
A NEW AGILE PROCESS FOR WEB DEVELOPMENT

Vinícius Pereira and Antonio Francisco do Prado
Department of Computing, Federal University of Sao Carlos, Sao Carlos – SP, Brazil

Keywords: Agile Process, User Story, Navigation Model, Web Development.

Abstract: In this paper is described an agile methodology for Web development based on User Stories. The main
objective in this methodology is to have a more real relationship among application code and requirements.
Thus, the development team and the user may come to have a greater understanding during the application
development process. It is divided in three disciplines, each one refining the User Stories, from
requirements specification using the Navigation Model and Story Cards until the execution of these User
Stories to guide the coding. The team can also use these Stories as acceptance tests, which represent the user
behaviour when using the system. With all this, in the end the development team may have more guarantees
that the Web application represents what the user wants.

1 INTRODUCTION

In the early versions of the Web there was little room
for its users to publish information and interaction
was very restrictive. At that time, the Web consisted
specially of static HTML pages and/or some very
few Java applets. With the Web 2.0 (O’Reilly, 2006)
new technologies began to gain the moment, opening
the Web for social collaboration. Good examples of
this are the social networks (Recuero, 2004), with the
growing focus on collaborative software – groupware
– (Carstensen, Schmidt, 1999). Collaborative
software is designed to facilitate interactions between
groups of individuals that share a common objective.
This is just to show how the Web (with the Internet)
changes the way that people interact with the
computer and others devices with Web interfaces.

Considering the growth tendency of collaborative
software in many areas, like education, trading,
healthcare and others, a more participative and agile
approach becomes necessary for corporations and
institutions. These ideas, together with the new
techno-logies available today are promising to
accelerate the development process. A good example
to illustrate that tendency is Twitter, a social network
focused on the concept of micro blogging that allows
its users to pu-blish personal updates and see updates
from the others in a computer or in a smartphone, for
example.

This article presents a new agile methodology for
the development of Web applications using the

concept of User Stories and making sketches of the
Navigation Model to guide the construction and
details these Stories in conversations with the user.
Modern tech-niques and concepts are the basis for the
development of this agile methodology.

2 CONCEPTS AND TECHNIQUES

This section presents the main concepts and
techniques behind the proposed methodology for
developing Web application. The core concept is the
User Story (Cohn, 2004). There are also brief
descriptions regarding Test Driven Development
(Beck, 2003), Behavior Driven Development (North,
2006), Web Engineering (Press-man, Lowe, 2009),
Scrum (Schwaber, 2004) and eXtreme Programming
(Beck, Andres, 2004). Web Engineering is the
starting point that led the studies to other techniques
and concepts. BDD is the inspiration model for the
methodology. The use of TDD is heavily encouraged
in one of the disciplines of the agile metho-dology
that is proposed here. Scrum – principally – and XP
ideas are reused in some points in this process.

2.1 User Story

User Stories describes functionally what it is
requested and valuable for the User. In a User Story
there are 3 C’s which are: Card, Conversation and
Confirmation; and follows the principle of INVEST:

177Pereira V. and Francisco do Prado A..
A NEW AGILE PROCESS FOR WEB DEVELOPMENT.
DOI: 10.5220/0003504501770187
In Proceedings of the 6th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2011), pages 177-187
ISBN: 978-989-8425-57-7
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

Independent, Negotiable, Valuable for the user,
Estimable, Small and Testable. One of the C’s cited
previously, the Story Card is the User Story written
and formalized. From this card can be seen the other
two C’s.

The idea of the User Story be written in a card
instead of another media have the purpose to
maintain the principle of Small (so the story gets
short). If a User Story exceeds the card limit maybe it
is time to break it. The important is that there is no
limit to write User Stories since they are in the
pattern (Cohn, 2004).

An informal example is: “Students can purchase
parking passes”. In his book Mike Cohn suggests a
more formal approach to writing User Stories (Cohn,
2004). He suggests the format: As a “role” I want
“something” so that “benefit”. This approach helps
to think about why a certain feature is built and for
whom, and as a result is the approach that is typically
taken. The same example in this approach is: “As a
student I want to purchase a parking pass so that I
can drive to school”. As can be seen, the formality
brings a greater understanding of the problem.

Agile methodologies favor face-to-face communi-
cation over comprehensive documentation and quick
adaptation to change instead of fixation on the
problem. User Stories achieve this by: (1) they
represent small chunks of business value that can be
implemented in a period of days to weeks; (2)
needing very little maintenance; (3) allowing
developer and the client representative to discuss
requirements throughout the project lifetime; (4)
allowing projects to be broken into small increments;
(5) being suited to projects where the requirements
are volatile or poorly understood; (6) require close
customer contact throughout the project so that the
most valued parts of the software gets implemented.

