 1: The framework.

4 POLICIES

In the framework different decisions are taken about
security and performances adaptations. These deci-
sions are governed by policies that describe what can
be done for each task (i.e., if and how its security
and performance can be modified) and how the frame-
work should work (i.e., which are the adaptations to
be performed, in which order, and with which speed).
Policies for the tasks are namedTask Policies; poli-
cies that govern the framework are calledFramework
Policies.

4.1 Task Policy Parameters

The task policies allow designers to specify how secu-
rity and performance can be changed for each running
task. More specifically, the elements that can be al-
tered by the framework are related to the desired level
of security, the execution period (for periodic tasks),
and the execution status (i.e., the possibility to sus-
pend tasks or not). Therefore, each policy contains
five parameters as shown in Table 1.

4.2 Framework Policies

The framework requires proper rules to govern the
adaptations and to monitor the execution of tasks and
their energy consumption. The rules should provide
both information on the tasks that should be consid-
ered for degradation and on how to monitor them.
The parameters that compose framework policies are
listed below:

• Task Selection. This parameter tells the frame-
work which are the tasks that should be consid-
ered for degradation. We consider four different
options:

– Most-Energy-Demanding tasks. Energy con-
sumed by each task is estimated at runtime. The
tasks with highest energy demand are consid-
ered.

– Least-Degraded tasks. The tasks that are in
lowest levels of degradation (i.e., the ones that
are closer to their optimal performances) are
considered.

– Lowest-Priority first. Degradation is first per-
formed on tasks with the lowest priority level
(low); degradations are done on tasks with in-
creasing priority levels if necessary.

– Last-Recently-Started tasks. The tasks that
have been started more recently are degraded.

• Adaptation Speed. This parameter specifies the
percentage or the maximum number of tasks to
be adapted in each control period, regardless the
adaptation policy considered. This parameter con-
tributes significantly to the speed of adaptation.

Themonitoring periodused by the self-adaptation
mechanism has to be defined properly: a too short
monitoring interval can lead to excessive energy and
computational overhead on the system; a too long
monitoring interval can lead, instead, to far from op-
timal timing on the adaptation of tasks, thus decreas-
ing the effectiveness of the self-adaptation mecha-
nism. A correct trade off between these two param-
eters should be found to obtain both efficiency and
effectiveness of the self-adaptation mechanism. To
this end, the framework allows the designer to spec-
ify a range of values for the monitoring period. At
run-time, the self-adaptation mechanism starts with
the minimum monitoring period. If no adaptations
occur, the monitoring period is increased in the speci-
fied range. When adaptations are necessary, the mon-
itoring period is decreased to allow a more frequent
analysis of system conditions. The range to be used
for the monitoring period should be determined by the

A FRAMEWORK FOR SECURITY AND WORKLOAD GRADUAL ADAPTATION

181

Table 1: Task policy.

Parameter Description
Security Kind of degradation that can be applied to

security. The options available are:

• no degradation;

• intra-level degradations only;

• intra and inter level degradations; op-
tionally the range of security levels
accepted can be specified.

Period Range of periods accepted by the task.
Execution
status

Sets if the task accepts temporarily sus-
pensions.

Task
priority

Sets the priority of the task (High,
Medium, and Low) with respect to adap-
tations.

Adaptation
order

Specifies the order in which the adapta-
tions are made. There are five different
options available:

• Auto: the framework has the freedom
to decide which parameters to down-
grade.

• First security, then the others: the
framework downgrades security first;
when it is no longer possible to down-
grade security, the period is down-
graded; as a last option, if the other
parameters are no longer degradable
the task is suspended.

• First period, then the others: this pol-
icy is similar to the previous one, but
the period is adapted first.

• Suspend only: whenever an adapta-
tion is required, the task is suspended
without considering the security and
the period.

• None: no degradation is performed
on the task.

designer at design-time by considering the character-
istics of the running tasks and the applicative scenario.
For example, the minimum monitoring period could
coincide with the minimum period among all the pe-
riodic tasks.

5 ENERGY ESTIMATION

In our framework the run-time monitoring of energy
consumption is performed through a piece of software
namedenergy estimator. The aim of the estimator is
twofold: on the one hand, to estimate the energy con-
sumption of each task; on the other hand, to compute
theenergy budgetassociated with each monitoring in-
terval. These pieces of data are used by the framework
to perform the related adaptations.

5.1 Energy Consumption Models

In each node we can consider two different types of
energy consumptions: static and dynamic. Static en-
ergy is the energy that is necessary to provide the
basic node functionalities. This energy cannot be
changed for a given node and operating system. Dy-
namic energy is the one used to execute tasks. Our
framework tries to optimize the dynamic energy.

