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Abstract: We propose a service framework for Multivariate Time Series Analytics (MTSA) that supports model 
definition, querying, parameter learning, model evaluation, monitoring, and decision recommendation. Our 
approach combines the strengths of both domain-knowledge-based and formal-learning-based approaches 
for maximizing utility over time series. More specifically, we identify multivariate time series parametric 
estimation problems, in which the objective function is dependent on the time points from which the 
parameters are learned. We propose an algorithm that guarantees to find the optimal time point(s), and we 
show that our approach produces results that are superior to those of the domain-knowledge-based approach 
and the logit regression model. We also develop MTSA data model and query language for the services of 
parameter learning, querying, and monitoring. 

1 INTRODUCTION 

Making decisions over multivariate time series is an 
important topic which has gained significant interest 
in the past decade, as two or more time series are 
often observed simultaneously in many fields. In 
business and economics, financial analysts and 
researchers monitor daily stock prices, weekly 
interest rates, and monthly price indices to analyze 
different states of stock markets. In medical studies, 
physicians and scientists measure patients’ diastolic 
and systolic blood pressure over time and 
electrocardiogram tracings to evaluate the patients’ 
health of respiratory systems. In social sciences, 
sociologists and demographers study annual birth 
rates, mortality rates, accident rates, and various 
crime rates to dig out hidden social problems within 
a community. The purpose of these measures over 
multivariate time series is to assist the specialists in 
understanding the same problem in different 
perspectives within particular domains. For those 
significant events to be identified and detected over 
multivariate time series, the events can lead the 
professionals to make better decisions and take more 
reasonable actions promptly. Those events may 
include index bottoms and tops in financial markets, 
irregular readings on blood pressure and pulse 

anomalies on electrocardiogram, as well as low birth 
but high death rates in a population region. To 
support such decision-marking and determination 
over multivariate time series, we propose a service 
framework, Multivariate Time Series Analytics 
(MTSA), which consists of services for model 
definition, querying, parameter learning, model 
evaluation, monitoring, and decision 
recommendation. Our technical focus of this work is 
on the problem of event detection; namely, the 
parameter learning, data monitoring, and decision 
recommendation services. 

Currently, existing approaches to identifying and 
detecting those interesting events can be roughly 
divided into two categories: domain-knowledge-
based and formal-learning-based. The former relies 
solely on domain expert knowledge. Based on their 
knowledge and experiences, domain experts 
determine the conditions that trigger the events of 
interest. Consider one particular example of the 
timely event detection of certain conditions in the 
stock market, e.g., the bear market bottom, that can 
provide investors a valuable insight into the best 
investment opportunity. Such identification and 
detection can aid in the task of decision-making and 
the determination of action plans. To assist users in 
making better decisions and determinations, domain 
experts have identified a set of financial indices that 
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can be used to determine a bear market bottom or 
the “best buy” opportunity. The indices include the 
S&P 500 percentage decline (SPD), Coppock Guide 
(CG), Consumer Confidence point drop (CCD), ISM 
Manufacturing Survey (ISM), and Negative 
Leadership Composite “Distribution” (NLCD). If 
these indices satisfy the pre-defined, parameterized 
conditions, e.g., SPD < -20%, CG < 0, etc., (Stack, 
2009), it signals that the best period for the investors 
to buy the stocks is approaching. Often these 
parameters may reflect some realities since they are 
set by the domain experts based on their past 
experiences, observations, intuitions, and domain 
knowledge. However, they are not always accurate. 
In addition, the parameters are static, but the 
problem that we deal with is often dynamic in 
nature. The market is constantly impacted by many 
unknown and uncontrollable factors from the 
business surroundings. Thus, this approach lacks a 
formal mathematical computation that dynamically 
learns the parameters to meet the needs of the 
changing environment.  

An alternative approach is to utilize formal 
learning methods such as non-linear logit regression 
models. (Dougherty, 2010) The logit regression 
models are used to predict the occurrence of an 
event (0 or 1) by learning parametric coefficients of 
the logistic distribution function of the explanatory 
variables. This is done based on the historical data 
by applying nonlinear regression models and 
Maximum Likelihood Estimation (MLE). The main 
challenge concerning using formal learning methods 
to support decision-making is that they do not 
always produce satisfactory results, as they do not 
consider incorporating domain knowledge into their 
formal learning aproaches. Without domain experts’ 
knoweledge, formal learning methods become 
computationally intensive and time consuming. The 
whole model building is an iterative and interactive 
process, including model formulation, parameter 
estimation, and model evaluation. Despite enormous 
improvements in computer software in recent years, 
fitting such nonlinear quantitative decision model is 
not a trival task, especially if the parameter learning 
process involves multiple explanatory variables, i.e., 
high dimensionality. Working with high-
dimensional data creates difficult challenges, a 
phenomenon known as the “curse of 
dimensionality.” Specifically, the amount of 
observations required in order to obtain good 
estimates increases exponentially with the increase 
of dimensionality. In addition, many learning 
algorithms do not scale well on high dimensional 
data due to the high computational cost. The 
parameter computations by formal-learning-based 
approaches, e.g., logit regression model, are 