Some of the limitations of User Stories in agile
methodologies are: (1) they can be difficult to scale to
large projects; (2) they are regarded – usually – as
conversation starters and nothing more.

2.2 Test Driven Development

Created by Kent Beck (Beck, 2003), TDD is an
approach to deal with analysis and specifying
behavior based on automated tests. Test Driven
Development introduces the concept of Red-Green-
Refactor: (1) write a test and watch it fail; (2) write
the minimum code necessary to make the test passes;
and (3) apply refactoring with design patterns
(Fowler, 1999) to eliminate redundancies or
duplicated codes.

Kent Beck considers that TDD encourages simple
code design and increases confidence in the final
product (Beck, 2003). With TDD, according
Feathers, programmers can improve legacy code
without the fear of changing the existing behavior
(Feathres, 2004).

In this approach, a test is a piece of software that
has two main goals: (1) specification: establishing a
rule that the software has to follow and (2)
validation: verify that the rule is properly
implemented by the software. With this, it is possible
to generate clean code, which is the code that reflects
exactly what it had been designed to do, without
trickery or obscurity (Martin, 2008).

The main advantages of using TDD are: (1) the
code has less coupling and greater cohesion; (2) the
code has greater quality because it is fully tested; (3)
refactoring can be executed without fear of breaking
behavior; (4) it is possible to know clearly when a
task is done – when the corresponding test is passing;
(5) the test suite serves as a basis for automated
regression tests without need for further development;
(6) the vast majority of the bugs are found earlier,
which make the effort to fix them cheaper.

2.3 Behavior Driven Development

BDD, created by Dan North, is an agile technique
that encourages the collaboration between
developers, quality assurance people and business
people during the process of software development.
Briefly, in BDD the client/user defines how the
application should behave by writing an automated
test to verify it. After that, the code necessary for that
behavior is implemented. This sort of test is
considered an acceptance and/or functional test.

The main difference between BDD and TDD is
that on BDD the focus is on the business rules to be
fulfilled by the software. It might sound like a purely
conceptual difference but in reality it isn’t. For
example: “the initial screen should list all customers”
isn’t the same as “the method HomeController.index
needs to create a variable called customers”. The first
approach is understandable by a user, while the
second one is geared towards a programmer’s
audience. The first is an example of the definition’s
behavior of a screen, something that a user could say
naturally. The second is an example of how a
programmer might read the source code necessary to
make that functionality works.

BDD offers some advantages: (1) increases the
integration between final users, testers and
developers, since all of them speak the same
language; (2) even when testers and developers are in

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

178

completely different teams, they can work together to
describe “what” is to be solved by the software.
Writing User Stories is a good way to define “what”
should be done, because it can be realized with the
help of the final user or at the very least validated by
him, who can understand what will be done according
the content of these Stories; (3) User Stories provide
test cases, automated tests, and project specification;
and (4) the User Stories become executable. With
this, it can be said that the final user is able to “write
the code” for the acceptance tests. Finally, besides
encouraging better quality code, BDD decreases the
overall amount of work for the team and improves
communication, which is essential for a more agile
development process.

2.4 Web Engineering

The World Wide Web has become a crucial platform
for the delivery of a variety complex and diversified
corporative applications in many business domains.
Besides its distributed aspect, these Web applications
require constant improvements in usability, perfor-
mance, security and scalability. However, the vast
majority of the aforementioned applications are still
being developed with an ad hoc approach,
contributing for usability problems, maintenance,
quality and reliability (Pressman, 2001). Even
considering that the Web development can benefit
from methodologies inherited from other areas, it has
very specific charac-teristics that require a special
approach. Among these characteristics there are the
network traffic, parallelism, unpredictable load,
performance, availability, focus on data, context
sensitivity, continuous evolution, urgen-cy, security,
and aesthetics (Pressman, Lowe, 2009).

Web Engineering allows a systematic, disciplined
and quantifiable approach for high quality
development focused on Web applications (Ginige,
Murugesan, 2001). Focusing on methodologies,
processes, techni-ques and tools applied in different
abstraction levels, from the conception to
development, evaluation and maintainability.