Energy consumption of tasks is estimated through
a model that includes the most significant contribu-
tions to energy consumption. We considered the fol-
lowing contributions to task energy consumption:

• Radio,Eradio(b): the energy required by the radio
module to transmit a certain amount of bytesb.

• Sensors,Esensor(ns): energy consumption re-
quired to acquirens samples in the observation
period.

• Encryption/decryption,Ealgo(b).

When no task is being executed the node can be
switched to one of the low-power modes. In this case
the energy consumption becomesEmode(t).

The energy consumption of cryptographic algo-
rithms are estimated by considering the following
contributions: the energy spent for initializing the al-
gorithm key,Einit ; and the energy per byte consumed
to processing a block of 16 bytes,Eblock.

Ealg(b) = Einit +Eblock∗b= (1)

= Einit +(Epadding+Ecall +Eenc)∗b (2)

whereb is the number of blocks. Moreover,Eblock can
be further divided into the energy spent for: padding,
Epadding; function calling,Ecall; encryption,Eenc.

All the aforementioned models (excludingEmode)
refer to the dynamic energy consumption.

The energy consumed by each task can be esti-
mated as the sum of the different contributions men-
tioned above. Similarly, the total energy consumption
of the system within an observation period can be es-
timated as the sum of the energy consumption of all
tasks running on the system and the energy spent in
the current power mode (if enabled).

All of the aforementioned power consumptions
are estimated by using linear models (see Table 2for
a complete model description). Using a linear equa-
tion for modeling the energy consumption of a secu-
rity algorithm has been proved to be quite accurate
(Grossschädl et al., 2007; Keeratiwintakorn and Kr-
ishnamurthy, 2006). Instead, linear equations might
not be as accurate for other parts of the energy con-
sumption. Such models, in fact, are technology-
dependent and have to be characterized according
to the particular node technology considered. Our

SECRYPT 2011 - International Conference on Security and Cryptography

182

framework relies on an energy consumption model to
take decisions on adaptations and the accuracy of the
model can influence the efficiency of the adaptation
mechanism. Though, different energy consumption
models can be easily inserted in the framework with-
out any change in the adaptation logic.

5.2 Energy Budget Computation

For each monitoring interval, the framework com-
putes the total energy consumption based on real con-
sumption. The framework, then, evaluates if the mea-
sured energy consumption is compatible with the de-
sired system lifetime. When the energy consumption
is evaluated to be too high, the system must gradually
reduce it during the successive monitoring intervals.
To evaluate if the energy consumption is compatible
with the desired battery lifetime, the framework com-
pares it with the reference discharge curve specified
by the system designer. An example of a discharge
curve is shown in Figure 2. According to this fig-
ure, in the monitoring intervalsI1 andI2, the current
energy consumed (continuous line) is lower then the
reference one (dashed line). Thus, the system does
not need any adaptation. Starting from intervalI3, the
current energy consumption becomes higher than the
desired one; in this case adaptations are necessary to
lower the energy consumption.

In this work, we define theenergy budgetas the
amount of energy that can be consumed in a given
monitoring interval according to the reference curve
and the real energy consumed in previous monitoring
intervals. The energy budget is compared with the
current overall energy consumption; the result of this
comparison drives the adaptations performed by the
framework.

If a linear reference discharge curve is considered,
the energy budget can be computed as follows. Con-
sidering Figure 2, the reference curve is given by:

Ē(t) =
minEC−maxEC

tli f etime
∗ t +maxEC (3)

Thus, the reference consumption in a given interval
[j,j+1] is:

Ẽ[j, j+1] = Ē(t j)− Ē(t j+1) (4)

Therefore, the energy budgetEbudget can be com-
puted as:

Ebudget,[j, j+1] = Ẽ[j, j+1]+Eprev,[j−1, j] (5)

whereEprev,[j−1, j] is the energy budget not consumed
in the previous interval. When the energy consumed
in the previous interval is higher than the associated
energy budget,Eprev becomes negative value to take
into account this extra energy consumption. Note
that, the framework allows the designer to specify his

Figure 2: Energy budget computation: parameters and con-
ceptual scheme. Dashed-line is the real energy consump-
tion; continuous-line represents the reference discharge
curve.

custom discharge model and corresponding computa-
tion of the energy budget keeping the validity of self-
adaptation approach here proposed.

6 CASE STUDY

Our framework has been implemented and tested in a
real WSN. In this section we describe this implemen-
tation and the results obtained by running a number
of experiments on this WSN. The goal of the exper-
iments was both to measure the overhead introduced
by the framework and to evaluate the effects of dif-
ferent policies on energy consumption and on perfor-
mances.

