CTGE: AN EFFECTIVE CONSTRAINT-BASED TEST-CASE GENERATION ALGORITHM FOR DETECTING REGRESSION BUGS IN EVOLVING PROGRAMS

Anh D. Le, Tho T. Quan, Nguyen T. Huynh and Phung H. Nguyen
Faculty of Computer Science and Engineering, Hochiminh City University of Technology, Hochiminh City, Vietnam

Keywords: Constraint-based test-case generation, Regression bugs, Evolving programs debugging.

Abstract: In this paper, we investigate a kind of logic error occurring in evolving programs, known as regression bug. This error reflects a practical situation that when a program or software is evolved to meet with new requirements, it may accidentally violate the original requirements. Hence, the paper makes three theoretical contributions. First, we show that the test-case generated by typical white-box approach are not sufficient to cover all probable regression bugs. Next, we propose a new approach based on combined constraint to solve this problem. Finally, we introduce an ultimate CTGE (Efficient Constraint-based Test-cases Generation) algorithm whose complexity is reduced into linear time, thus becoming practical. The soundness of our theoretical contribution is formally proved and supported by some initial experiments conducted in education environment.

1 INTRODUCTION

Testing is the primary and common way to check the correctness of software. Testing also incurs a substantial cost in software development (Heumann, 2002). Among the various kinds of testing, unit testing plays an important role in software quality, since it helps detect errors in each individual component’s logic.

Besides testing, the other main way to check correctness of software is code inspection. Over last few years, some automatic code-inspection tools are built based on static analysis. These tools usually generate an overly large number of warning and even false alarms that do not actually correspond to programming errors (false positive).

Thus, the most popular approach of software testing today is still relying on test-case. Basically, a test-case is a set of inputs, execution conditions and desired outputs which can be tested by the system when functioning accordingly using some test procedures and test scripts.

However, the generation of test-case is usually costly and thus requiring a systematic method. White-box testing technique, based on flow-control analysis, is typically applied in this case (Hutcheson, 2003). Alongside this approach, many attempts have been made to automatically explore program paths for test-case generation purpose (Cadar, Dunbar and Engler, 2008; Godefroid, Klarlund and Sen, 2005). Especially, the concolic testing, which is a hybrid software verification technique that interleaves concrete execution (testing on particular inputs) with symbolic execution (Sen, Marinov and Agha, 2005), has emerged recently as an efficient technique for test-case generation. This technique is then adopted and exploited remarkably in various testing tools like PathCrawler (Williams, Marre, Mouy and Roger, 2005), jCUTE (Sen and Agha, 2006) and SAGE (Godefroid, 2007).

Nevertheless, when employed in real situations of industry projects, the cost for exploring all of possible paths is extremely expensive, because the number of program path will increase exponentially with the number of branch statements.

Dynamic slicing (Wang and Roychoudhury, 2008) is the most practical technique to deal with this limitation. This technique will slice the program statements into a subset of program's execution trace that only contains statements affecting a program's output. Based on that, we can only generate one test case for all of the paths that have the same output effects, instead of generating unnecessarily multiple test-cases for all of the paths.

This dynamic slicing technique is also very useful
when a program evolved, that is when a new version of program is released with some substantial changes made. Using slicing, one can recognize the modified part in the new program, then generate test-case that covers this modified path and analyze the affected results to find program bugs (Qi, Roychoudhury and Liang, 2010).

However, when a program is evolved into a new version to meet new requirements or just to refine the code, chances are that the new evolved program may accidentally violate the original requirements. This kind of errors, which is typically regarded as regression bug, is occurring quite frequently in practical situations of software development. Unfortunately, the typical white-box testing is not able to be fully detected this kind of error, even when the flow analysis is performed on both original and evolved versions. To make it clearer, in the following discussion in Section 2, we will give some motivating examples on this issue.

