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Abstract: Reed-Muller codes are widely used in communications and they have fast decoding algorithms. In this paper
we present an improved data hiding technique based on the first order binary Reed-Muller syndrome coding.
The proposed data hiding method can hide the same amount of data as known methods with reduction of time
complexity from 2m(2m−1)2m+1 binary operations to 2m(2m−1)m binary operations .

1 INTRODUCTION

Steganography is the art and science of invisible com-
munications. It is used, sometimes together with
cryptography, to protect information from unwanted
third parties. In contrast with cryptography, where
the enemy is able to detect, intercept and modify the
transmitted information (Kahn, 1996), steganography
is used primarily when the fact of communicating
needs to be kept secret. This is accomplished by em-
bedding the secret messages within another, appar-
ently innocuous, messages (called covers). Today’s
typical covers are computer files, mainly (due to the
limited power of human visual and hearing systems)
image, video and audio files; but in fact, whatever
an electronic document contains irrelevant or redun-
dant information, it can be used as a cover for hid-
ing secrets. For example, despite their known weak-
nesses, the most popular steganographic systems are
LSB (least significant bit) techniques. In its more el-
ementary form, the encoder select a pixel of a bitmap
image and replaces its LSB by a bit of information.
More elaborated versions allow to hide information
in JPEG and other format images.

Now-days , steganographic techniques are used in
order to guarantee security and privacy on open sys-
tems (as the Internet). They play also a role in elec-
tronic commerce, where they are used to prevent il-
legal uses of digital information (by means of water-
marking for example, see (Cox et al., 2007)). For a
more complete description of uses and applications
of steganography, see (Bender et al., 2000), (Moulin

and Koetter, 2005).
The design of a steganographic system has (at

least) two facets: firstly, the choice of accurate cov-
ers and the search for strategies to modify them in an
imperceptible way; this study relies on a variety of
methods, including psycho-visual and statistical cri-
teria. Secondly, the design of efficient algorithm for
embedding and extracting the information. Here we
concentrate our attention on this last problem.

Our goal in this paper is to improve the efficiency
of these embedding/retrieval algorithms by using cod-
ing theory techniques to construct new and more ef-
ficient algorithms. Recall that error-correcting codes
are commonly used for detecting and correcting errors
in data transmission. Their use in steganography is
not new. It was first suggested by Crandall (Crandall,
1998) who called it matrix encoding and later implic-
itly used by Westfeld in the design of F5 (Westfeld,
2001).

There exists a close relationship between stegano-
graphic protocols and error correcting codes. Since
error-correcting codes can be used to construct good
steganographic protocols and study their properties.
An explicit description of the relationship between
error-correcting codes and steganographic systems
was treated in (Zhang and Li, 2008), (Munuera,
2007).

Here, we propose to focus on a particular family
of error correcting codes: the first-order binary Reed-
Muller codes denotedR M (1,m). Theses codes are
widely used in communications over long distances, a
Reed Muller code was used by Mariner 9 to transmit
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black and white photographs of Mars.
This paper is organized as follows. After the in-

troduction, Section 2 presents syndrome coding, first
order Reed-Muller codes and we discuss there inter-
est in steganography after writing them with boolean
functions. Section 3 contents our contribution that’s
an improved algorithm based on list-decoding, that
enables us to embed more rapidly compared to the
Matrix/Embedding approach. The last section is de-
voted for, discussion, comparison and conclusion.

Notations. F2 denotes the Galois field{0,1}, dH
and ωH the Hamming distance and the Hamming
weight respectively.

2 CODING THEORY AND
STEGANOGRAPHY

2.1 Syndrome Coding

Let C be an[n,k] code with parity check matrixH,
ands∈ Fn−k

2 . For x ∈ Fn the syndrome ofx is de-
fined to bex.Ht . We letCoset(s) to denote the set of
all vectors inFn with syndromes. A vector with the
smallest weight is called the leader ofCoset(s) which
we denote byIs (if there is more than one vector, sim-
ply take one at random). ClearlyCoset(s) = C + Is.

