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Abstract: The purpose of this paper is twofold. In the first part, we provide a solution to the problem of the state
construction through measurement and storage of appropriate previous measurements. In the second part we
consider the robust control problem of constrained discrete-time linear-time invariant systems with disturbance
and bounded input. Based on an interpolation technique, feasibility and a robustly asymptotically stable closed
loop behavior are guaranteed.

1 INTRODUCTION

This paper considers the problem of output feedback
control design for a class of linear discrete time sys-
tems in presence of output and control constraints and
subject to bounded disturbance. The boundedness as-
sumptions on the different manipulated signals will
be modeled by means of polyhedral constraints which
assure a global linear system description (linear dif-
ference equation and linear equalities/inequalities).

There are several papers in the literature dealing
with the output feedback synthesis problem. Due to
the presence of input and state constraints, the robust
model predictive control (MPC) design seems to best
fit our objectives. Indeed, based on a Luenberger ob-
server, an approach that incorporates the error on the
state estimation as an additive bounded disturbance
has been proposed in (Mayne et al., 2006). The esti-
mation error is then taken in to account in the classi-
cal design of the constrained controller. A different
approach is taken in (Goulart and Kerrigan, 2007),
where the authors include the observer dynamics in
the computation of the domain of attraction of the
closed loop system.

The main drawback of the observer-based ap-
proaches is that, when the constraints become active,
the nonlinearity dominates the properties of the state
feedback control system and one cannot expect the
separation principle to hold. Moreover there is no
guarantee that the constraints will be satisfied along
the closed-loop trajectories.

The work of (Wang and Young, 2006) proposed an
approach to MPC based on a non-minimal state space
model, in which the states are represented by mea-
sured past inputs and outputs. This approach elim-
inates the need of an observer. However the result-
ing state space model is unobservable and the state
dimension may be large.

The main aim of the present paper is twofold. In
the first part, we revisit the problem of state construc-
tion through measurement and storage of appropri-
ate previous measurements. We recall that, there ex-
ists aminimal state space model with the structural
constraints of having a state variable vector available
though measurement and storage of appropriate previ-
ous measurements. Even if this model might benon-
minimal from the classical state space representation
point of view, it is directly measurable and will pro-
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vide an appropriate model for the control design with
constraints handling guarantees.

In the second part, starting from this state space
model, we consider the robust control problem of con-
strained discrete-time linear invariant systems with
disturbance and bounded input. For this purpose, two
types of controller will be used in this paper. The
first one is the global vertex controller (Gutman and
Cwikel, 1986). The second one is the local uncon-
strained robust optimal control. Based on an inter-
polation technique and by minimizing an appropriate
objective function, feasibility and a robustly asymp-
totically stable closed loop behavior are achieved.

The following notations will be used throughout
the paper. We call a C-set a convex and compact set
and containing the origin as an interior point. A poly-
hedron, or a polyhedral set, is the intersection of a
finite number of half spaces. A polytope is a closed
and bounded polyhedral set. Given two setsX1 ⊂ Rn

andX2 ⊂ Rn, the Minkowski sum of the setsX1 and
X2 is defined byX1⊕X2 , {x1+x2| x1 ∈ X1,x2 ∈ X2}.
The setX1 is a proper subset of the setX2 if and only
if X1 lies strictly insideX2. For the setX , let Fr(X) be
the boundary ofX , Int(X) be the interior ofX .

The paper is organized as follows. Section 2 is
concerned with the problem statement. Section 3
is dedicated to the state space realization. Section
4 deals with the problem of computing an invariant
set, while Section 5 is concerned with an interpola-
tion technique. The simulation results are evaluated
in Section 6 before drawing the conclusions.

2 PROBLEM STATEMENT

Consider the regulation problem for the following dis-
crete linear time-invariant system, described by the
input-output relationship

y(t +1)+D1y(t)+D2y(t −1)+ . . .+Dny(t − n+1)
= N1u(t)+N2u(t −1)+ . . .+Nmu(t −m+1)+w(t)

(1)
where: y(t) ∈ Rq, u(t) ∈ Rp, w(t) ∈ Rq and Di, i =
1, . . . ,n and Ni, i = 1, . . . ,m are matrices of suitable
dimension.