To overcome this problem, we suggest an approach of using constraints combined from path conditions of both original and evolved program versions. We then formally prove the soundness of this approach, under the context of well-conditioned versions. We then formally prove the soundness of conditions in both original and evolved program, is occurring quite frequently in regression bug. This kind of errors, which is typically regarded as may accidentally violate the original requirements. The rest of the paper is organized as follows. Section 2 presents a motivating example which shows that when a program evolves, neither test-cases generated merely from the old version nor the new version are sufficient to detect regression bug. Section 3 discusses our proposed approach on generating test-case by combining execution paths from the previous version and the evolved version of a program into constraints. In Section 4, we introduce the ultimate CTG algorithm, an improvement of the test-case generation algorithm to reduce its complexity significantly. Section 5 gives some experiments and Section 6 concludes the paper.

2 MOTIVATING EXAMPLE

To give a clear motivation of our work, we first define well-conditioned program as follows.

Definition 1 (Well-conditioned Program).
A program \(P \) is said well-conditioned with respect to a property \(\pi \), denoted as \(\angle (P, \pi) \), if \(P \) produces same outcomes w.r.t. \(\pi \) for all inputs satisfying same, path conditions in \(P \).

```
void f(int n)
{
    if(n>0) return n = 2*n;
    else return n = -2*n;
}
```

Listing 1: An example program \(P_X \).

Example 1. In the example program \(P_X \) given in Listing 1, there are two path conditions \(C_1: (n > 0) \) and \(C_2: (n \leq 0) \) corresponding to the execution paths of if and else clauses. Let us consider two properties: (i) \(\pi_1 \), the program result is a positive number; and (ii) \(\pi_2 \), the program result is an even number. One can easily observe that all inputs satisfying \(C_1 \) (e.g. \(n = 4 \)) will make \(\pi_1 \) true. Similarly, all inputs satisfying \(C_2 \) (e.g. \(n = -7 \)) will make \(\pi_1 \) false. Thus, we can say \(P_E \) is well-conditioned w.r.t. \(\pi_1 \) or \(\angle (P_0, \pi_1) \). In contrast, all inputs satisfying \(C_1 \) or \(C_2 \) cannot guarantee the same outcomes w.r.t. \(\pi_2 \). For instance, the inputs of \(n = 3 \) and \(n = 4 \) both satisfy \(C_1 \), but making \(\pi_2 \) false and true respectively.

In the situation of testing a program \(P \) against a requirement \(R \), it is easily observable that if \(\angle (P, R) \) then a set of test-cases covering all of path conditions in \(P \) is sufficient to detect any bugs if occurring.

Example 2. (Requirement \(R_P \)) Write a function \(f \) taking an integer parameter \(n \) that returns the absolute value of \(n \).

For instance, let us consider the requirement \(R_P \) given in Example 2. In Listing 2(a), an implementation of \(f \) is given in program \(V_P \) which has two path conditions \(P_1 = (n > 0) \) and \(P_2 = (n < 0) \). Since \(\angle (V_P, R_P) \), two test-cases covering those two path conditions of \(V_P \), e.g. \(n = 5 \) and \(n = -7 \), are sufficient to ensure the correctness of \(V_P \).

```
int f(int n)
{
    if(n>0) return n;
    else return ~n;
}
```

(a) The previous version \(V_P \)

```
int f(int n)
{
    if(n>3)
    {
        Global++;
        return n;
    }
    else return ~n;
}
```

(b) The evolved version \(V_E \) with regression bugs

Listing 2: Evolving programs.

1 In this paper we only discuss generating test-cases covering all execution paths. The test-cases for extreme cases, for example \(n=0 \) for the program in Listing 1(a), are out of the scope of this paper.
Example 3. (Requirement R_E) Write a function f taking an integer parameter n that returns the absolute value of n. In addition, if n is greater than 3, f will increase the value of the global variable Global by 1.

Assume that the requirement is now upgraded in order to fulfill a new requirement R_E as present in Example 3. We say that R_E is evolved from R_P since we can consider $R_E = R_P \cup R_N$, where R_N is the additional requirement of “if n is greater than 3, f will increase the value of the global variable Global by 1.” Then, V_E is evolved accordingly as a new version V_E given in Listing 1(b).