The principles of Web Engineering include: (1) a
different and unique process of Web development
(Kappel, et al., 2003); (2) multidiscipline. It is very
unlikely that a single discipline can offer a complete
theoretical basis, with knowledge and practice to
guide the Web development (Deshpande, Hansen,
2001); (3) the continuous evolution and the
management of the life’s cycle of a software (cycles
as short as possible) when compared to the traditional
development methods; and (4) the applications can be
pervasive and non-trivial. The Web perspective as a

platform will continue to grow and should be
addressed as one.

2.5 Scrum

Scrum is a framework for agile software
development that is iterative and incremental.
Initially it was con-ceived as a project management
style for the automo-bilist and consumables
industries. They noticed that on projects using small
multidisciplinary (cross-functio-nal) teams where the
results were considerably better. In 1995, Ken
Schwaber formalized the definition of Scrum
(Schwaber, 2004) and helped to introduce it to the
software development worldwide.

The primary function of Scrum is to be used for
management of software development projects, it can
be used to run software maintenance teams, or as a
general project/program management approach. It
can be too, in theory, applied to any context in which
a group of people needs to work together to achieve a
common goal.

Scrum has three main roles: (1) the Scrum
Master, who maintains the processes; (2) the Product
Owner, who represents the stakeholders and the
business; (3) the Team, a cross-functional group of
about 7 people who do the actual analysis, design,
implementation, testing, among another tasks.

 During each Sprint, typically a two to four week
period, the Team creates a potentially shippable
product increment. The set of features that go into a
sprint come from the Product Backlog, which is a
prioritized set of high level requirements of work to
be done. Which backlog items go into the Sprint is
determined during the Sprint Planning Meeting.
During this meeting, the Product Owner informs the
Team of the items in the Product Backlog that he or
she wants completed. The Team then determines how
much of this they can commit to complete during the
next Sprint.

During a Sprint, no one is allowed to change the
Sprint Backlog, which means that the requirements
are frozen for that sprint. Development is time boxed
such that the Sprint must end on time; if
requirements are not completed for any reason they
are left out and returned to the Product Backlog.
After a Sprint is completed, the Team demonstrates
how to use the software to the User.

2.6 eXtreme Programming

Another agile methodology, XP is a method for small
and medium teams that will develop software with
vague requirements and in constantly changes, which

A NEW AGILE PROCESS FOR WEB DEVELOPMENT

179

Figure 1: The process and the artifacts.

is intended to improve software quality and respon-
siveness to changing customer requirements. XP
adopts the strategy of constant monitoring and
execution of several minor adjustments during the
development of software. The four core values of XP
methodology are communication, simplicity,
feedback and courage.

From these values, has as its basic principles:
rapid feedback, assume simplicity, incremental
change, em-bracing change and quality work.

Among the control variables in projects (cost,
time, quality and scope), there is an explicit focus on
the scope. XP recommends the prioritization of
features that represent the possible highest value for
business. Thus, the more necessary for the reduction
of scope is, the less valuable features will be
postponed or canceled.

The XP encourages the control of quality as a
project variable, because the small short-term gain in
productivity, while decreasing quality, is not
compensated for losses (or hindrance) in the medium
and long term.

3 A NEW AGILE PROCESS FOR
WEB DEVELOPMENT

The process proposed here includes three disciplines:
Communication, Modeling and Construction. The
process follows the concept of using User Stories to
get the requirements and use these Stories in all the
development process, like in Behavior Driven
Development, but showing another form to obtain
the User Stories: making use of the Story Cards and
the Navigation Model to complement them; and how

to apply all this in the process. Moreover, the process
makes uses of ideas and concepts of the Web
Engineering proposed by Pressman as well as some
ideas of Scrum and XP. The Figure 1 shows in a
diagram SADT – Structured Analysis and Design
Technique – (Marca, McGowan, 1988), the
disciplines of the process which are executed in each
cycle of the process.

It is suggested to the consultant that he gets as
much information as possible on the requested Web
application in early conversations with the user. This
amount of information will be vital for the develop-
ment team to analyze and project the time and effort
to accomplish the implementation of the system. All
the people involved in the project should realize that
having “as much information as possible” does not
imply implement everything at once. The
requirements specified in this information will be
broken into shorter (and functional) cycles of
iterations. More details about this will be discussed
throughout this paper.

Another fact that can happen is that some of the
features will be only requested when the user interact
with the application. The team should have in mind
that a Web application will be always evolving. Test
the ideas and collect the feedback for these tests
before going ahead. The earlier the problems and/or
mistakes were discovered, the fewer resources and
time will be spent to fix them.

In general, this type of development involves a
large quantity of changes along the project. The
process is based in iterations according to the User
Stories originated in the conversations with the user.
The prototypes developed in each iteration constitute
mini-projects that slowly include all the functionality

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

180

of the software, based in the functionalities and
characteristics that these User Stories requests.