It is assumed thatm ≤ n.
The output and control are subject to the following

hard constraints
y(t) ∈ Y, u(t) ∈U (2)

whereY = {y : Fyy ≤ gy} andU = {u : Fuu ≤ gu} are
polyhedral sets and contain the origin in their interior.

The signalw(t) represents the disturbance input.
In this paper, we assume that the disturbancew(t)

is unknown, additive and lie in the polytopeW , i.e.
w(t) ∈W , whereW = {w : Fww ≤ gw} is a C-set.

3 STATE SPACE MODEL

In this section, the measured plant input, output and
their past measured values are used to represent the
states of the plant.

To simplify the description, it is assumed that
m = n. Note that this assumption is always true, by
supposingNm+1 = Nm+2 = . . .= Nn = 0.

The state of the system along the lines of (Taylor
et al., 2000). All the state construction is detailed such
that the presentation of the results to be self contained.

x(t) =
(

x1(t)T x2(t)T
. . . xn(t)T

)T
(3)

where(∗)T denotes the transposed of matrix(∗) and































x1(t) = y(t)
x2(t) =−Dnx1(t −1)+Nnu(t −1)
x3(t) =−Dn−1x1(t −1)+x2(t −1)+Nn−1u(t −1)
x4(t) =−Dn−2x1(t −1)+x3(t −1)+Nn−2u(t −1)
...
xn(t) =−D2x1(t −1)+xn−1(t −1)+N2u(t −1)

(4)

It is clear that

x2(t) =−Dny(t −1)+Nnu(t −1)
x3(t) =−Dn−1y(t −1)−Dny(t −2)+

+Nn−1u(t −1)+Nnu(t −2)
...
xn(t) =−D2y(t −1)−D3y(t −2)− . . .−Dny(t −n+1)+

+N2u(t −1)+N3u(t −2)+ . . .+Nnu(t −n+1)

One has

y(t +1) =−D1y(t)−D2y(t −1)− . . .−Dny(t −n+1)
+N1u(t)+N2u(t −1)+ . . .+Nnu(t −n+1)+w(t)

or

x1(t +1) =−D1x1(t)+xn(t)+N1u(t)+w(t)

The state space model is then defined as follows
{

x(t +1) = Ax(t)+Bu(t)+Ew(t)
y(t) =Cx(t)

(5)

where

A =















−D1 0q 0q . . . 0q Iq
−Dn 0q 0q . . . 0q 0q
−Dn−1 Iq 0q . . . 0q 0q
−Dn−2 0q Iq . . . 0q 0q
. . . . . . . . . . . . . . . . . .

−D2 0q 0q . . . Iq 0q















,

B =
(

NT
1 NT

n NT
n−1 NT

n−2 . . . NT
2

)T
,

E =
(

Iq 0q 0q 0q . . . 0q
)T

,

C =
(

Iq 0q 0q 0q . . . 0q
)

.
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HereIq, 0q denote the identity and zeros matrices of
dimensionq× q, respectively.

It should be noted that, the state space realization
(5) is minimal in the single input single output case.
In the other cases this realization might not be mini-
mal, as showing in the following example.

Consider the SIMO discrete time system:

y(t +1)+

(

−2 0
0 −2

)

y(t)+

(

1 0
0 1

)

y(t −1) =

=

(

0.5
2

)

u(t)+

(

0.5
1

)

u(t −1)+w(t)

(6)

Using the above construction, the state space
model is given as follows:

{

x(t +1) = Ax(t)+Bu(t)+Ew(t)
y(t) =Cx(t)

where

A =







2 0 1 0
0 2 0 1
−1 0 0 0
0 −1 0 0






, B =







0.5
0.5
0.5
−1.5







E =







1
1
0
0






,C =

(

1 0 0 0
0 1 0 0

)

It is obvious that, this realization is not minimal. One
of the minimal realizations of the system is given by:

A =

(

0 −1
1 2

)

,B =

(

0.5
0.5

)

,E =

(

0
1

)

C =

(

0 1
1 0

)

Denote

z(t) = (y(t)T y(t −1)T
. . . y(t − n+1)T

u(t −1)T u(t −2)T
. . . u(t − n+1)T)T

(7)
The state vectorx(t) (3) is related to the vectorz(t)

as follows
x(t) = T z(t) (8)

where

T = (T1 T2)

T1 =











Iq 0q 0q . . . 0q
0q −Dn 0q . . . 0q
0q −Dn−1 −Dn . . . 0q
. . . . . . . . . . . . . . .