Since $\angle(V_E, R_N)$, two test-cases covering all two path conditions $Q_1 = n > 3$ and $Q_2 = -(n-3)$ of V_E, e.g. $n = 5$ and $n = -3$, are sufficient to test whether V_E fulfills the additional requirement R_N. But those two test-cases cannot show that V_E violates the old requirement R_P. For example, if the input is 2, the result will wrongly be -2. Generally, this problem arises since we cannot always guarantee that $\angle(V_E, R_P)$.

Note that even though this is only a toy problem, the logic error in Listing 2(b) reflects a practical situation occurring in evolving programs. That is, while making the evolved program satisfy the additional requirements, we may accidentally violate the original requirements. We consider this kind of error as regression bugs as introduced in Section 1.

The above-discussed examples also show that even though employing test-case covering all path conditions in both previous and evolved versions of evolving programs, we can still miss the regression bugs. In the next section, we will introduce the combined constrain solving approach to deal with this problem.

3 CONSTRAN ST SOLVING FOR REGRESSION BUGS DETECTION

The motivating example in Section 2 has well illustrated that when a program evolves from an old version to a new evolved version, both path conditions of two versions should be taken into account when generating test-cases. The philosophy here is that a program will be considered evolved when new requirement is added, like stated in Example 1 and Example 2. Thus, the new program should satisfy not only new requirements added but also old requirements as well.

In order to do this, we make usage of an approach based on combined constraint as follows. From the path conditions of both old and evolved versions, we generate combined constraints by make conjunctions of the path conditions. Each combined constraint is a conjunction of a pair of path conditions, one from the old version and the other from the evolved version. Then, we generate test-cases that cover all of possibly combined constraints. That is, we generate some input values that satisfy the combined constraints. The constraint solving here is by no means an easy taught to be done manually. In practice, we use the theorem prover Z3 (Björner and Moura, 2009) to make the constraints simplified and generate test-cases accordingly for each constraint generated.

For instance, Table 1 presents the combined constraints generated from programs in Listing 1 and the test-cases generated accordingly. Obviously, we can detect the regression bug when the test-case of $n = 2$ is executed.

The algorithm CTG to generate test-case is presented in Figure 1. In the algorithm, there is a particular operation of solve_constraint included. This operation is in charge of generating combined constraints by conjunction and makes them simplified, then finds an appropriate test-case fulfilling the constraint. This operation is supposedly handled by means of a theorem prover.

The CTG algorithm should be sufficient to find any regression bugs. In Theorem 1, we show that this statement is sound under Assumption 1.

Algorithm: CTG (Constraint-based Test-cases Generation)

Input: V_P, V_E: Original and evolved programs

Output: T: set of test-cases

Operations

1. $T = \emptyset$
2. **Foreach** $(\text{path condition } \alpha \in V_P)$
 - **Foreach** $(\text{path condition } \beta \in V_E)$
 - $t = \text{solve_constraint}(\alpha \cap \beta)$
 - **If** $t \neq \emptyset$ **then**
 - **Add** t to T
 - **End if**
 - **End for**
3. **End for**

Figure 1: The CTG (Constraint-based Test-case Generation) algorithm.
Assumption 1. Given a previous version V_p that is well-conditioned w.r.t an original requirement R_p, i.e. $\angle(V_p,R_p)$. When V_p is evolved into a new version V_E to fulfill new requirement R_N, then $\angle(V_E,R_N)$.

Theorem 1. The set of test-cases generated by CTG algorithm is sufficient to detect regression bugs on a program V_N evolved from original program V_P when the requirements evolved from R_P to R_N respectively.