For better understanding, a clarification is
needed. The term “Story Card” is used in
Communications to express a User Story in card
format, like Mike Cohn proposes in his book. And
the term “User Story” in Modeling and Construction
disciplines, is used to express the format proposed by
Dan North, with some key words that will be useful
in these disciplines.

To assist in the presentation of the disciplines is
used as an example of a Web application a kind of
social software, the groupware (specifically a wiki).
Therefore, all figures show a part of the specification
of a wiki to help illustrate the description of artifacts.

3.1 Communication

In this discipline, the main focus is to extract
information in the conversations with the user. The
concern is to get as much information as possible
about how the system should behave. To assist in
require-ments specification, the proposed approach
makes use of Story Cards and the Navigation Model.

There is no rule saying which of the two types of
artifacts should be generated first, because the
process assumes that they are complementary. At the
end of the conversation with the User, the Story
Cards and the Navigation Model should be made
(remember, with as much information as possible at
the moment) and use them together should show the
overall picture of the problem.

To present the methodology, the first type of
artifact to have explained its preparation and use is
the Story Card. Based on the example of a groupware
Figure 2 shows the front of a Story Card requesting
the management of pages in a wiki.

Figure 2: Example of a Story Card to a wiki.

As can be seen in the figure, the Story Card is as
simple and objective as possible. The user can have a
greater sense of being understood and can come to
collaborate more with the identification of require-

ments. But such information is of a very high level of
abstraction, even if we consider what is written on
the back of the Card, which will be shown later. The
user said “what” expects that the application does,
but not “how” expects that the application works.

This is where it is necessary to use the Navigation
Model, to extract the user information about how the
application will be used. One of the best ways to
achieve this result is to draw the model with pen and
paper, as show Figure 3, or on a whiteboard. This
informality is a good way to encourage the User to
interact.

Figure 3: Navigation Model.

During these conversations, using both the
Navigation Model and the Story Cards, the
requirements are more detailed. This is the gain
about using these two artifacts together. Rules that
are not explicit in the Navigation Model, or even to
make them clearer, may be written on the back of the
corres-ponding Story Card, as can be seen in Figure
4. Other way to see these “requirements more
detailed” in the back of the Story Card is like a form
of confirmations. Confirmations are “questions” that
may appear in a talk with the User, an iteration plan
or in the implemen-tation time.

Figure 4: Back of the Story Card of Figure 2.

Importantly, the ideal to have as much
information as possible in these conversations is to
send the most experienced Web Application

A NEW AGILE PROCESS FOR WEB DEVELOPMENT

181

Consultant with the skills necessary to interact with
the user. If possible, the same consultant must have
some knowledge in the user's business. Otherwise,
send a Business Analyst with the consultant. These
skills, besides assist in the extraction of
requirements, are used to estimate the difficulty of
accomplishing what is explicit in the union of the
Story Cards and the Navigation Model. This estimate
must be noted on the corresponding Story Card.

Another necessary note and extremely useful is
“what” the User considers most urgent to be
delivered in early iterations of the project, if
possible. Therefore, each Story Card should have a
priority and an estimate of difficulty (see Figure 2).

Nothing prevents other artifacts from be created
in the search for more requirements. The more
practical – but without losing content – the artifact is
greater is the likelihood of having a user
interaction. An example of this “practical artifact” is
the Types Diagram (D’Souza, Wills, 1998) which is
extremely simple, showing only the entities (with
attributes) and their relation-ships. The user does not
need to know what an entity is necessarily for
example, just understand what the drawing represents
and interact with it. The Types Diagram can also be
used to specify information in a legacy database that
will be used by Web application for example.

Technical issues such as infrastructure are not
discussed in the Story Cards but they should be noted
for later analysis by the development team. If these
issues have a direct relationship with a Story is
important to note it in the back of the corresponding
Story Card.

At the end of the Communication, at least two
types of artifacts (as shows in the Figure 1) should
have been made: the Story Cards and the Navigation
Model. Both serve to guide the next discipline.

3.2 Modeling

The development team, in this discipline, uses the
Story Cards, the Navigation Model and any other
artifacts that were created in Communication to
create or redefine (in case of fixing) the application
specifi-cations. They should be transcribed to an
electronic format which means using any graphical
tool or CASE tool.

The team should draw a Class Diagram or refine
the Types Diagram previously created. This should
be doing because this type of diagram helps the
develop-ment team see what they will implement.
The Figure 5 shows a more refined version of the
Class Diagram for the wiki example.