Now, when decoding a vectory we compute
y.HT = sand take the associated leaderIs in Coset(s).
The nearest element toy in C is thenc = y− Is. To
see this:

dH(y,c) = ωH(y− c) = ωH(Is)

then,
mina∈C dH(y,a) = dH(y,c)

Thus we decodey by y− Is. This procedure can be
adapted to make a method to perform the embedding
process.

2.2 Syndrome Coding and
Steganography

The behaviour of a steganographic algorithm can be
sketched in the following way: a cover-datax is mod-
ified into y to embed a messageM; y is sometimes
called the stego-data. Here, we assume that the de-
tectability of the embedding increases with the num-
ber of bits that must be changed to transformx to y,
see (Westfeld, 2001) for some examples.

Syndrome coding deals with this number of
changes. The key idea is to use some syndrome com-
putation to embed the messageM into the cover-data

x. In fact, this scheme uses a linear codeC , more pre-
cisely its cosets, to hideM. A word y hides the mes-
sageM if y lies in a particular coset ofC , related toM.
Since cosets are uniquely identified by the so called
syndromes, embedding consist exactly in searchingy
with syndromeM, close enough tox.

We now set up the notation and describe properly
the syndrome coding scheme, and its inherent prob-
lems. We are looking for two mappings, embedding
Emband extractionExt, such that:

∀(x,M) ∈ Fn
2×Fr

2,Ext(Emb(x,M)) = M (1)

∀(x,M) ∈ Fn
2×Fr

2,d(x,Emb(x,M)) ≤ T (2)

Equation 1 means that we want to recover the
message in all cases ; Equation 2 means that we
authorize the modification of at mostT coordinates
in the vectorx.

It is quite easy to show that the scheme enables
to embed messages of lengthn− k in a cover-data
of length n, while modifying at mostT(≤ ρ)1 ele-
ments of the cover-data. The embedding and extrac-
tion functions are defined after (Fontaine and Galand,
2007) by:

Emb(x,M) = x+e= y (3)

Ext(y) = y.Ht = M (4)

wheree is the smallest element of weight≤ ρ such
that:

e.Ht = M− x.Ht = s (5)

Remark that effective computation ofe(= Is) is the
complete syndrome decoding problem, which is a
very hard problem.

The hidden message can be recovered fromy by:

y.Ht = x.Ht +e.Ht = x.Ht +M− x.Ht = M (6)

In this paper, the embedding process is divided
into two steps. In the first one, the exhaustive search
is used to acquire the first sequenceq= (q1, · · · ,qn).
The coset memberq can be identified more simply
and independent ofx by looking for a sequenceq that
fulfils

q.HT = s

In the second step of the embedding process, this
coset memberq can be used to determine a sequence
that has a minimum distance to the cover sequence.

Using the exhaustive search, we compare the
member cosetq directly to the 2k codewords, and
knowing that the time needed to find the first coset
member q is negligible (Schönfeld and Winkler,
2007), then we obtains a leader coset inO (n(n−1)2k)

1By definition ρ = maxx∈Fn
2
minc∈C d(x,c) is the cover-

ing radius ofC .
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binary operations. In factIs = q− c wherec satisfies
dH(q,c) = dH(q,C ).

Whenever considering a big codeword lengthn,
finding the optimal solution and thus finding a coset
leader is known to be an NP-complete problem.

Since embedding based on the classical approach,
by finding a coset leader using a exhaustive search is
really complex and therefore time consuming. We fo-
cused on embedding strategies to reduce the embed-
ding complexity without reducing the embedding ef-
ficiency.

In order to reduce complexity of syndrome coding
for embedding, we can reduce complexity to find a
vectore with a minimal weight satisfying Equation 5
(ewill be a leader of thecoset(s)).

2.3 First-order Binary Reed-Muller
Codes

The recursive nature of the construction of first-order
binary Reed-Muller codes (R M (1,m)) suggests that
there is a recursive approach to decoding as well.