Proof. If there is a regression bug \emptyset occurring in V_N, then exists an input I that results in different outcomes of O_P and O_E w.r.t. R_P when executed in V_P and V_E respectively. Assume that I belongs to condition paths $\alpha \in V_P$ and $\beta \in V_E$ respectively. Since $\angle(V_P,R_P)$ and $\angle(V_E,R_E)$ and $R_P \subseteq R_E$, any input generated from the combined constraint $\alpha \land \beta$ will result in the same outcome O_P and O_E w.r.t. R_P when executed in V_P and V_E respectively. Since $I \in \alpha$ and $I \in \beta$ then $\alpha \land \beta \neq \emptyset$, i.e. there is at least an input $I' \in \omega \land \beta$ existing and will be generated when the CTG algorithm tries to make all possible combinations of condition paths between V_P and V_E, thus causing the corresponding regression bug \emptyset to be detected accordingly. \Box

Complexity Analysis. It is easily observable that the CTG algorithm produces test-cases by solving of possible constraints generated from the old version V_P and the evolved version V_E. Thus, it suffers high complexity as it takes $O(N \times M)$ times to make a solver process all constraints where N and M are the path conditions on V_P and V_E respectively. In the next section, we introduce the CTG algorithm, an enhanced algorithm that only involves solver to process solvable constraints, thus improving significantly the performance of test-case generation process.

4 THE CTGE ALGORITHM

Among the 4 constraints presented in Table 1, there are 3 solvable constraints and one unsolvable one (i.e. a constraint that we cannot find any test-case/input satisfying it). However, the CTG algorithm requires a solver to process unnecessarily all of 4 constraints. To overcome this problem, in the new version of CTG algorithm presented in this section, we will take into account only solvable constraints. The CTGE algorithm is shown in Figure 2.

Algorithm: CTGE (Efficient Constraint-based Test-cases Generation)
Input: V_P, V_E: Original and evolved programs
Output: T: set of test-cases
Operations
$T = \emptyset$
For each (path condition $\chi \in V_P$)
$t = solve_constraint(\chi \land \neg C_{mark})$
combine(t)
End For
SubProcedure combine (test-case t)
Begin
 add t to T
 $\alpha = symbolic_exec(t,V_P)$
 $\beta = symbolic_exec(t,V_E)$
 $C_{mark} = C_{mark} \cup (\alpha \land \beta)$
 if $(\neg \alpha \land \beta \land C_{mark}) \neq \emptyset$ then
 combine(solve_constraint($\neg \alpha \land \beta \land C_{mark}$))
 end if
 if $(\neg \alpha \land \beta \land C_{mark}) \neq \emptyset$ then
 combine(solve_constraint($\neg \alpha \land \beta \land C_{mark}$))
 end if
End

Figure 2: Efficient Constraint-based Test-case Generation (CTGE) algorithm.

The major improvement of CTGE is that it does not try to make all possible combined constraints. Instead, CTGE processes each path condition of the original version V_P. For each path condition, CTGE first produces an appropriate test-case. Then, it calls a subprocedure named combine to further process.

For every test-case t processed in combine, a specific function named $symbolic_exec$ will be called to find the corresponding path conditions of t when executed in V_P and V_E respectively. The operation of $symbolic_exec$ will perform symbolic execution, a classical technique to trace the execution path of given input by tracking symbolic rather than actual values (King, 1976). Based on the retrieved path conditions, combine keeps generating relevant constraints and calls itself recursively to generate more suitable test-cases. During the whole process of CTGE, we also make use of a special constraint named C_{mark} which marks the explored parts in the space of test-case domain. Therefore, CTGE can avoid duplication when generating constraints and test-cases.

Theorem 2. The set of test-cases generated by CTGE algorithm is sufficient to detect regression bugs on a program V_N evolved from old program V_P when the requirements evolve from R_P to R_N respectively.

Proof. We consider an undirected graph $G = \langle V,E \rangle$ constructed as follows. Each vertex v in V corresponds to a solvable combined constraint generated by the CTE algorithm. We add an edge...
For example, in Figure 3 is the graph constructed when we consider the program versions presented in Figure 1 and the combined constraints in Table 1. In the graph, there are three vertices corresponding to three solvable constraints in Table 1. There is an edge connecting v_1 and v_2 since their constraints are both subconditions of P_1. Similarly, v_2 and v_3 are connected since their constraints are both subconditions of Q_2.