This Class Diagram, initially much simple, is

Figure 5: Refined version of the Class Diagram.

refined in each iteration. It is noteworthy that this
diagram should represent how the requirements of
the artifacts of the Communication will be treated.
Like for example, the necessity of create an abstract
class or an interface. It is the discretion of the team
using the Class Diagram to create the database (if it
is not a legacy database) or create a Database Model.
Thus, the team can create a database as complete as
possible to deal with the application that will be
created in cycles. If the opposite occurs (create the
database gradually, accor-ding to application needs at
the moment), that will increase the chance of having
to remodel the database and spend more resources
fixing the problem.

The next step is write the User Stories based on
the artifacts that were elaborate until now. These
User Stories are written in a DSL (Domain-Specific
Lan-guage), proposed by Dan North, which enables a
simpler way to communicate with the user and obtain
their understanding. The user can check the User
Stories and approves them or not, for example. Or
the team may assume that these Stories represent as
faithfully as possible was expressed by the user in the
Story Cards and the Model of Navigation. The Figure
6 shows a User Story transcribed from the Story Card
in Figure 2, its back in Figure 4 and the Navigation
Model in Figure 3.

A User Story transcribed in this language
represents an executable description without losing
the sense that was specified in the identification of
requirements (in the previous discipline). This
description provides an element that was implicit in
the cards: the Scenario.

The Scenario is a using perspective in the User
Story that contains one or more criteria for
acceptance.

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

182

Figure 6: A User Story based on previous artifacts.

A User Story will be finished when all the accep-
tance criteria for each Scenario are attended.

Despite the example shown above, it is important
to realize that one way to improve the use of User
Stories is create it only for business rules. The
CRUD – Create, Read, Update and Delete – (Kilov,
1998), once well defined in a Class Diagram, can be
generated automatically from various CASE
tools. This helps in saving development time, not
only in the coding of this part but also in the
maintenance of this automatic code.

Analyzing the User Stories and the others
artifacts, the team should look for what can be reused
from previous applications or which may give rise to
an artifact reusable in future applications of this
domain. Also, it is valid identify where a pattern can
be included to facilitate understanding and further
maneuver of the application. The team can also raise
questions about the information obtained in the
Communication to better understand the issue if
necessary. It is important that the user is willing to be
asked to solve the doubts of the team.

Another team’s function is to verify what non-
functional requirements (which are the technical
issues, which as mentioned in the end of
Communication) are also necessary for a User Story
to be considered complete. At last, the team must
verify the behavior with the recycling of some
component or framework with patterns adopted and
between the User Stories and technical issues. In
such cases, it is necessary to create “techniques
stories” called Tasks. These Tasks have the same
treatment of the User Stories. However, as the name
suggests, they may not have as an origin a Story told
by the user.

A person responsible for managing User Stories,
to accept them or not, should create a Product
Backlog (like the Product Owner on Scrum). This

Backlog consists of the User Stories and the Tasks.
To control the Product Backlog a good idea is to use
a project management tool.

It is suggested that the User Stories and Tasks to
be printed. It is valid put them together in a board
visibility for the whole team like the style of KanBan
(Anderson, 2010). It is also necessary to analyze
which framework for acceptance tests will be used to
perform the User Stories. Some of these frameworks
are: Cucumber, JBehave, NBehave, easyb and
Jasmine, among others. The choice should consider
what the most appropriate framework for the
programming language that will be adopted and how
much work will be to integrate this framework in the
process.

Another recommendation is to use patterns like
the MVC – Model-View-Controller – (Loyd, Rimov,
2004), to better separate the layers between the data
and interface (view). Another advantage of the MVC
pattern is that the frameworks for execute the User
Stories – which should be used in the next discipline
– can generate error messages more comprehensible
for each layer.

To determine what will be developed in each
iteration must be taken into account the priorities
established with the user (in Communication) and
what is really possible to be done so that the iteration
has the shortest duration possible. This will be the
Iteration Backlog (similar to the Sprint Backlog on
Scrum).

It is recommended (Pressman, Lowe, 2009) that
one iteration in the development of a Web
applications do not take more than a few weeks. This
period of “few weeks”, considering the guidelines of
the Scrum Sprint, usually takes one to four weeks.
All User Stories, and the relative Tasks, chosen to
participate in the iteration must be completed within
the cycle. This is a commitment from the
development team.

