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Abstract: The purpose of this paper is twofold. In the first part, we provide a solution to the problem of the state

construction through measurement and storage of appropriate previous measurements. In the second part we

consider the robust control problem of constrained discrete-time linear-time invariant systems with disturbance
and bounded input. Based on an interpolation technique, feasibility and a robustly asymptotically stable closed
loop behavior are guaranteed.

1 INTRODUCTION The main drawback of the observer-based ap-
proaches is that, when the constraints become active,
This paper considers the problem of output feedback the nonlinearity dominates the properties of the state
control design for a class of linear discrete time sys- feedback control system and one cannot expect the
tems in presence of output and control constraints andseparation principle to hold. Moreover there is no
subject to bounded disturbance. The boundedness asguarantee that the constraints will be satisfied along
sumptions on the different manipulated signals will the closed-loop trajectories.
be modeled by means of polyhedral constraints which ~ The work of (Wang and Young, 2006) proposed an
assure a global linear system description (linear dif- approach to MPC based on a non-minimal state space
ference equation and linear equalities/inequalities). model, in which the states are represented by mea-
There are several papers in the literature dealing sured past inputs and outputs. This approach elim-
with the output feedback synthesis problem. Due to inates the need of an observer. However the result-
the presence of input and state constraints, the robusing state space model is unobservable and the state
model predictive control (MPC) design seems to best dimension may be large.
fit our objectives. Indeed, based on a Luenberger ob-  The main aim of the present paper is twofold. In
server, an approach that incorporates the error on thethe first part, we revisit the problem of state construc-
state estimation as an additive bounded disturbancetion through measurement and storage of appropri-
has been proposed in (Mayne et al., 2006). The esti-ate previous measurements. We recall that, there ex-
mation error is then taken in to account in the classi- ists aminimal state space model with the structural
cal design of the constrained controller. A different constraints of having a state variable vector available
approach is taken in (Goulart and Kerrigan, 2007), though measurementand storage of appropriate previ-
where the authors include the observer dynamics in ous measurements. Even if this model mightbe-
the computation of the domain of attraction of the minimal from the classical state space representation
closed loop system. point of view, it is directly measurable and will pro-
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vide an appropriate model for the control design with 3 STATE SPACE MODEL
constraints handling guarantees.

In the second part, starting from this state space In this section, the measured plant input, output and
model, we consider the robust control problem of con- their past measured values are used to represent the
strained discrete-time linear invariant systems with states of the plant.
disturbance and bounded input. For this purpose,two  To simplify the description, it is assumed that
types of controller will be used in this paper. The m=n. Note that this assumption is always true, by
first one is the global vertex controller (Gutman and supposindNm+1 =Nmi2 =... =Ny =0.

Cwikel, 1986). The second one is the local uncon- The state of the system along the lines of (Taylor
strained robust optimal control. Based on an inter- etal., 2000). All the state construction is detailed such
polation technique and by minimizing an appropriate that the presentation of the results to be self contained.
objective function, feasibility and a robustly asymp- - - AT

totically stable closed loop behavior are achieved. xt)=(x®" x® ... xb)!) (3)

The following notations will be used throughout where(x)T denotes the transposed of matfiy and
the paper. We call a C-set a convex and compact set
and containing the origin as an interior point. A poly-

t) = y(t

hedron, or a polyhedral set, is the intersection of a 28 :{(D)nxl(t_l)Janu(t —1)

finite number of half spaces. A polytope is a closed X3(t) = —Dp_1X1(t — 1) +Xo(t — 1) + Ny_qu(t — 1)
(t) = ~Dn2xe(t — 1) +Xa(t — 1) + Nn_pu(t — 1)

and bounded polyhedral set. Given two 9¢isc R" X4
andX, ¢ R", the Minkowski sum of the set§ and .
Xo is defined byXy & Xo £ {Xg + Xo| X1 € X1, %2 € Xo}. : _ y _ B
The setX; is a proper suéset of t|he 6t if and on}iy X(t) = ~D2xa(t =)+ X1t~ 1) + Nou(t 1) (4)
if X1 lies strictly insideX,. For the sek, let Fr(X) be
the boundary oK, Int(X) be the interior ofX. It is clear that