Next, we relate the test-case generation process in the CTG^k as graph traversal carried out in G. A vertex v is considered visited if CTG^k produces a test-case satisfying the corresponding combined constraint of v. According to Theorem 1, if all vertices in G are visited after CTG^k finishes, then CTG^k generates sufficient test-cases to detect any regression bugs.

When CTG^k begins, it starts by a certain test-case I generated to satisfy a path condition α of V_F. Using symbolic execution, one can determine the path condition β of V_N which I belongs to. It means that a vertex $q = \alpha \cap \beta$ just has been initially visited.

Consider the formula $\alpha \cap \beta$ referring to a vertex q^*, which should be connected to q since $\alpha \cap \beta$ and $\alpha \cap \beta$ are both subcondition of α. Let C_{mark} be the formula representing all of vertices already visited (i.e. the combined constraints whose corresponding test-cases have been generated already). Similarly reasoning, we finally obtain that the two formulas $\alpha \cap \beta \cap C_{mark}$ and $\neg \alpha \cap \beta \cap C_{mark}$ should represent all vertices connecting to q which have not been visited. By recursively solving those formulas and updating C_{mark} in the subprocedure combine, CTG^k will iteratively visit all of vertices in the connected component which q belongs to.

Lastly, one can note that by checking all of path conditions of V_F, CTG^k will travel to all possible connected components of G. Thus, all vertices of G will be logically visited when CTG^k performed and there are no vertices doubly visited.

For instance, consider using CTG^k for generating test-case for evolving programs in Listing 1. Firstly, the two path conditions P_1 and P_2 are collected. Then, CTG^k generates randomly a test-case for a path condition. Let it be $n = 4$ for P_1. Performing symbolic execution on the test-case, one can realize that the test-case falls into the combined constraint $P_1 \land Q_1 = n > 0 \land n > 3$. Then, CTG^k tries to solve the formula $P_1 \land Q_1 \land C_{mark}$ with C_{mark} being updated as $C_{mark} = P_1 \land Q_1$. We have $P_1 \land Q_1 \land C_{mark} = n > 0 \land n > 3 \land n > 3 = n > 0 \land n > 3$. Then, a test-case is generated accordingly, e.g. $n = 2$.

Next, combine (2) is invoked, which is corresponding to the constraint $P_1 \land Q_2$ with C_{mark} being updated as $n > 3 \lor n > 0 \land n \leq 3 = n > 0$. We then have $P_1 \land Q_2 \land C_{mark} = n > 0 \land n > 3 \land (n > 0) = \emptyset$, then this formula is not considered.

Meanwhile, we have $\neg P_1 \land Q_1 \land C_{mark} = \neg (n > 0) \land (n > 3) \land \neg (n > 0) = n \leq 0$. Solving this constraint, we, for instance, get a new test-case of $n = -7$. Then, combine(-7) is invoked accordingly. At the moment, C_{mark} is updated as $n > 0 \lor (n = 0) \land (n = 3) = n > 0 \lor n = 0$, making $P_1 \land Q_2 \land C_{mark} = \neg P_1 \land Q_2 \land C_{mark}$. Thus, the algorithm stops with no more test-cases generated.

Complexity Analysis. Performing elementary analysis on CTG^k, one can realize that CTG^k will involve the embedded solver $2K$ times, with K is the number of test-cases generated and $K \leq N + M$ where N and M are the path conditions on V_F and V_E respectively. If we take into account the actions of generating N path conditions on V_F, the total complexity of CTG^k will be $O(2K + M) \sim O(3N + M)$ which should be improved significantly compared to that of the original CTG.

To illustrate this, consider the two versions of evolving programs given in Listing 3. The program intends to grade students’ works. After the preliminary version is finished as presented in Listing 3(a), a new version is released afterward as presented in Listing 3(b).

```c
int grade(int n)
{  
  if(n > 100) return Invalid;
  else if(n>90) return Excellent;
  else if(n>80) return Very good;
  else if(n>70) return Good;
  else if(n>60) return Fairly good;
  else if(n>50) return Average;
  else if(n>0) return Fail;
  else return Invalid;
}

(a) Student grading program – preliminary version

int grade(int n)
{  
  if(n > 100) return Invalid;
  else if(n>90) return Excellent;
  else if(n>80) return Very good;
  else if(n>70) return Good;
  else if(n>60) return Fairly good;
  else if(n>50) return Average;
  else if(n>0) return Fail;
  else return Invalid;
}

(b) Student grading program – final version
```