0q −D2 −D3 . . . −Dn











T2 =











0q×p 0q×p 0q×p . . . 0q×p
Nn 0q×p 0q×p . . . 0q×p

Nn−1 Nn 0q×p . . . 0q×p
. . . . . . . . . . . . . . .

N2 N3 N4 . . . Nn











From the formula (8), it is apparent that at any
time instantt, the state variable vector is available
though measurement and storage of appropriate pre-
vious measurements.

4 INVARIANT SET
CONSTRUCTION

Using (4), it is clear thatxi(t) ∈ Xi whereXi is given
by

X1 = Y
X2 = Dn(−X1)⊕Nn(U)

Xi = Dn+2−i(−X1)⊕Xi−1⊕Nn+2−iU,∀i = 3, . . . ,n

In summary, the constraints on the state arex ∈ X ,
whereX = {x : Fxx ≤ gx}.

4.1 Maximal Robustly Admissible Set
for u = Kx

Using the results in the control theory (LQR, LQG,
LMI based,. . .), one can find a feedback gainK, that
quadratically stabilizes the system (5) with some de-
sired properties. The details of such a synthesis pro-
cedure are not reproduced here, but we assume that
the feasibility of such an optimization based robust
control design is guaranteed, leading to a closed loop
transition matrixAc = A+BK.

Definition 1 (Robustly Positively Invariant Set).
The setΩ ⊆ X is a robustly positively invariant (RPI)
set with respect tox(t + 1) = Acx(t) +Ew(t) if and
only if

∀x ∈ Ω ⇒ Acx+Ew ∈ Ω (9)

for anyw ∈W .

Definition 2 (Minimal RPI). The setΩ∞ ⊆ X is a
minimal RPI (mRPI) set with respect tox(t + 1) =
Acx(t) +Ew(t) if and only if Ω∞ is a RPI and con-
tained in any RPI set.

It is possible to show that if the mRPI setΩ∞ ex-
ists, then it is unique, bounded and contains the ori-
gin in its interior (Kolmanovsky and Gilbert, 1998),
(Rakovic et al., 2005). Moreover, all trajectories of
the systemx(t + 1) = Acx(t) + Ew(t) starting from
the origin, are bounded byΩ∞. It follows from lin-
earity and asymptotic stability ofAc, that Ω∞ is the
limit set of all trajectory of the systemx(t + 1) =
Acx(t)+Ew(t).

It is clear that, it is impossible to devise a con-
troller u(t) = Kx(t) such thatx(t)→ 0 ast → ∞. The
best that can be hoped for is that the controller steers
any initial state to the mRPI setΩ∞, and maintains the
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state in this set once it is reached. In other words, the
setΩ∞ can be considered as the origin of the system
(5).

In the sequel, it is assumed that the setΩ∞ is a
proper subsetY .

Definition 3 (Maximal RPI). The setO∞ ∈ X is a
maximal RPI (MRPI) set with respect tox(t + 1) =
Axx(t)+Ew(t) if and only if O∞ is a RPI and contains
every RPI set.

If the MRPI set is non-empty, then it is unique.
Furthermore ifX ,U andW are a C-set, then the MRPI
setO∞ is also a C-set.

The mRPI setΩ∞ and the MRPI setO∞ are con-
nected be the following theorem:

Theorem 1. The following statements are equiva-
lent:

1. The MRPI setO∞ is non-empty.

2. Ω∞ ⊂ X

Proof. Interested readers are referred to (Kol-
manovsky and Gilbert, 1998) for the details of the
proof. �

Define the polytopePxu as follows

Pxu = {x : Fxux ≤ gxu} (10)

where

Fxu =

(

Fx
FuK

)

, gxu =

(

gx
gu

)

Under the assumption that theΩ∞ is a proper sub-
set ofX , a constructive procedure is used to compute
the MRPI set, as follows (Blanchini and Miani, 2008).