The paper is organized as follows. Section 2 is
concerned with the problem statement. Section 3 (t) = —Dny(t — 1) + Nnu(t — 1)
is dedicated to the state space realization. Section Xa(t) = —Dp_1y(t — 1) — Dpy(t — 2)+
4 deals with the problem of computing an invariant +Np_1u(t — 1) + Nqu(t — 2)
set, while Section 5 is concerned with an interpola- .
tion technique. The simulation results are evaluated :

. . . . t)=—Doy(t—1)—D3y(t—2)—... —Dpy(t —n+ 1)+
in Section 6 before drawing the conclusions. %(t) N Nzﬁ%/t(— 1))+N33%/t(— 2>)+ Ty Nnﬂzlt(— nr]r 1))
One has
2 PROBLEM STATEMENT
y(t+1) = —Dyy(t) —Day(t—1)—... —Dpy(t—n+1)
Consider the regulation problem for the following dis- +N1u(t) + Nau(t — 1) + ... + Nou(t —n+ 1) + w(t)

crete linear time-invariant system, described by the or
input-output relationship

y(t+1) +D1y(t) + Day(t — 1) +...+Dpy(t —n+1)

= Nyu(t) + Nou(t — 1) + ...+ Npu(t — m—+ 1) + w(t)

X1 (t+1) = —=D1xq(t) +Xn(t) + Nyu(t) +w(t)

(1) The state space model is then defined as follows
where: y(t) € RY, u(t) € RP, w(t) € RY andD;,i = X(t + 1) = AX(t) + Bu(t) + Ew(t)
1,...,nandN;.i = 1,...,m are matrices of suitable { y(t) = Cx(t) (5)
dimension.

Itis assumed than < n. where

The output and control are subject to the following —D1 0Oq Oy ... Oy Iq
hard constraints —Dn 0Oq Oq ... Oy Oqg

y(t) €Y, u(t) U ) A—| “Pn1 lg O ... Og Oq

whereY = {y: Ry <gy} andU = {u: Fu< g,} are ~Dn2 0g lqg ... Og Og |’
polyhedral sets and contain the origin in their interior. e

The signalw(t) represents the disturbance input. —D2 0 O ... lg 0Og ;

In this paper, we assume that the disturbamte B=( N NI N_, N, ... NJ)',
is unknown, additive and lie in the polytojpé, i.e. E=(lqg O Oy Oy ... Oqg )T,
w(t) € W, whereW = {w: Ryw < gy} is a C-set. C= ( lg Oq Oy Oqg Oq )
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Herelg, Oq denote the identity and zeros matrices of From the formula (8), it is apparent that at any
dimensiong x g, respectively. time instantt, the state variable vector is available

It should be noted that, the state space realizationthough measurement and storage of appropriate pre-
(5) is minimal in the single input single output case. vious measurements.
In the other cases this realization might not be mini-
mal, as showing in the following example.

Consider the SIMO discrete time system: 4 INVARIANT SET

CONSTRUCTION
y(t+1)+( _02 ,02 )y(t)+( é E)y(t—l):
Using (4), it is clear thax;(t i wh i is gi
:< 0,25 >u(t)+( Ois )u(t—1)+w(t) b;lng( ), it is clear (t) € Xi whereX; is given

(6) X, =Y
Xo = Dn(—Xl) D Nn(U)

Using the above construction, the state space .
g PACE X = Diya i(“Xa) X 1D Nnp U, Vi =3,....n

model is given as follows:

X(t+ 1) = AX(t) 4+ Bu(t) + Ew(t) In summary, the constraints on the statexaeX,
{ y(t) = Cx(t) whereX = {x: Fx< ox}-
where 4.1 Maximal Robustly Admissible Set
2 0 10 0.5
for u=Kx
scidng=& Ires |12
0 -1 0 0 _'1 5 Using the results in the control theory (LQR, LQG,
1 y LMI based.,...), one can find a feedback gaf that
1 100 0 quadratically stabilizes the system (5) with some de-
E= 0 ,C= ( 0100 ) sired properties. The details of such a synthesis pro-
0 cedure are not reproduced here, but we assume that

the feasibility of such an optimization based robust
It is obvious that, this realization is not minimal. One control design is guaranteed, leading to a closed loop
of the minimal realizations of the system is given by: transition matrixA; = A+ BK.