Listing 3: Evolving programs.
There are 8 path conditions in each version, therefore the CTG algorithm will make use of the solver 64 times to generate test-cases. Meanwhile, when \(\text{CTGE} \) is performed, it will basically generate 8 initial test-cases covering 8 path conditions of the preliminary program as presented in Table 2 (the test-cases presented here are just of example basis).

Table 2: Initial example test-cases for preliminary version in Listing 2.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Test case</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n > 100)</td>
<td>103</td>
</tr>
<tr>
<td>(n > 90) & & (n < 100)</td>
<td>91</td>
</tr>
<tr>
<td>(n = 80) & & (n < 90)</td>
<td>85</td>
</tr>
<tr>
<td>(n = 70) & & (n < 80)</td>
<td>73</td>
</tr>
<tr>
<td>(n = 60) & & (n < 70)</td>
<td>66</td>
</tr>
<tr>
<td>(n = 50) & & (n < 60)</td>
<td>54</td>
</tr>
<tr>
<td>(n = 0) & & (n < 50)</td>
<td>32</td>
</tr>
<tr>
<td>(n < 0)</td>
<td>-7</td>
</tr>
</tbody>
</table>

Then, when the algorithm advances, there will be 6 additional test-cases generated corresponding to non-empty domain marked in Table 3. Totally, the solver only needs to be involved 14 times for generating test-cases and 8 times for initial path conditions.

Table 3: Total test-cases generated for evolving versions in Listing 2.

<table>
<thead>
<tr>
<th>Test case</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\alpha && \beta)</th>
<th>(\neg \alpha && \beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>(n > 100)</td>
<td>(n > 100)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>91</td>
<td>(n > 90) & & (n < 100)</td>
<td>(n > 90) & & (n < 100)</td>
<td>(\text{new test-case: 90})</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>90</td>
<td>(n > 90) & & (n < 100)</td>
<td>(n > 90) & & (n < 100)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>85</td>
<td>(n > 80) && (n < 90)</td>
<td>(n > 80) && (n < 90)</td>
<td>(\text{new test-case: 80})</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>80</td>
<td>(n > 80) && (n < 90)</td>
<td>(n > 80) && (n < 90)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>73</td>
<td>(n = 70) && (n < 80)</td>
<td>(n = 70) && (n < 80)</td>
<td>(\text{new test-case: 70})</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>70</td>
<td>(n = 70) && (n < 80)</td>
<td>(n = 70) && (n < 80)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>66</td>
<td>(n > 60) && (n < 70)</td>
<td>(n > 60) && (n < 70)</td>
<td>(\text{new test-case: 60})</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>60</td>
<td>(n > 60) && (n < 70)</td>
<td>(n > 60) && (n < 70)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>54</td>
<td>(n > 50) && (n < 60)</td>
<td>(n > 50) && (n < 60)</td>
<td>(\text{new test-case: 50})</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>50</td>
<td>(n > 50) && (n < 60)</td>
<td>(n > 50) && (n < 60)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>32</td>
<td>(n > 0) && (n < 50)</td>
<td>(n > 0) && (n < 50)</td>
<td>(\text{new test-case: 0})</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>0</td>
<td>(n > 0) && (n < 50)</td>
<td>(n > 0) && (n < 50)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>-7</td>
<td>(n < 0)</td>
<td>(n < 0)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>

Table 4: Programming problems used as experimental data.