6.1 Scenario

The network is based on the Sun SPOT (Sun Small
Programmable Object Technology) nodes (Microsys-
tems, 2008). Sun SPOTs are small wireless devices,
compliant with the IEEE 802.15.4 standard and run-
ning the Squawk Java Virtual Machine (VM) with-
out any underlying OS. The VM acts as both op-
erating system and software layer to provide high
portability and fast prototyping capabilities. The Sun
SPOTs platform is designed to be a flexible, capa-
ble of hosting widely differing application modules.
From the hardware point of view, Sun SPOT nodes
are equipped with: a 32 bit ARM920T working at
180 MHz; 512K RAM/4M Flash Memory; 2.4GHz
IEEE 815.4 radio with integrated antenna; 720 mAh
as maximum battery capacity. By default, these de-
vices are equipped with an accelerometer, a temper-
ature, and a light sensor. Sun SPOT nodes may use
two different low power modes:shallow sleepand
deep sleepmode.

A FRAMEWORK FOR SECURITY AND WORKLOAD GRADUAL ADAPTATION

183

Concerning security suites, Sun SPOTs support
the TLS/SSL protocol with several cryptographic al-
gorithms: AES with 128, 192, and 256 bit keys and
RC4 with 40 and 128 bit keys.

The applications in this scenario are classified in
three groups according to the different sensors (light,
temperature, or acceleration) that they use. Each
group contains three tasks, each one performing one
of the following operations:

1. Obtaining data from the environment periodically
(short period).

2. Encrypting and transmitting the measures previ-
ously collected periodically (large period).

3. Detecting possible alarm conditions in the envi-
ronment (e.g. fire condition). As soon as an alarm
is detected, a picture of the environment is taken
and transmitted, in an encrypted form, to the other
nodes in the network. Since the SunSPOT does
not have a camera to take pictures, this function-
ality is emulated by taking several samples using
the respective sensor (temperature).

Different tasks have been implemented as differ-
ent threads.

6.2 Profiling and Modeling

To determine the parameters of the energy models of
Section 5, we profiled the different elements of our
nodes. The average values obtained are shown in Ta-
ble 2. Static energy consumption has been measured
to be about 44% of the total energy consumption.

The cryptographic algorithms available in the TLS
implementation of SunSPOTs have been also profiled
to determine their energy consumptions and the ex-
ecution times. By using these information we could
order the algorithms as explained in Section 3.3. The
algorithms have been grouped in three security levels
as follows:

• High: AES-256, AES-192;

• Medium: AES-128, RC4-128;

• Low: RC4-40.

6.3 Results

Two different sets of experiments have been per-
formed to evaluate the framework overhead and the
effects produced by applying different policy combi-
nations.

6.3.1 Framework Overhead

The monitoring and adaptation activities performed
by the framework introduce an overhead in the sys-

Figure 3: Framework energy consumption (up) and execu-
tion time (down) overheads, with respect to the system w/o
the framework.

tem in terms of time and energy. In order to mea-
sure this overhead, we measured the energy consumed
both when the framework was completely disabled
and when the framework was enabled. In both cases
we considered tasks programmed to always perform
the same actions and to make use of all system re-
sources (sensors, security algorithms, and the radio).
In order to study the overhead scalability, measure-
ments have been collected by repeating the experi-
ment with increasing number of tasks.

When the framework was enabled the following
additional conditions applied:

• The framework was forced to downgrade all the
tasks running over the system in every monitoring
interval (worst case scenario assumption).

• The framework was forced to adapt all the avail-
able parameters (e.g., security, period and execu-
tion state).

• The framework applied fake adaptations over the
tasks. In this way both task and framework per-
formance are kept constant along the experiment
execution.

In Figure 3 the energy consumption and the ex-
ecution time overhead are shown. The overhead in-
troduced by enabling the framework increases when

SECRYPT 2011 - International Conference on Security and Cryptography

184

Table 2: Value of parameters for energy consumption models described in Section 5. To model each resource energy con-
sumption a linear model (y= a+bx) has been considered.

RESOURCES a b

Shallow sleep mode Esm,on/o f f = 0 [mAh] Estatus= 8.13E−3 [mAh/s]
Deep sleep mode Edm,on/o f f = 8.22E−3 [mAh] Estatus= 5.27E−6 [mAh/s]

Radio Er,on/o f f = 6.40E−5 [mAh] Eprocess= 5.60E−7 [mAh/bytes]

Temp. sensor Ets,on/o f f = 0 [mAh] Esample= 1.41E−6 [mAh/sample]
Light sensor Els,on/o f f = 0 [mAh] Esample= 1.36E−6 [mAh/sample]
Accel. sensor Eas,on/o f f = 0 [mAh] Esample= 4.34E−6 [mAh/sample]

Table 3: Values of factors in Eq. 2.