A ( 0 -1 ) B_ ( 0.5 ) E— ( 0 ) Definition 1 (Robustly Positively Invariant Set).
1 2 ) 05 )~ 1 The setQ C X is a robustly positively invariant (RPI)
c_(01 set with respect tox(t + 1) = Ax(t) + Ew(t) if and
10 only if
Denote VX € Q= AX+Ewe Q 9)
zZt)= (yt) yt-1T ... yt—n+1)T for anyw € W.
ut-1T ut-2)" ... ut-n+1))"  pefinition 2 (Minimal RPI). The setQ, C X is a

_ (7) minimal RPI (mRPI) set with respect tqt + 1) =
The state vectox(t) (3) is related to the vectart) AcX(t) + Ew(t) if and only if Qe is a RPI and con-

as follows tained in any RPI set.
X(t) = Tz(t) ®) It is possible to show that if the mRPI s@t, ex-
where ists, then it is unique, bounded and contains the ori-
T=(M T gin in its interior (Kolmanovsky and Gilbert, 1998),
lq Oq Og ... Og (Rakovic et al., 2005). Moreover, all trajectories of
Og -Dn 0Oy ... Oq the systemx(t + 1) = Acx(t) + Ew(t) starting from
Ti=| 04 -Dno1 —-Dn ... 0qg the origin, are bounded b§... It follows from lin-
earity and asymptotic stability &, that Q. is the
0 -D2 -Dsg ... —Dp limit set of all trajectory of the system(t + 1) =
Ogxp Ogxp Ogxp --- Ogxp AcX(t) + Ew(t).
No Ogxp Ogxp --- Ogxp It is clear that, it is impossible to devise a con-
To=| Noo1 Nn Ogxp ... Ogup troller u(t) = Kx(t) such thai(t) — 0 ast — . The
best that can be hoped for is that the controller steers
N, N3 Na ... Ny any initial state to the mRPI s&,, and maintains the
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state in this set once it is reached. In other words, the4.2 Robustly Positively Controlled

setQ. can be considered as the origin of the system
(5).

In the sequel, it is assumed that the gt is a
proper subseY.

Definition 3 (Maximal RPI). The setO, € X is a
maximal RPI (MRPI) set with respect tdt + 1) =
AX(t) +Ew(t) if and only if O is a RPI and contains
every RPI set.

If the MRPI set is non-empty, then it is unique.
Furthermore iX, U andW are a C-set, then the MRPI
setO,, is also a C-set.

The mRPI sef),, and the MRPI seD., are con-
nected be the following theorem:

Theorem 1. The following statements are equiva-
lent:

1. The MRPI seD, is hon-empty.
2. O, CX

Proof. Interested readers are referred to (Kol-
manovsky and Gilbert, 1998) for the details of the
proof. ]

Define the polytop®,, as follows

Pw = {X: Faux < gxu}
where
Fx Ox

(50 me(3)

Under the assumption that thk, is a proper sub-
set ofX, a constructive procedure is used to compute
the MRPI set, as follows (Blanchini and Miani, 2008).

(10)

Procedure 1. Maximal robustly positively invariant
set computation.

1. Sett =0, R = Fx, 0t = 9w andR = Py

2. SetPl =R
3. Solve the following linear program

d = maxREw, s.t.weW
4. Compute a polytope

P? = {x: RAX < g —d}
5. SetR as an intersection

R=R NP’

6. If B = P! then stop and séd., = R. Else con-

tinue.
7. Sett =t+1, goto step 2.
Non-emptiness property of the MRPI 98§, as-

sures that the above procedure terminates in finite

time and lead to the MRPI in form of a polytope
O = {X: FoXx < go} (11)

Invariant Set for uc U

Recall the following definitions (Blanchini and Miani,
2008)

Definition 4: Robustly Positively Controlled In-
variant Set. Given the system (5), the st C X
is invariant if and only if for any(t) € W, there exists
a control actioru(t) € U such that for anw(t) € W,
one hax(t + 1) = Ax(t) + Bu(t) + Ew(t) € X.

Definition 5: Pre-image Set. Given the polytopic
system (1), the one-step pre-image set of th&set
{x: Fox < go} is given by all states that be steered in
one step iy when a suitable control is applied. The
pre-image set, calleBy = Pre(Py) can be shown to
be:

P1={x€R":JueU : Fy(Ax+Bu) < go— maxHEw}
(12)
wherew e W.

Remark 1: It is clear that if the se# is contained
in its pre-image set th# is invariant.