Other decisions in the Modeling are related to
hardware and software platforms adopted for the
project. For example, it is defined the programming
language will be Ruby. This language requires the
Rails framework to be used in the Web development.
So, in this case, it is necessary create an Architecture
Model that shows how the MVC works with Ruby
and Rails. Another decision is about which DBMS
(DataBase Management System) will be used in the
case of creating a database.

Thus, in the end of the Modeling discipline, as
show in the process figure (Figure 1), the new
artifacts are the User Stories transcribed, the Product
Backlog, the Iteration Backlog, the Class Diagram
and the Architecture Model. Like in Communication,
nothing prevents other artifacts from being created in

A NEW AGILE PROCESS FOR WEB DEVELOPMENT

183

this discipline to help the team comprehend the
problem.

3.3 Construction

This discipline covers the coding and testing. By
representing the implementation of Web application,
this discipline can be considered as equivalent to the
Sprint of the Scrum. However, this process goes into
more detail on how the implementation should be
made in search of an application closer to the ideal
for the User. Practices such as Daily Meeting
(Scrum), Pair Programming, Continuous Integration
and Standar-dized Code (XP) are welcome, like any
other practices that help the team to develop the Web
application.

It encourages the use of tests before co-
ding. Therefore, if possible, the tests (in addition to
acceptance tests, which are the User Stories) must be
created before any code to help plan what will be
done. This concept is known as Test Driven Develop-
ment (TDD). This is not mandatory in the process,
but it is good practice and should be considered.

Based on these artifacts: Class Diagram, Archi-
tecture Model and the User Stories; the development
team must create the necessary infrastructure to
support the iteration. Probably the first iteration will
need more activities, like to create the database with
the information collected in Communication and
analyzed in Modeling, for example. It is
recommended to take this moment to generate all
possible automatic codes and then write (and test) the
code concerning about the business rules.

Making use of the Iteration Backlog, the develop-
ment team must execute the User Stories under it and
start coding based on the error messages that the
chosen test framework for User Stories returns.
Figure 7 shows the first error in the execution of the
User Story of Figure 6.

At this point can be seen the need to have been
adopted a framework for acceptance tests in
Modeling. It is important to realize that by correcting
the errors occurring in the implementation of User

Stories, the development team can create features to
the application based on a simulation of use by the
User. And these are precisely the features most
important to the application as it represents the
business rules that the User must have in the applica-
tion.

As previously mentioned, the use of TDD may be
necessary to test methods that are part of one or more
features requested by the User Stories. Therefore,
these testing methods are of a lower-level of
abstraction, being indicated not enter these kinds of
details in the User Stories. Such tests prevail, for
example, if the calculation of any monetary value is
correct or even the proper use of the MVC layers to
ensure future maintenance. Figure 8, based on a
figure of The Book RSpec (Chelimsky, et al., 2010
Beta), shows the relationship between high-level of
abstraction of a User Story and low-level of
abstraction achieved using unit tests, for example.

The implementation process (preferably of
business rules) starts with the tests being executed in
a User Story. It is focused on one of the Scenarios,
normally the first with errors (1). A step is written.
This step refers to the acceptance criteria of the
current Scenario (2). When the need arises for
specialization, a unit test should be created. Any time
a unit tests fails, for make it pass, it is necessary to
go through TDD (3 to 5). As long as there are
acceptance criteria unmet in the current scenario (6
and 7), the steps 2 to 7 should be re-run. When the
Scenario is attended, the process restarts (1) for the
next Scenario (as it is on the same User Story or on
the next one). When there is no specialization (unit
test), the cycle constitutes of only the User Story,
with the activities 1, 2 (coding to pass this step) and
7. This process repeats itself iteratively, by creating
tests for each acceptance criteria, of each Scenario, of
each User Story. The code necessary is implemented,
until the functional requirement for the User Story is
fulfilled and all the tests (unit and acceptance) are
passing. By the end of the iteration cycle, a fully
functional prototype is ready.

Figure 7: First error when executing the User Story of Figure 6.

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

184

Figure 8: Relationship between high-level of abstraction (User Story) and low-level of abstraction (unit tests).

At the end of Construction, the prototype should
be presented to the User analyze. Because it was
created from simulations of use, the chance that the
User accepts the product is great. Nothing prevents
the User wants to putting this prototype into
production. In this case, the prototype must be
refined in relation to the design of interfaces because
they are as simple as possible.

The User may or may not request changes. If he
requests, the code leaner may be easier to be
changed. Both changes as other features not seen
before are treated in a new iteration, returning in the
stage of Communication. If no change or no new
functionality is required, the process returns to
Modeling, where the team discusses what was done
and seek improvements, besides selecting the next
User Stories for the new iteration.