Procedure 1. Maximal robustly positively invariant
set computation.

1. Sett = 0, Ft = Fxu, gt = gxu andPt = Pxu.

2. SetP1
t = Pt

3. Solve the following linear program

d = maxFtEw, s.t. w ∈W

4. Compute a polytope

P2
t = {x : FtAcx ≤ gt − d}

5. SetPt as an intersection

Pt = P1
t ∩P2

t

6. If Pt = P1
t then stop and setO∞ = Pt . Else con-

tinue.

7. Sett = t +1, go to step 2.

Non-emptiness property of the MRPI setO∞ as-
sures that the above procedure terminates in finite
time and lead to the MRPI in form of a polytope

O∞ = {x : Fox ≤ go} (11)

4.2 Robustly Positively Controlled
Invariant Set for u ∈U

Recall the following definitions (Blanchini and Miani,
2008)

Definition 4: Robustly Positively Controlled In-
variant Set. Given the system (5), the setΨ ⊆ X
is invariant if and only if for anyx(t)∈ Ψ, there exists
a control actionu(t) ∈U such that for anyw(t) ∈ W ,
one hasx(t +1) = Ax(t)+Bu(t)+Ew(t)∈ X .

Definition 5: Pre-image Set. Given the polytopic
system (1), the one-step pre-image set of the setP0 =
{x : F0x ≤ g0} is given by all states that be steered in
one step inP0 when a suitable control is applied. The
pre-image set, calledP1 = Pre(P0) can be shown to
be:

P1= {x∈Rn : ∃u∈U : F0(Ax+Bu)≤ g0−maxF0Ew}
(12)

wherew ∈W .
Remark 1: It is clear that if the setΨ is contained

in its pre-image set theΨ is invariant.
Recall that the setO∞ is the MRPI. DefinePN as

the set of states, that can be steered to theO∞ in no
more thatN steps along an admissible trajectory, i.e.
a trajectory satisfying control, state and disturbance
constraints. This set can be generated recursively by
the following procedure:

Procedure 2. Invariant set computation

1. Setk = 0 andP0 = O∞.

2. Define
Pk+1 = Pre(Pk)

⋂
X

3. If Pk+1 = Pk, then stop and setPN = Pk. Else con-
tinue.

4. If k = N, then stop else continue.

5. Setk = k+1 and go to the step 2.

A a consequence of the fact thatO∞ is an invariant
set, it follows that for eachk, Pk−1 ⊂ Pk and therefore
Pk is an invariant set and a sequence of nested poly-
topes.

Note that the complexity of the setPN does not
have an analytic dependence on N and may increase
without bound, thus placing a practical limitation on
the choice ofN.

For further use, the controlled invariant set result-
ing from the Procedure 2 is denoted

PN = {x : FNx ≤ gN} (13)
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5 INTERPOLATION BASED
CONTROLLER WITH LINEAR
PROGRAMMING

The purpose of this section is to show how an inter-
polation technique can be used together with linear
programming.

5.1 Vertex Control Law

Given a positve invariant polytopePN ∈ Rn, this poly-
tope can be decomposed in a sequence of simplices

Pk
N each formed byn verticesx(k)1 ,x(k)2 , . . . ,x(k)n and the

origin. These simplices have following properties:

• Int(Pk
N) 6= /0,

• Int(Pk
N ∩Pl

N) = /0 if k 6= l,

•
⋃

k Pk
N = PN ,

Denote byX (k) = (x(k)1 x(k)2 . . . x(k)n ) the square ma-
trix defined by the vertices generatingPk

N . SincePk
N

has nonempty interior,X (k) is invertible. LetU (k) =

(u(k)1 u(k)2 . . . u(k)n ) be the matrix defined by the admis-
sible control values at these vertices. Forx ∈ Pk

N con-
sider the following linear gainKk:

Kk =U (k)(X (k))−1 (14)

Remark 2: By the admissible control value we under-
stand any control action, that keeps the state inside
the invariant set. Generally, one would like to maxi-
mize the control action at the vertices of the feasible
invariant set. This can be done by using the following
program.