Roughly speaking, theR M (1,m) code of length
n = 2m is a subspace of dimensionk = m+ 1 which
consists of affine functions. We can define this code
as follows: starting with a word(u0,u1, · · · ,um) of
lengthk= m+1, this word represents the affine func-
tion f ∈ R M (1,m) defined by the equality :

f (x) = u0+< u,x> (7)

whereu∈ Fm
2 , u0 ∈ F2 and< u,x>= ∑m

i=1uixi is the
scalar product.

The encoded word is then given by the vector

( f (0), f (1), · · · , f (2m−1))

The minimum distance ofR M (1,m) is d= 2m−1.
So this code can correctt errors where

t = ⌊
d−1

2
⌋= 2m−2−1.

By the support of a functionf we mean, the set:

supp( f ) = {x∈ Fm
2 : f (x) 6= 0}

and the weight off is the cardinal’s support:

ωH( f ) =Card(supp( f )).

Before presenting the decoding algorithm of
R M (1,m) codes, we need to recall some definitions:

Definition 1. Let f : Fm
2 → F2 be a Boolean function.

Its Fourier transform isf̂ : Fm
2 → Z defined by :

f̂ (v) = ∑
x∈Fm

2

f (x)(−1)<v,x> = ∑
x∈supp( f )

(−1)<v,x>.

We can show by induction onm that

∑
x∈Fm

2

(−1)<v,x> = 2mδ0(v)

whereδ0 is the Dirac function defined by:

δ0(v) =

{
1 if v= 0
0 otherwise

Definition 2. The Walsh-Hadamard transform
(WHT) of a Boolean function f is a real-valued func-
tion defined for all v∈ Fm

2 as the Fourier transform of
its sign functionX f (v) = (−1) f (v) :

X̂ f (v) = ∑
x∈Fm

2

(−1) f (x)(−1)<v,x>

Let f be a codeword ofR M (1,m). We can write
f as f (x) = u0+< u,x>, whereu∈ Fm

2 andu0 ∈ F2.

Consequently all Walsh-Hadamard coefficients
are zero except the one of indexu:

X̂ f (v) =

{
2m(−1)u0 if, v= u
0 otherwise

3 THE PROPOSED
STAGANOGRAPHIC SCHEMES

In this section we describe our contribution that’s to
use syndrome coding with a First-Order binary Reed-
Muller code that have a very efficient decoding meth-
ods.

Our problem is the following: We have a vectors
f = ( f1, · · · , fn) andg= (g1, · · · ,gn) of lengthn= 2m

of symbols ofF2, and a messageM = (M1, · · · ,Mn−k)
of lengthn− k. We want to modifyf into g such that
M is embedded ing, changing at mostT coordinates
in f .

3.1 Hiding using Fast Walsh Transform
(FWT)

Forv∈ Fm
2 we define the boolean functionx 7−→ 〈x,v〉

and
d(g,v) = |{x∈ Fm

2 / g(x) 6= 〈x,v〉}|
Given a boolean functiong, the relationship be-

tween the Walsh transform ofg at v and the distance
betweeng andv is then given by:

X̂g(v) = 2m−2.d(g,v) (8)

Indeed,

X̂g(v) = |{x∈ Fm
2 /g(x) =< v,x>}|

−|{x∈ Fm
2 /g(x) 6=< v,x>}|

= 2m−2|{x∈ Fm
2 /g(x) 6=< v,x>}|

= 2m−2d(g,v)
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Let q be a member ofcoset(s) that is qHt = s.
To find the leader cosete(= Is) we look for u ∈
Fm

2 such that|χ̂q(u)| = maxv∈Fm
2
|χ̂q(v)| where c =

(c(0), · · · ,c(2m−1)) satisfies

c(x) = u0+ 〈x,u〉

and

u0 =

{
0 if χ̂q(u)≥ 0
1 otherwise

The principle idea consists of decomposing the sum
depending on whether one of the coordinates (in prac-
tice we considerxm of x= (x1, · · · ,xm)) is 1 or 0:

|X̂q(v)| = ∑
x∈Fm

2 ,xm=0

(−1)q(x)(−1)<v,x>

+ ∑
x∈Fm

2 ,xm=1

(−1)q(x)(−1)<v,x>

= ∑
x∈Fm−1

2

(−1)q(x,0)+<(v1,··· ,vm−1),x>

+ ∑
x∈Fm−1

2

(−1)q(x,1)+<(v1,··· ,vm−1),x>+vm

= X̂q(.,0)((v1, · · · ,vm−1))