complicated and costly, and they lack the 
consideration of integrating experts’ domain 
knowledge into the learning process – a step that 
could potentially reduce the dimensionality. Clearly, 
both approaches, domain-knowledge-based and 
formal-learning-based, do not take advantage of 
each other to learn the optimal decision parameters, 
which are then used to monitor the events and make 
better recommendations. 

To mitigate the shortcomings of the existing 
approaches, the proposed MTSA service framework 
combines the strengths of both the domain-
knowledge-based and the formal-learning-based 
approaches. The service framework supports quick 
implementation of services towards decision 
recommendation over multivariate time series. More 
specifically, the MTSA Model Definition Service 
takes the template of conditions identified by 
domain experts—such template consists of 
inequalities of values in the time sequences—and the 
Learning Service “parameterizes” it, e.g., SPD < p1. 
The goal of the learning service is to efficiently learn 
parameters that maximize the objective function, 
e.g., earnings in our financial example. The 
Monitoring and Recommendation Service 
continuously monitors the data stream for data that 
satisfy the parameterized conditions, in which the 
parameters have been instantiated by the learning 
service. We also propose an extension of the 
relational database model and SQL, with high-level 
MTSA constructs to support querying, monitoring, 
and parameter learning. 

To this end, we identify multivariate time series 
parametric estimation problems, in which the 
objective function is dependent on the time points 
from which the parameters are learned. With the 
potentially large data size and multiple variables, 
classic branch-and-bound approaches have 
exponential complexity in the worst-case scenario. 
We develop a new algorithm that guarantees a true 
optimal time point, with complexity of O(kNlogN), 
where N is the size of the learning data set, and k is 
the number of parametric time series. To 
demonstrate the effectiveness and the efficiency of 
our algorithm, we compare our method with the 
domain-knowledge-based approach and the logit 
regression model. As a proof of concept, we conduct 
an experiment in the financial domain, but note that 
our framework is applicable to solve problems in 
different domains. We show that our algorithm is 
more effective and produces results that are superior 
to those of the two approaches mentioned above. 
More specifically, in our experiments we show that 
our algorithm outperforms the financial experts’ 
recommendation and the logit regression model, 
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resulting in higher earnings for our imaginary 
investor. 

The rest of the paper is organized as follows. In 
Section 2 we provide an overview on the MTSA 
service framework. We discuss the learning and 
monitoring services, by defining the Expert Query 
Parametric Estimation (EQPE) model in Section 3. 
Section 4 explains the domain-knowledge-inspired 
learning algorithm and shows the experimental 
evaluation on stock market data. In Section 5, we 
describe the MTSA data model and query language. 
Section 6 contains the conclusions and future work. 

2 A SERVICE FRAMEWORK 
FOR MULTIVARIATE TIME 
SERIES ANALYTICS (MTSA) 

Figure 1 shows a range of common services that is 
desirable to be offered over the internet. The MTSA 
Model Definition Service provides a parametric 
model template identified by the domain experts. In 
the financial example that predicts the market 
bottom, the model template may consist of indices 
such as S&P 500 percentage decline (SPD), 
Coppock Guide (CG), etc. These indices are 
associated with their respective inequality 
constraints, for example, SPD < p1, and CG < p2. 
Given such a parametric model template in a given 
domain, the Monitoring and Recommendation 
Service continuously screens the incoming data 
stream for indices that satisfy all the constraints 
which specify when the event of interest, e.g., the 
market bottom, has occurred, and recommends an 
action, e.g., buying stock. Note that in the traditional 
approach, the decision parameters p1 and p2 are 
specified by the domain experts, e.g., SPD < -20%, 
and CG < 0. However, using hard-set parameters 
cannot capture the dynamics of the rapidly changing 
market. The Parameter Learning Service 
parameterizes the template, e.g., SPD < p1 and CG < 
p2, and supports learning of the parameters from the 
historic time series. The accuracy of the decision 
parameters are ensured through the Model Accuracy 
and Quality Evaluation Service, which validates the 
prediction, i.e., market bottom, with the observed 
real data, and updates the model if necessary. The 
Querying Service allows the service developers and 
database programmers to express the complex 
information services over multivariate time series 
mentioned above in a high-level abstraction. 