Factor AES-256 AES-192 AES-128 RC4-128 RC4-40
Einit [mAh] 1.39E-5 1.28E-5 1.14E-5 2.25E-5 2.26E-5
Epadding [mAh/16B] 9.40E-8 2.77E-7 3.27E-7 1.27E-7 9.40E-8
Ecall [mAh/16B] 4.55E-7 2.13E-7 3.89E-7 4.29E-7 3.44E-7
Eprocessing[mAh/16B] 9.89E-6 8.65E-6 7.37E-6 1.57E-6 1.59E-6

the number of tasks in the system is increased. In
terms of energy the overhead ranges from 0.3% to
0.6%. These two values correspond to 3 and 30 tasks
in the system, respectively. In terms of time the over-
head ranges from 0.3% to 1.6%. We can conclude
that the overhead introduced by the framework is al-
most negligible in terms of energy and very small in
terms of time. The overhead is highly compensated
by the added system flexibility.

6.3.2 Effects of Different Policies

The purpose of this set of experiments was to verify
the effects of the different combinations of policies on
the execution of tasks and on battery life. In these ex-
periments we considered a node equipped with three
sensors, each one associated with three tasks. Each of
these tasks had different task policies corresponding
to different settings for security, period, and execution
status. To simulate the most demanding conditions for
the framework, we anyway specified policies provid-
ing a high degree of flexibility.

We considered 6 different experiments in which
all the different policies described in Section 4, except
the Last-Recently-Startedtasks, are combined. The
parameters used in these experiments are listed in Ta-
ble 4. The adaptation speed refers to the percentage
of tasks that can be adapted in the set of candidates:
fastcorresponds to 70% of possible candidates;slow
corresponds to 20%.

For these experiments we fixed a desired system
lifetime of 12 hours. The system without our adap-
tation framework, as well as in cases #4 and #5, was
not able to respect this constraint. In all the remaining
cases the constraint on battery life is satisfied.

In order to compare the different cases, we consid-

Figure 4: Percentage of time, aggregated by case, all tasks
are at a given degradation level w.r.t. total simulation time.

ered the impact of each policy in terms of degradation
level reached by all the tasks within the observation
time frame. Figure 4 shows the percentage of time
(computed over the total simulation time) in which
each task has been degraded to some degree (e.g.,
degradations of security, workload, or execution sta-
tus). Generally, our self-adaptation mechanism keeps
tasks in one of their possible degradation levels for a
period that spans from 10% to 48% of the total time.

As expected, the cases with alow adaptation
speed show fewer degradations compared to others.
Most-Energy-Demandingand Least-Degradedcrite-
ria show a similar behavior from the number of degra-
dation stand point.

Figures 5, 6 and 7 show details about how the
degradation of security has been performed for each
task according to different adaptation policies. Val-
ues are the percentage of total time in which a task

A FRAMEWORK FOR SECURITY AND WORKLOAD GRADUAL ADAPTATION

185

Table 4: Different combinations of policies used in the simulations.

Case 1 2 3 4 5 6
Adaptation Speed fast slow fast slow fast slow
Criterion most energy dem. low priority less degraded

Figure 5: Most-Energy-Demandingpolicy (case #2): per-
centage of time in every security degradation level per task.
Only tasks that support security degradation are shown.

Figure 6: Lowest-Prioritypolicy (case #4): percentage of
time in every security degradation level per task. Only tasks
that support security degradation are shown.

has been in a given degradation level. In general
our framework was able to meet the system life-
time constraint even by using optimal or almost op-
timal settings for the tasks in most of the time. The
Most-Energy-Demandingcriterion provides the best
results concerning energy consumption. Though, this
is achieved by heavily degrading security of most en-
ergy demanding tasks. TheLeast-Degradedcriterion
provides the best balance in terms of saved energy and
degradation level of tasks: in this case the optimiza-
tion of energy consumption is obtained by distributing
a low level of degradation on all tasks.