+(−1)vmX̂q(.,1)((v1, · · · ,vm−1))

So, onceX̂q(.,0) and X̂q(.,1) are calculated, it remains

2m−1 additions and subtractions to obtain̂Xq. Con-
tinuing the decomposition (m times in all), then we

obtainX̂ (v)q in m.2m additions/subtractions. From a

practical point of view, we can obtain̂Xq(u) using an
array of size 2m, andFm

2 lexicographically ordered.
Thus we have reduced the complexity from

2m(2m−1)2m+1 binary operations to 2m(2m−1)m.
Moreover, the Hamming weight ofe is precisely

the number of changes we apply to go fromf to g;
so, we needωH(e)≤ T.

WhenT is equal to the covering radius of the code
corresponding toH, such a vectore always exists.
But, explicit computation of such a vectore, known as
the bounded syndrome decoding problem, is proved
to be NP-complete for general linear codes. Even for
well structured codes, we usually do not have polyno-
mial time algorithm to solve the bounded syndrome
decoding problem up to the covering radius. The list
decoding ofR M (1,m) codes overcome this problem
in a nice fashion.

3.2 Hiding using List Decoding

List decoding (Sudan, 2000) is of interest in coding
theory, for example when the weight of the error ex-
ceeds the correction capability (in which case there

may be several solutions or the (good) solution is fur-
ther from the noise vector that solution returned by a
maximum likelihood decoding).

3.2.1 List Decoding Algorithm

This algorithm compute from a vectorq, a vectorc∈
R M (1,m) such thatdH(q,c)≤ T.

The list decoding with radiusT (parameter
fixed in advance) outputs the listLT,m(q) = {c ∈
R M (1,m)|dH(q,c)≤ T} of all codewords of a code
R M (1,m) located within distanceT to the vectorq.

Let d = 2m−1 denote the minimum distance of
R M (1,m). The following Johnson upper bound on
the list size will be useful below. See (Bassalygo,
1965) for a simple proof of this bound over an arbi-
trary alphabet.

Proposition 1. Any codeC satisfies the inequality

|LT,C (q)| ≤
d

d−2n−1T(n−T)
(9)

In this paper, we consider list decoding for codes
RM(1,m) with decoding radiusT = (1− ε)d, where
ε > 0. The corresponding list is denoted by

L ε,m(q) = {c∈ R M (1,m)|dH(q,c)≤ (1− ε)d}

It follows from Proposition 1, and since the list
size does not exceedn, that

|L ε,m(q)| ≤ min{ε−2,n} (10)

Let c(x1, · · · ,xm) be an arbitrary linear Boolean
function, and letc( j) = c1x1+ · · ·+c jx j be its jth pre-
fix.

Let be L ( j)
ε,m(q) the list of the jth prefixes of all

functionsc(x1, · · · ,xm) ∈ L ε,m(q). we consider the
j-dimensional facesSa = {(x1, · · · ,x j ,a j+1, · · · ,am)},
where the variablesx1, · · · ,x j take arbitrary values,
whereas the variablesx j+1 = a j+1, · · · ,xm = am are
fixed.

Given any boolean functionsf and g (also con-
sidered as vectors), letdH( f ,g|Sa) denote the Ham-
ming distance between their restrictions onto somej-
dimensional facesSa:

dH( f ,g|Sa) = ∑
x∈Sa

dH( f (x),g(x)).

Obviously,

dH( f ,g) = ∑
a∈Fm− j

2

dH( f ,g|Sa)

where we use the definition

∆( f ,g|Sa) := min{d( f ,g|Sa),d( f ,g⊕1|Sa)}
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Thus, for any (received) vectorq,

∆(q,c( j)|Sa)≤ d(q,c|Sa)

Let us define thejth distance between the vectors
f andg as

∆( j)( f ,g) = ∑
a∈Fm− j

2

∆( f ,g|Sa).