<table>
<thead>
<tr>
<th>No</th>
<th>Problem</th>
<th>Constraint</th>
<th>Solver calls (CTG)</th>
<th>Solver calls (CTGE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Leap year checking</td>
<td>14</td>
<td>42</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>Triangle classification</td>
<td>22</td>
<td>89</td>
<td>31</td>
</tr>
<tr>
<td>3</td>
<td>Date validation checking</td>
<td>62</td>
<td>736</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>Time validation checking</td>
<td>28</td>
<td>96</td>
<td>37</td>
</tr>
<tr>
<td>5</td>
<td>Factorial computing</td>
<td>28</td>
<td>96</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>Calculating (n^2)</td>
<td>28</td>
<td>96</td>
<td>56</td>
</tr>
<tr>
<td>7</td>
<td>Prime number checking</td>
<td>56</td>
<td>384</td>
<td>92</td>
</tr>
<tr>
<td>8</td>
<td>Sum of 1.. (n)</td>
<td>25</td>
<td>84</td>
<td>54</td>
</tr>
</tbody>
</table>

Table 5: Bugs detected by white-box and combined constraints approach.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Real Bugs</th>
<th>Detected by white-box</th>
<th>Detected by CTGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>96</td>
<td>86(89%)</td>
<td>94(98%)</td>
</tr>
</tbody>
</table>

5 EXPERIMENTAL RESULTS

In order to evaluate the performance of the CTGE algorithm, we have conducted an experiment in the education domain. The requirements to be fulfilled in this experiment are non-trivial programming problems given to students. The list of problems is given in Table 4, which also gives the information of the combined constraints make from path conditions. For loop-based programs, the path conditions are computed using the coverage analysis technique (Spillner, Linz and Schaefer, 2006), in which the loops are enforced to repeat respectively 0,1,2 and more than 2 times. Thus, our algorithm may have some limitations on programs with complicated loops.

The dataset used in this experiment is collected
from the work of 50 students. In fact, there are actual marked programming works. Basically, for each programming problem, the teacher will produce a sample solution. In order to mark student works automatically, some test-cases are generated for testing. However, as discussed in Section 2, if we apply the typical white-box approach for generating test-cases, the test-cases are not sufficient to detect all of bugs in student works, even though both sample solutions and actual students’ works are concerned when test-cases are generated.

When manually inspecting, we observe that there are only 89% students’ bugs detected using white-box approach. Exact information on improvement of bug detection is given in Table 5. When the constraint-based approach is applied with teachers’ sample solutions playing the roles of original versions and student works evolved versions, the performance of bug detection is significantly improve with 98% bugs detected. Few bugs are still missed because the Z3 solver fails to resolve some complex non-linear expression in path conditions.

We have also compared the performance of the CTG and CTG\(E\) algorithms in terms of execution time. In Table 4, we can observe that the number of solver call is significantly reduced in CTG\(E\). As a result, the execution time is improved remarkably, as seen in Figure 4.

![Figure 4: Improvement of time execution achieved by CTG\(E\).](image)

Moreover, Figure 5 also shows that when the more number of constraints increases, the higher improvement on execution time achieved.

![Figure 5: Comparison on execution time difference between CTG and CTG\(E\) w.r.t. numbers of combined constraints.](image)

6 CONCLUSIONS

White-box testing is an effective technique for bug detection. However, in case of evolving program, this technique is not sufficient to deal with regression bugs, occurring when an evolved version violates original requirement already fulfilled by the previous versions.

In this paper, we first explain by a means of motivation example why white-box testing may fail to discover regression bugs. Then, we introduce a combined constraint-based approach to theoretically solve the problem, with formal definitions and proof provided. To avoid the explosion path problem, we refine the approach as ultimate algorithm known as CTG\(E\) whose complexity is reduced significantly to linear time.

We have also preliminary tested our approach in education environment, with dataset being programming works collected from students. The experimental results showed that the CTG\(E\) algorithm achieved better performance in terms of bug detection coverage and execution time, compared to the white-box testing. It also shows potential to apply CTG\(E\) to industry environment.

ACKNOWLEDGEMENTS

This work is part of the Higher Education Project 2 project (supported by World Bank and Hochiminh – Vietnam National University).

REFERENCES

CTGE: AN EFFECTIVE CONSTRAINT-BASED TEST-CASE GENERATION ALGORITHM FOR DETECTING REGRESSION BUGS IN EVOLVING PROGRAMS