Nothing prevents the User requests to modify the
priorities of the Story Cards (or even User stories)
before iteration begins. If he requests during an
iteration the team must negotiate the possibility of
change it or not. User Stories, registered in the agile
project management tool, may have changed his
priorities, besides being marked as “delivered” or
“not acceptable”. Please note that the User shall, at
all times, be aware of the Product Backlog and the
current Iteration Backlog.

If the implementation involves changes in the
Modeling, the artifacts must be updated to a new
version, to make the documentation consistent. For
example, the Navigation Model has navigation
between pages different of what was previously
specified. The updated artifacts (i.e., Class Diagram)
can even be generated from code by reverse
engineering.

4 RELATED WORKS

In addition to previously mentioned, other processes
were analyzed. The process Agile Web Development
with Web Framework (AWDWF) (Ran, et al., 2008),
according to the authors, consists in use frameworks

to guide the Project discipline of traditional Software
Engineering. The proposal is to use the frameworks
for the part of the development that is not linked to
business logic, thus increasing the stability and
efficiency, and ensure quality in Web application.
This way, the team focus stays in the business logic.
Also, cites that the communication with the
Customer must be continuous.

In comparison, the procedure proposed in this
article, in addition to using frameworks, show how to
interact with the Customer and how to use the
artifacts of this interaction to guide the coding of
Web application. It also shows the need to write tests
before the code and the gain that it generates.

Another case considered is an improvement in the
life cycle of XP with added an activity of project
management (Altarawneh, El Shiekh, 2008). This
addition, it is justified because the project
management of XP to be considered limited. The
process is separated into six steps: (1) start with
small Web projects, (2) adopt the modified XP
process, (3) apply XPMM – eXtreme Programming
Maturity Model – (Nawrocki, Walter, 2001), (4)
education and training, (5) internal evaluation and
lighter formal reviews and (6) external
evaluation. All these steps should be implemented
with the best practices in Web Engineering.

The proposed process is based not only on
eXtreme Programming, but also in other methods
such as Pressman’s Web Engineering and
Scrum. Another difference is that the process
presented uses the concept of behavior driven
development, to the tests be as close as possible to
the User expects. Furthermore, the process is based
on the concept of test driven development to generate
the minimal code needed for the Web application be
built without unnecessary functions.

In the Agile Software Engineering Environment
(Aoyama, 1998) is shown an integrated software
engineering environment developed to manage what
he labeled as the Agile Software Process (Aoyama,
1998). The author presents a way of dealing (in a
more high-level) with an agile development. It is an

A NEW AGILE PROCESS FOR WEB DEVELOPMENT

185

excellent and comprehensive way to manage an agile
project.

However, this proposal does not demonstrate the
low-level part of the development (the coding) with
more details, which is what the methodology
proposed here aims to do. In the opinion of the
authors to ensure that what was requested by User, in
the specification of requirements, is well developed
by the team has to have a direct relationship between
requirements and code, that is, as the first directly
implies the second.

UWE – Uml-based Web Engineering – (Knapp,
Koch, Wirsing, Zhang, 2007) is a software
engineering approach to the development of Web
applications. It provides a UML profile (extension of
UML), a meta model, a process of model-driven
development and a support tool – Argo UWE – for
the design of Web applications.

This proposal is a form to adapt UML in the Web
context and although have a good support tool it
doesn’t have the support for the non-automatic code
(business rules) that all application needs. This kind
of support is what the RAMBUS try to have using
the User Stories to guide the development and, with
this, have a more close relationship among the
disciplines – from requirements to code, passing
through all the artifacts needed.

5 CONCLUSIONS

The agile methodology for Web development
proposed here is a way to connect the areas of
Requirements (Communication), Analysis and
Design (Modeling), and Implementation
(Construction) through artifacts that are highly
related. To write and test the application code in
Construction is necessary to run a User Story, which
was created in Modeling. The way that the User
Story has been created it will be used. The same
thinking applies to the creation of the User Story. It
was created from the requirements of
Communication, through the Story Cards and
Navigation Model. The methodology thus shows an
efficient way to prove that the condition requested by
the User was in fact implemented.

There are limits to this approach. The larger the
system, the greater will be the difficulty to deal with
Story Cards and create the Model Navigator, and
later the User Stories, besides the fact that it
consuming more time in conversations with the
User. Thus, the methodology is suitable for Web
applications to small and medium businesses.
Another limit is the fact that non-functional quality
attributes are hard to be placed as User Stories.