J =max‖u‖p s.t.

{

FN(Ax+Bu)≤ gN −maxFNEw
Fuu ≤ gu.

(15)
where‖u‖p is a p− norm ofu andw ∈W .

Due to the properties of the positive invariant set,
the above program is always feasible.

Theorem 2. The piecewise linear controlu=Kkx is
feasible and asymptotically stable for allx ∈ PN .

Proof. The proof of this theorem is not reported
here, with (Gutman and Cwikel, 1986) and (Blan-
chini, 1992) providing the necessary details. �

5.2 Interpolation via Linear
Programming

Any statex(t) in PN can be decomposed as follows:

x(t) = cxv(t)+ (1− c)xo(t) (16)

wherexv(t) ∈ PN , xo(t) ∈ Ω and 0≤ c ≤ 1.
Consider the following control law:

u(t) = cuv(t)+ (1− c)uo(t) (17)

whereuv(t) is obtained by applying the vertex con-
trol law anduo(t) = Kxo(t) is the control law, that is
feasible inO∞.

Figure 1: Feasible regions for example 1. The blue one is
the MRPIO∞, when applying the control lawu = Kx. The
red one is the positive invariant setPN .

Theorem 3. The above linear control is feasible
for all x ∈ PN .

Proof.
Corresponding to the decomposition, the control

law is given by (17).
One has to prove thatFuu(t) ≤ gu andx(t +1) =

Ax(t)+Bu(t)+Ew(t) ∈ PN for all x(t) ∈ PN and for
anyw(t) ∈W .

One has

Fuu(t) = Fu(cuv(t)+ (1− c)uo(t))

= cFuuv(t)+ (1− c)Fuuo(t)

≤ cgu +(1− c)gu = gu

and

x(t +1) = Ax(t)+Bu(t)+Ew(t)
= A(cxv(t)+ (1− c)xo(t))+
+B(cuv(t)+ (1− c)uo(t))+Ew(t)

= c(Axv(t)+Buv(t)+Ew(t))+
+(1− c)(Axo(t)+Buo(t)+Ew(t))

We have Axv(t) + Buv(t) + Ew(t) ∈ PN and
Axo(t) +Buo(t) +Ew(t) ∈ O∞ ⊂ PN , it follows that
x(t +1) ∈ PN . �

In order to give a maximal control action, one
would like to minimizec, so the following program
is given:

c∗(x) = min
c,xv,xo

c, s.t.











FNxv ≤ gN ,

Foxo ≤ go,

cxv +(1− c)xo = x,
0≤ c ≤ 1

(18)
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Denoterv = cxv, ro = (1− c)xo. It is clear that
rv ∈ cPN andro ∈ (1−c)Ω or equivalentlyFNrv ≤ cgN
andFwro ≤ (1− c)gw. The above non-linear program
is translated into a linear program as follows.

Interpolation based on Linear Programming.

c∗(x) = min
c,rv

c, s.t.







FNrv ≤ cgN
Fo(x− rv)≤ (1− c)go
0≤ c ≤ 1

(19)

Remark 3. If one would like to maximizec, it is
obvious thatc = 1 for all x ∈ PN . In this case the
controller turns out to be the vertex controller.

Theorem 4. The control law using interpolation
based on linear programming (16), (17), (19) guar-
antees robustly asymptotic stability for all initial state
x(0) ∈ PN .

Proof. The complete proof of this theorem is
given in (Nguyen et al., 2011).

6 EXAMPLES

To show the effectiveness of the proposed approach,
two examples will be presented in this section. For
both of these examples, to solve linear programs
and to implement polyhedral operations, we used the
Multi-parametric toolbox, (Kvasnica et al., 2004).