The aforementioned results also provide some

Figure 7: Least-Degradedpolicy (case #6): percentage of
time in every security degradation level per task. Only tasks
that support security degradation are shown.

guidelines for the choice of different adaptation poli-
cies. TheMost-Energy-Demandingpolicy is suitable
when energy is the most important constraint. This
policy, in fact, tends to limit the energy consump-
tion of the most power-hungry tasks, even by heav-
ily limiting their performances. TheLeast-Degraded,
instead, is the policy with the lowest influence on
task performances. Therefore, it is suitable when
energy consumption should be limited, but perfor-
mances remain the most important requirement. The
Last-Recently-Startedtasks policy instructs the sys-
tem to perform adaptations on the tasks started more
recently, supposedly the ones that are “additional”
(i.e., not the basic ones that had been started at sys-
tem boot). An adaptation policy based on task priori-
ties (Lowest-Priority) gives the programmers flexibil-
ity, but it is also complex to design.

7 CONCLUSIONS AND FUTURE
WORK

In this paper we discuss a framework for gradual
adaptation of security and of system workload. The
framework tunes the execution of tasks and their se-
curity settings runtime with the goal of optimizing the
trade-off among performances, security, and energy
consumption. Different policies for controlling the
framework along with a model for energy consump-
tion estimation have been also proposed in the paper.

SECRYPT 2011 - International Conference on Security and Cryptography

186

The framework has been tested on a real system along
with the policies.

Although the framework introduces a small, but
inevitable, energy and time overhead, it also allows
the nodes to meet battery lifetime constraints, yet pro-
viding an adequate level of security to tasks.

Future work includes the extension of our frame-
work to support smarter parameters for upgrade poli-
cies. Learning mechanisms may be introduced to fur-
ther optimize the gradual adaptation mechanism.

REFERENCES

Chandramouli, R., Bapatla, S., Subbalakshmi, K. P., and
Uma, R. N. (2006). Battery power-aware encryption.
ACM Trans. Inf. Syst. Secur., 9(2):162–180.

Chigan, C., Li, L., and Ye, Y. (2005). Resource-aware self-
adaptive security provisioning in mobile ad hoc net-
works. InWireless Communications and Networking
Conference, 2005 IEEE, volume 4, pages 2118–2124.

El-Hennawy, M. E., Dakroury, Y. H., Kouta, M. M.,
and El-Gendy, M. M. (2004). An adaptive secu-
rity/performance encryption system. InProc. Interna-
tional Conference on Electrical, Electronic and Com-
puter Engineering ICEEC ’04, pages 245–248.

Ferrante, A., Piuri, V., and Owen, J. (2005). IPSec Hard-
ware Resource Requirements Evaluation. InNGI
2005, Rome, Italy. EuroNGI.

Grossschädl, J., Szekely, A., and Tillich, S. (2007). The en-
ergy cost of cryptographic key establishment in wire-
less sensor networks. InASIACCS ’07: Proceedings
of the 2nd ACM symposium on Information, computer
and communications security, pages 380–382, New
York, NY, USA. ACM.

Herlihy, M. and Wing, J. (1991). Specifying graceful degra-
dation.Parallel and Distributed Systems, IEEE Trans-
actions on, 2(1):93–104.

Karri, R. and Mishra, P. (2002). Minimizing energy con-
sumption of secure wireless session with qos con-
straints. InProc. IEEE International Conference on
Communications ICC 2002, volume 4, pages 2053–
2057.

Keeratiwintakorn, P. and Krishnamurthy, P. (2006). Energy
efficient security services for limited wireless devices.
In Proc. 1st International Symposium on Wireless Per-
vasive Computing, pages 1–6.

Li, J., Song, Y., and Simonot-Lion, F. (2006). Provid-
ing real-time applications with graceful degradation
of qos and fault tolerance according to (m, k) -firm
model. Industrial Informatics, IEEE Transactions on,
2(2):112–119.

Lighfoot, L., Ren, J., and Li, T. (2007). An energy effi-
cient link-layer security protocol for wireless sensor
networks. InElectro/Information Technology, 2007
IEEE International Conference on, pages 233–238.

Microsystems, S. (2008). Sun Small Programmable Object
Technology.

Mura, M. (2007). Ultra-low power optimizations for the
ieee 802.15.4 networking protocol. Inproceedings of
MASS.

Pfleeger, C. P. and Pfleeger, S. L. (2006).Security in Com-
puting, 4th Edition. Prentice Hall PTR, 4th edition.

Ravi, S., Raghunathan, A., Kocher, P., and Hattangady,
S. (2004). Security in embedded systems: Design
challenges. Trans. on Embedded Computing Sys.,
3(3):461–491.

Taddeo, A. V., Micconi, L., and Ferrante, A. (2010). Grad-
ual adaptation of security for sensor networks. In
IEEE WoWMoM 2010: Proceedings of the IEEE In-
ternational Symposium on a World of Wireless Mobile
and Multimedia Networks, Montreal, Canada.

A FRAMEWORK FOR SECURITY AND WORKLOAD GRADUAL ADAPTATION

187