Lemme 1. For any affine function c= c1x1 + · · ·+
cmxm+ c0 and for any prefix c( j) = c1x1+ · · ·+ c jx j ,
we have

∆( j)(q,c( j))≤ d(q,c).

We say that a prefixc( j) = c1x1+ · · ·+ c jx j satis-
fies the sum criterion if

∆( j)(q,c( j))≤ (1− ε)d (11)

In accordance with this criterion, define the list

L̂
( j)
ε,m(q) = {c( j) = c1x1+ · · ·+ c jx j

such that∆( j)(q,c( j))≤ (1− ε)d}
It follows from Lemma 1 that:

L
( j)
ε,m ⊆ L̂

( j)
ε,m.

3.2.2 The Proposed Embedding Scheme

Our proposed approach, that we call Sum Criterion
embedding scheme, works by using of list decoding
who is executed by consecutive calculation of the lists
of (suspicious) prefixes using the sum criterion.

The principle of this algorithm is to define at each
step (j) a test to eliminate a certain number of linear
functions in (j) variables, those which we are confi-
dent that it can be the prefix of a solution of the prob-
lem.

We’re going to extract information at each step (j)
to invalidate certain sets of functions.

Given in step( j) a list L( j)
ε,m(q) such that

L
( j)
ε,m(q)⊆ L( j)

ε,m(q)⊆ L̂
( j)
ε,m(q) (12)

in the( j +1)th step the algorithm processes all possi-
ble extensionsc( j)(x1, · · · ,x j + c j+1x j+1) of the pre-

ceding prefixes, wherec( j) ∈ L( j)
ε,m(q) and c j+1 ∈

{0,1}. Among these extended prefixes, the SC-
algorithm leaves only those that satisfy the sum cri-
terion.

The latter prefixes in turn form a new list

L( j+1)
ε,m (q), which satisfies Relationship (11) forj :=

j + 1. In the last step (Stepm); therefore, the list

L(m)
ε,m(q) coincides with the listL (m)

ε,m .

The Sum Criterion Algorithm for Embedding

Inputs f = ( f0, · · · , fn−1), the cover data ;
M = (M0, · · · ,Mn−k) the message to hide,
ε > 0 such thatT = (1− ε)d distortion.
d: minimal distance ofR M (1,m) code.
H his parity check matrix.

Outputs g0, · · · ,gn−1, stego-data such that:
d(g, f ) ≤ T

1. We compute:s= M− f .HT

2. If s= 0 thene= 0 : no message to hide
else

Find a member cosetq, such thatq.HT = s
For each codewordsc∈ R M (1,m) :
j = 1 do :

While (∆( j)(q,c( j))≤ (1− ε)d) do :
c( j+1) = c( j)(x1, · · · ,x j) + c j+1x j+1

wherec( j) ∈ L
( j)
ε,m

j = j +1
Endwhile

If j > m thene= q− c(m)

where (w(e) = d(q,c(m))≤ T)
else check nextc∈ R M (1,m)
EndFor

3. g= f +e (returng).

4 DISCUSSION

The proposed scheme for data hiding method based
onR M (1,m) syndrome coding is compared with that
uses a classical exhaustive search. The basic contribu-
tions of their methods are the reduction of time com-
plexity. They achieve significant improvement over
existing classical approach.

The first algorithm based on the fast Walsh trans-
form allows us to find the Hamming distances from
the coset memberq to all 2k codewords inO (n.ln2(n))
binary operations.

The second proposed scheme for data hiding
method based on the sum criterion list decoding algo-
rithm for R M (1,m) codes, allows us to reconstructs
all codewords located within the ball of radius(1−
ε)d about the member coset inO (n.ln2(min{ε−2,n}))
binary operations (Dumer et al., 2007).

We have shown in this paper that first-order binary
Reed Muller codes are good candidates for design-
ing efficient steganographic schemes. Contributions
of this paper include the reduction of time complex-
ity and storage complexity as well. Time complexity
of our methods is reduced compared to the existing
methods. Since, it is easy to extend this method to
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largen which will allows us to hide data less com-
plexly.
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