6.1 Example 1

Consider the following discrete-time system

y(t +1)−2y(t)+y(t −1) =
= 0.5u(t)+0.5u(t −1)+w(t) (20)

The constraints are

−5≤ y(t)≤ 5
−5≤ u(t)≤ 5

and
−0.1≤ w(t)≤ 0.1

The state space model is given by
{

x(t +1) = Ax(t)+Bu(t)+Ew(t)
y(t) =Cx(t)

where

A =

(

2 1
−1 0

)

,B =

(

0.5
0.5

)

,E =

(

1
0

)

,

and
C =

(

1 0
)

The statex(t) is available though the measured
plant input, output and their past measured values as
follows

x(t) = Tz(t)

where

z(t) =
(

y(t) y(t −1) u(t −1)
)T

,

T =

(

1 0 0
0 −1 0.5

)

The constraints on the state are

−5≤ x1 ≤ 5
−7.5≤ x2 ≤ 7.5

Using the linear quadratic regulator with weight-
ing matricesQ = C′C andR = 0.1 the feedback gain
is obtained

K =
(

−2.3548 −1.3895
)

Using procedures 1 and 2 one obtains the setO∞
andPN as shown in Figure 1. Note thatP3 = P4, in this
caseP3 is a maximal invariant set for system (20).

The set of vertices ofPN is given by the matrix
V (PN) below, together with the control matrixUv

V (PN)=
(

−5 −0.1 5 0.1 −0.1 −5 0.1 5
7.5 7.5 −2.6 7.2 −7.2 2.6 −7.5 −7.5

)

and

Uv =
(

−5 −5 −5 −4.9 5 5 5 4.9
)

Figure 2 shows the state space partition and 6 dif-
ferent trajectories of the closed loop system.

Figure 2: State space partition and trajectories of the closed
loop system for example 1.

Corresponding to the initial conditionx0 =
(5.0000 −2.6000)T , Figure 3 shows the output and
input trajectory.

Figure 4 shows the disturbance input and the in-
terpolating coefficientc∗(t) as a function oft. As ex-
pected this function is positive and non-increasing.

In a comparison with the approach, that based on
the so called Kalman filter, Figure 5 shows the output
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Figure 3: Output and input trajectory for example 1.

Figure 4: The interpolating coefficient and the disturbance
input for example 1.

trajectories using our approach and the Kalman filter
based approach. It is obvious that, the mRPI set of the
Kalman filter based approach is bigger than the mRPI
set of our approach.

The Matlab routine with the command’kalman’
is used for designing the Kalman filter. The process
noise is a white noise with an uniform distribution and
there is no measurement noise.

w is a random number with an uniform distribu-
tion, wl ≤ w ≤ wu. The variance ofw is given as fol-
lows:

Cw =
(wu −wl +1)2−1

12
= 0.0367

The estimator gain of the Kalman filter is ob-
tained:

L = (2 −1)T

The initial condition isx0 = (−4 6)T .
The Kalman filter is used to estimate the state of

the system and then this estimation is used to close
the loop with the interpolated control law .

In contrast to our approach, where the state is ex-
act, in the Kalman filter approach, the state is not ex-
act and moreover, there is no guarantee that the con-
straints are satisfied.

Figure 6 shows the output trajectories of our ap-
proach and the Kalman filter based approach.

Figure 5: The state trajectory of our approach and the
Kalman filter based approach for example 1. The mRPI set
of the Kalman filter based approach is bigger than the mRPI
set of our approach.

Figure 6: The output trajectories of our approach and the
Kalman filter based approach for example 1.

In Figure 7 it is showed that, the constraints might
be violated where the Kalman filter is used to estimate
the state of the system.

Figure 7: Constraints violation for example 1.