Recall that the seD., is the MRPI. DefinePy as
the set of states, that can be steered toQkdn no
more thatN steps along an admissible trajectory, i.e.
a trajectory satisfying control, state and disturbance
constraints. This set can be generated recursively by
the following procedure:

Procedure 2. Invariant set computation
1. Setk =0 andPy = O.

2. Define
i1 = Pre(R) (X

3. If B1 = B, then stop and sé&y = . Else con-
tinue.

4. If k=N, then stop else continue.
5. Setk=k+ 1 and go to the step 2.

A a consequence of the fact tha4, is an invariant
set, it follows that for each, P_; C P and therefore
P is an invariant set and a sequence of nested poly-
topes.

Note that the complexity of the s&; does not
have an analytic dependence on N and may increase
without bound, thus placing a practical limitation on
the choice oNN.

For further use, the controlled invariant set result-
ing from the Procedure 2 is denoted

Pnv = {x:Rnx<on} (13)
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5 INTERPOLATION BASED wherex,(t) € Py, %(t) € Qand 0< c < 1.
CONTROLLER WITH LINEAR Consider the following control law:
PROGRAMMING u(t) = cty(t) + (1 — C)ug(t) (17)

whereuy(t) is obtained by applying the vertex con-
trol law andug(t) = Kxo(t) is the control law, that is
feasible iNO.

The purpose of this section is to show how an inter-
polation technique can be used together with linear
programming.

5.1 \Vertex Control Law

Given a positve invariant polytog® € R", this poly-

tope can be decomposed in a sequence of simplices

P,5 each formed by vertice9<(1k), (2k>, ... ,xﬁ,k> and the

origin. These simplices have following properties:
e Int(PX) #0,

o INt(P§NPY) =0if k#1,

o UcPK =Pu,
K oK (k) (k) Figure 1: Feasible regions for example 1. The blue one is
Denote byX® = (x;° %" -.. %) the square ma-  the MRPIO,, when applying the control law= Kx. The
trix defined by the vertices generatiﬁﬁ. SinceP,'\‘, red one is the positive invariant a.

has nonempty interioXX ¥ is invertible. LetU®) =
(u(lk) ugk) uﬁk)) be the matrix defined by the admis-

5

Theorem 3. The above linear control is feasible

sible control values at these vertices. kar P,5 con- for gll;oi P
sider the following linear gaik™ Corresponding to the decomposition, the control
kKk=y® (X(k))fl (14) law is given by (17).

One has to prove thadu(t) < gy andx(t+1) =
Remark 2: By the admissible control value we under-  Ax(t) + Bu(t) + Ew(t) € Py for all x(t) € Py and for
stand any control action, that keeps the state insideanyw(t) e W .

the invariant set. Generally, one would like to maxi- One has

mize the control action at the vertices of the feasible

invariant set. This can be done by using the following Fuu(t) = FRu(cw(t)+(1—c)uo(t))
program. = cRuy(t) 4+ (1 —c)Ruo(t)

IN

Fn(Ax+ Bu) < gy — maxFyEw cgu+ (1—C)gu = gu

Fuu < gu. and

(15)
where||u, is ap— norm ofu andw € W. X(t+1) =Ax(t)+Bu(t) +Ew(t)
Due to the properties of the positive invariant set, = A(Cxy(t) + (1 —c)xo(t))+

the above program is always feasible. +B(eu(t) + (1 —C)Uo(t)) +Ew(t)
= c(Axy(t) + Buy(t) + Ew(t))+

Theorem 2. The piecewise linear contral= K*x is + (1—¢)(AX%o(t) + Bup(t) + Ew(t))
feasible and asymptotically stable for ak Py.

Proof. The proof of this theorem is not reported We have Ax(t) + Buy(t) + Ew(t) € Py and
here, with (Gutman and Cwikel, 1986) and (Blan- A%(t) +BUo(t) +EW(t) € O C Py, it follows that

chini, 1992) providing the necessary details. O x(t+1) € Py. ) ) ) U
In order to give a maximal control action, one

would like to minimizec, so the following program

J=max]|ul[,s.t. {

5.2 Interpolation via Linear

. is given:
Programming
FNXV < On,
Any statex(t) in Py can be decomposed as follows: () — mi FoXo < Qo,
( c'(x) erxlc, s.t. X+ (1— C)xo = X, (18)
X(t) = exy(t) + (1—C)xo(t) (16) 0<c<1
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Denotery = ¢xy, fo = (1 —C)X%o. It is clear that The statex(t) is available though the measured
rv € cPy andr, € (1—¢)Q or equivalentlyFyry < cgn plant input, output and their past measured values as
andFRyro < (1—c)gw. The above non-linear program  follows
is translated into a linear program as follows. X(t) = Tz(t)