Future works includes the refinement and a more
formal approach, with the study of a form to deal with
the guarantee of quality in non-functional attributes
and maintenance of the whole project, besides the
construction of tools and other resources to support
the process. A case study will also be conducted to
prove the viability of the process and collect data such
as effort, time and level of maintenance compared to
other agile methods.

ACKNOWLEDGEMENTS

The authors would like to thanks the people from
their laboratory for all the support and cooperation.

REFERENCES

Altarawneh, H., El Shiekh, A., 2008. A Theoretical Agile
Process Framework for WebApplications Deve-
lopment in Small Software Firms. 6th SERA.

Anderson, D., 2010. KanBan. Blue Hole Press. 1st Edition.
Aoyama, M., 1998. Agile Software Process and Its

Experience. 20th ICSE, IEEE Computer Soc. Press, pp
3--12.

Aoyama, M., 1998. Web-Based Agile Software Deve-
lopment. IEEE Software, Volume 15, Issue 6, pp 56--
65.

Beck, K., Andres, C., 2004. Extreme Programming Ex-
plained: Embrace Change. Addison-Wesley. 2nd
Edition.

Beck, K., 2003. Test Driven Development by Example.
Addison Wesley. 1st Edition.

Carstensen, P. H., Schmidt, K., 1999. Computer supported
cooperative work: new challenges to systems design.
Handbook of Human Factors. 1st Edition.

Chelimsky, D., Astels, D., Dennis, Z., Hellesøy, A.,
Helmkamp, B., North, D., 2010. The RSpec Book:
Behaviour-Driven Development with RSpec,
Cucumber, and Friends. Pragmatic Bookshelf. Beta
Edition.

Cohn, M., 2004. User Stories Applied: For Agile Software
Development. Addison-Wesley Professional. 1st
Edition.

D’Souza, D. F., Wills, A. C., 1998. Objects, Components,
and Frameworks with UML: The Catalysis(SM)
Approach. Addison-Wesley Professional. 1st Edition.

Deshpande, Y., Hansen, S., 2001. Web Engineering:
Creating Discipline among Disciplines. IEEE
Multimedia, Vol. 8, Number 1, pp 81--86.

Feathres, M., 2004. Working Effectively with Legacy Code.
Prentice Hall. 2nd Edition.

Fowler, M., 1999. Refactoring: Improving the design of
existing code. Addison-Wesley. 1st Edition.

Ginige, A., Murugesan, S., 2001. Web Engineering: An
Introduction. IEEE Multimedia, Vol. 8, Number 1, pp
14--18.

Knapp, A.; Koch, N.; Wirsing, M.; Zhang, G., 2007. UWE

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

186

- Approach to Model-Driven Development of Web
Applications. i-com Journal, v. 3, p. 3-12, Oldenbourg,
Germany.

Kappel, G., Proll, B., Seiegfried, Retschitzegger, W., 2003.
An Introduction to Web Engineering. John Wiley and
Sons.

Kilov, H., 1998. Business Specifications: The Key to
Successful Software Engineering. Prentice Hall. 1st
Edition.

Loyd, D., Rimov, M., 2004. Expresso Developer’s Guide.
JCorporate Ltd.

Marca, D. A., McGowan, C. L., 1988. SADT – Structured
Analysis and Design Technique. McGraw-Hill.

Martin, R., 2008. Clean Code: A Handbook of Agile
Software Craftsmanship. Prentice Hall PTR. 1st
Edition.

Nawrocki, J. R., Walter, B., 2001. Toward Maturity Model
for eXtreme Programming. 27th Euromicro
Conference: A Net Odyssey, pp 0233.

North, D., 2006. Introducing Behaviour Driven
Development. Better Software. 1st Edition.

O’Reilly, T., 2006. Web 2.0 Compact Definition: Trying
Again. O'Reilly Network.

Pressman, R., 2001. What a Tangled Web we Weave. IEEE
Software, Vol. 18, Number 1, pp 18—21.

Pressman, R., Lowe, D., 2009. Web Engineering: A
Practitioner's Approach. The McGraw-Hill
Companies, Inc. 1st Edition.

Ran, H., Zhuo, W., Jun, H., Jiafeng, X., Jun, X., 2008.
Agile Web Development with Web Framework. 4th
WiCOM.

Recuero, R. C., 2004. Redes sociais na Internet:
Considerações iniciais. XXVII INTERCOM.

Schwaber, K., 2004. Agile Project Management with
Scrum. Microsoft Press.

A NEW AGILE PROCESS FOR WEB DEVELOPMENT

187