6.2 Example 2

Consider the following discrete-time system

y(t +1)+

(

−1.8787 0
0 −1.8964

)

y(t)+

+

(

0.8787 0
0 0.8964

)

y(t −1) =
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=

(

−0.3800 −0.5679
−0.2176 0.4700

)

u(t)+

+

(

0.3339 0.5679
0.2176 −0.4213

)

u(t −1)+w(t)
(21)

The constraints are

−2≤ y1 ≤ 2, −2≤ y2 ≤ 2
−10≤ u1 ≤ 10, −10≤ u2 ≤ 10

and

−0.1≤ w1 ≤ 0.1, −0.1≤ w2 ≤ 0.1

The state space model is
{

x(t +1) = Ax(t)+Bu(t)+Ew(t)
y(t) =Cx(t)

where

A =







1.8787 0 1.000 0
0 1.8964 0 1

−0.8787 0 0 0
0 −0.8964 0 0






,

B =







−0.3800 −0.5679
−0.2176 0.4700

0.3339 0.5679
0.2176 −0.4213






, E =







1 0
0 1
0 0
0 0







C =

(

1 0 0 0
0 1 0 0

)

It is worth noticing that, the above state space re-
alization is minimal. The statex(t) is available though
the measured plant input, output and their past mea-
sured values as follows

x(t) = T z(t)

where

z(t) =
(

y(t)T y(t −1)T u(t −1)T
)T

,

T =







1.0 0 0 0 0 0

0 1.0 0 0 0 0

0 0 −0.8787 0 0.3339 0.5679

0 0 0 −0.8964 0.2176 −0.4213







The constraints on the state are





































1 0 0 0
0 1 0 0

−1 0 0 0
0 −1 0 0
0 0 0.5460 −0.8378
0 0 −0.5958 −0.8031
0 0 −1.0000 0
0 0 −0.5460 0.8378
0 0 0 1.0000
0 0 0.0000 −1.0000
0 0 0.5958 0.8031
0 0 1.0000 0.0000





































x ≤





































2
2
2
2

9.0918
6.2239

10.7754
9.0918
8.1818
8.1818
6.2239

10.7754





































Using the linear quadratic regulator with weight-
ing matricesQ =C′C andR = I, the feedback gain is
obtained

K =

(

1.9459 1.7552 1.4968 1.3775
0.8935 −1.7212 0.5524 −1.2704

)

Using procedures 1 and 2, one obtains the set
O∞ and P3 as illustrated in Figure 8. The num-

Figure 8: Feasible regions for example 2, cut throughx4 =
0. The blue one is the MRPI setO∞, when applying the
control lawu = Kx. The red one is the positive controlled
invariant setP3.

ber of vertices of the setP3 is 1030 and these are
not reported here. The control values at the ver-
tices of the setP3 are found by applying the pro-
gram (15). Corresponding to the initial condition
x0 =

(

−1.6722 0.2088 10.7754 −3.8296
)T

,
Figure 9 presents the output and input trajectories.

Figure 9: Output and input trajectory for example 2.

Figure 10 shows the disturbance inputs
w1(t),w2(t) and the interpolating coefficientc∗(t) as
a function oft. As expected, this function is positive
and non-increasing.

In a comparison with the Kalman filter based ap-
proach, Figure 11 shows the output trajectories using
our approach and the Kalman filter based approach.

The initial condition is x0 =
(

−1.3378 0.1670 8.6203 −3.0637
)T .

The Matlab routine with the command’kalman’
is used for designing the Kalman filter. The process
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Figure 10: The interpolating coefficient and the disturbance
input for example 2.

noise is a white noise with an uniform distribution and
there is no measurement noise.

w is a random vector with an uniform distribution,
wl ≤ w ≤ wu. The covariance matrix ofw is given as
follows:

Cw =
(wu−wl+1)2−1

12

(

1 0
0 1

)

=

(

0.0367 0
0 0.0367

)

The estimator gain of the Kalman filter is ob-
tained:

L =







1.8787 0
0 1.8964

−0.8787 0
0 −0.8964







Figure 11: The output trajectories of our approach and the
Kalman filter based approach for example 2.

7 CONCLUSIONS

In this paper, a state space realization is detailed for
discrete-time linear time invariant systems, with the
particularity that the state variable vector is available
through measurement and storage of appropriate pre-
vious measurements.

A robust control problem is solved based on the
interpolation technique and using linear program-
ming. Practically, the interpolation is done between

a global vertex controller and a local unconstrained
robust optimal control law.

Several simulation examples are presented includ-
ing a comparison with an earlier solution from the lit-
erature and a multi-input multi-output system.
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