Interpolation based on Linear Programming. where
-
Fer < CoN Z(t) = ( y(t) y(t - l) U(t - 1) ) P
c(x) =minc, s.t. ¢ Fo(x—ry) <(1—c)go (19) T= 1 0 0
Cly 0<c<1 0 -1 05

Remark 3. If one would like to maximize, it is The constraints on the state are

obvious thatc = 1 for all x € Py. In this case the —5<x <5
controller turns out to be the vertex controller. —75<x% <75
Theorem 4. The control law using interpolation Using the linear quadratic regulator with weight-

based on linear programming (16), (17), (19) guar- ing matricesQ = C'C andR = 0.1 the feedback gain
antees robustly asymptotic stability for all initial state IS obtained

X(0) & Pi. K—( —2.3548 —1.3895
Proof. The complete proof of this theorem is (=2 . )
givenin (Nguyen et al., 2011). Using procedures 1 and 2 one obtains theGet

andPy as shown in Figure 1. Note thBs = Py, in this
casePs is a maximal invariant set for system (20).
The set of vertices oPy is given by the matrix
6 EXAMPLES V(Py) below, together with the control matrik,

To show the effectiveness of the proposed approach,V(PN):( s 81 s o 01 s ol s )
two examples will be presented in this section. For ' oo T
both of these examples, to solve linear programs gnd

and to implement polyhedral operations, we used the

Multi-parametric toolbox, (Kvasnica et al., 2004). U=(-5 -5 -5 -49 5 5 5 49)
Figure 2 shows the state space partition and 6 dif-
6.1 Example 1 ferent trajectories of the closed loop system.

Consider the following discrete-time system

t+1)—2y(t t—1) =
) %Eu&) +25,.(531(Jtr x(1) +3N(t) (20)

The constraints are

—5<y(t) <5
—-5<ut)<5

and
—-0.1<w(t) <0.1 :
The state space model is given by Figure 2: State space partition and trajectories of theedos
loop system for example 1.
X(t+1) = Ax(t) + Bu(t) + Ew(t)
{ y(t) = Cx(t) Corresponding to the initial conditiong =
(5.0000 —2.6000", Figure 3 shows the output and
where input trajectory.
2 1 05 1 Figure 4 shows the disturbance input and the in-
A= ( 1 0 ) B= ( 05 ) E= ( 0 ) ; terpolating coefficient*(t) as a function of. As ex-
pected this function is positive and non-increasing.
and In a comparison with the approach, that based on
C=(10) the so called Kalman filter, Figure 5 shows the output

10
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- ‘| Iman filter approach
Lo
: tlm‘e(s)
7 tlm‘e(s)

Figure 3: Output and input trajectory for example 1. Figure 5: The state trajectory of our approach and the
Kalman filter based approach for example 1. The mRPI set
of the Kalman filter based approach is bigger than the mRPI
set of our approach.

‘:le roach ‘
; . : i I {\f?\‘m\ WA\AAM AN P
time(s) = N R AR
5 =/
== AP ={y |
nm;(s) ) ) ‘ ' !
Figure 4: The interpolating coefficient and the disturbance
input for example 1.

Figure 6: The output trajectories of our approach and the

trajectories using our approach and the Kalman filter Kalman filter based approach for example 1.

based approach. Itis obvious that, the mRPI set of the

set of our approach. _ be violated where the Kalman filter is used to estimate
The Matlab routine with the commaridalman’ the state of the system.

is used for designing the Kalman filter. The process
noise is a white noise with an uniform distribution and
there is no measurement noise.

w is a random number with an uniform distribu-
tion, w; <w < w,. The variance oW is given as fol-
lows:

— 1)2-1
Coy— W W'ler) — 0.0367

The estimator gain of the Kalman filter is ob-
tained:

__ Our approach
ol

Kalman filter approach

L=2 -1
The initial Con_d't'o_n ISX0 = (*4 6)T Figure 7: Constraints violation for example 1.
The Kalman filter is used to estimate the state of
the system and then this estimation is used to closeg.2 Example 2
the loop with the interpolated control law .
In contrast to our approach, where the state is ex- Consider the following discrete-time system
act, in the Kalman filter approach, the state is not ex-

act and moreover, there is no guarantee that the con- y(t+1)+ ( 71’8787 —1.&?964 )y(t)+
straints are satisfied. 0.8787 0
Figure 6 shows the output trajectories of our ap- ( 0 0.8964 )Y(t -1=

proach and the Kalman filter based approach.

11
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_( —0.3800 —0.5679 u(t)+ Using the linear quadratic regulator with weight-
—\ —-02176 04700 21) ing matricelQ = C'C andR = I, the feedback gain is
( 0.3339 05679 )u(t1)+w(t) obtained
02176 —0.4213 «_ (19459 17552 14968 13775
The constraints are o 0.8935 —1.7212 05524 —-1.2704
—2<y1 <2, —2<y, <2 Using procedures 1 and 2, one obtains the set
-10<u; <10, —10<u <10 O, and P; as illustrated in Figure 8. The num-

and

cutttrougn x, =000

—01<w; <01, —-01<w;<0.1
The state space model is
{ X(t+1) = AX(t) +Bu(t) + Ew(t)

y(t) = Cx(t)
where
1.8787 0 1000 O
A 0 18964 01 :
—0.8787 0 0 0’ Figure 8: Feasible regions for example 2, cut throxgk:
0 -0.8964 00 0. The blue one is the MRPI s€k,, when applying the
-0.3800 —0.5679 1 0 control lawu = Kx. The red one is the positive controlled
—0.2176 04700 01 invariant sees.
B=1 0333 0s679 |'E=| 0 0 _ _
0.2176 —0.4213 00 ber of vertices of the s&®; is 1030 and these are

100 0 not reported here. The control values at the ver-
C= ( 01 0 0) tices of the setP; are found by applying the pro-
gram (15). Corresponding to the initial condition
xo = ( —1.6722 02088 107754 —3.8296),
Figure 9 presents the output and input trajectories.

It is worth noticing that, the above state space re-
alization is minimal. The statet) is available though
the measured plant input, output and their past mea-
sured values as follows

X(t) =Tz(t)

Yy

where

B

zt)=(yt)T yt-17T ut-1T )",

10 0 0 0 0 0 L‘\ |

0 10 0 0 0 0 S
0 0 -0.8787 0 03339 05679 ’
0 0 0 -0.8964 02176 —0.4213

T:

W
timole) timofs)

The constraints on the state are Figure 9: Output and input trajectory for example 2.

(1) (1) 8 8 g Figure 10 shows the disturbance inputs
1 0 0 0 5 wi(t),wo(t) and the interpolating coefficiewt (t) as

0 -1 0 0 2 a function oft. As expected, this function is positive

0 0 05460 —0.8378 9.0918 and non-increasing.

0 0 -05958 -08031 | _ 6.2239 In a comparison with the Kalman filter based ap-

0 0 -10000 0 |7=] 107754 proach, Figure 11 shows the output trajectories using

8 8 *0-5468 %ggg gggig our approach and the Kalman filter based approach.

0 0 00000 —10000 81818 The initial condition is . X =

0 O 05958 08031 6.2239 ( —1.3378 01670 86203 —3.0637) .

0 0 10000 00000 10.7754 The Matlab routine with the commariélalman’

is used for designing the Kalman filter. The process

12
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Figure 10: The interpolating coefficient and the disturteanc
input for example 2.

noise is a white noise with an uniform distribution and
there is no measurement noise.
w is a random vector with an uniform distribution,
w; < w < w,. The covariance matrix off is given as
| | (WU—W|+1)2—l 1
0
0

follows:
L 12
( 0.0367 )

0.0367
0

The estimator gain of the Kalman filter is ob-

tained:

0
Cw 1

1.8787 0
L 0 18964
—-0.8787 0
0 -0.8964
e DY

Figure 11: The output trajectories of our approach and the
Kalman filter based approach for example 2.

7 CONCLUSIONS

In this paper, a state space realization is detailed for

discrete-time linear time invariant systems, with the
particularity that the state variable vector is available

a global vertex controller and a local unconstrained
robust optimal control law.

Several simulation examples are presented includ-
ing a comparison with an earlier solution from the lit-
erature and a multi-input multi-output system.
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through measurement and storage of appropriate pre-

vious measurements.

A robust control problem is solved based on the
interpolation technique and using linear program-
ming. Practically, the interpolation is done between
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