The service framework for multivariate time 
series analytics (MTSA) provides a medium that 
supports quick implementation of the services 

described above. The MTSA service framework is 
illustrated in Figure 2. 

 
Figure 1: Services for Multivariate Time Series Over 
Internet. 

It consists of three layers: data integration, 
information processing, and query language. The top 
layer is the MTSA Model Definition and Query 
Language, which extends the relational model with 
time series and SQL with MTSA constructs. The 
middle layer supports the MTSA constructs 
including MTSA model template definition, 
querying, parameter learning, model evaluation, data 
monitoring, and decision recommendation. The 
bottom, Data Integration Layer, allows service 
providers to interact with external data services and 
collect time series data from heterogeneous sources, 
as well as from local repositories. This integration 
layer provides a concentric view of the collected 
data. The integration of the model template and the 
learned parameters, which may be available both 
locally and through external services, is also 
supported by the Data Integration Layer. 

 
Figure 2: A Service Framework for Multivariate Time 
Series Analytics. 
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3 EXPERT QUERY 
PARAMETRIC ESTIMATION 
(EQPE) MODEL 

In this section, we discuss in detail the 
methodologies used in the Parameter Learning 
Service and the Monitoring and Recommendation 
Service in the MTSA framework. More specifically, 
we review the mathematical formulations of the 
Expert Query Parametric Estimation (EQPE) 
problem and solution. We also use the examples to 
explain them in detail. 

The goal of an EQPE problem is to find optimal 
values of decision parameters that maximize an 
objective function over historical, multivariate time 
series. For an EQPE problem being constructed, we 
need to define a set of mathematical notations and a 
model for it. We assume that the time domain T is 
represented by a set of natural numbers: T = N, and 
that we are also given a vector of n real-valued 
parameter variables (p1, p2, …, pn). 
Definition 1. Time Series: A time series S is a 
function S: T → R, where T is the time domain, and 
R is the set of real numbers.  
Definition 2. Parametric Monitoring Constraint: A 
parametric monitoring constraint C(S1(t), S2(t), …, 
Sk(t), p1, p2, …, pn) is a symbolic expression in terms 
of S1(t), S2(t), …, Sk(t), p1, p2, …, pn, where S1(t), 
S2(t), …, Sk(t) are time series, t ∈ T is a time point, 
and (p1, p2, …, pn) is a vector of parameters. 

We assume a constraint C written in a language 
that has the truth-value interpretation I: Rk x Rn → 
{True, False}, i.e., I(C(S1(t), S2(t), …, Sk(t), p1, p2, 
…, pn)) = True if and only if the constraint C is 
satisfied at the time point t ∈ T and with the 
parameters (p1, p2, …, pn) ∈ Rn. In this paper, we 
focus on conjunctions of inequality constraints: 
C(S1(t), S2(t), …, Sk(t), p1, p2, …, pn) = ∧i (Si(t) op 
pj), where op ∈ {<, ≤, =, ≥, >}.  
Definition 3. Time Utility Function: A time utility 
function U is a function U: T → R.  
Definition 4. Objective Function: Given a time 
utility function U: T → R and a parametric 
constraint C, an objective function O is a function O: 
Rn → R, which maps a vector of n parameters on Rn 
to a real value R, defined as follows. For (p1, p2, …, 
pn) ∈ Rn, O(p1, p2, …, pn) ≝ U(t), where U is the 
utility function, and t ∈ T is the earliest time point 
that satisfies C, i.e.,  

(1) S1(t) op1 p1 ∧ S2(t) op2 p2 ∧ … ∧ Sn(t) opn pn 
is satisfied, and  

(2) There does not exist 0 ≤ t' < t, such that S1(t') 
op1 p1 ∧ S2(t') op2 p2 ∧ … ∧ Sn(t') opn pn is satisfied. 

Definition 5. Expert Query Parametric Estimation 
(EQPE) Problem: An EQPE problem is a tuple <S, 
P, C, U>, where S = {S1, S2, …, Sk} is a set of k time 
series, P = {p1, p2, …, pn} is a set of n real-value 
parameter variables, C is a parametric constraint in S 
and P, and U is a time utility function.  

Intuitively, a solution to an EQPE problem is an 
instantiation of values into the vector P of n real-
value parameters that maximizes the objective O. 
Definition 6. Expert Query Parametric Estimation 
(EQPE) Solution: A solution to the EQPE problem 
<S, P, C, U> is argmax O(p1, p2, …, pn), i.e., the 
(estimated) values of parameters, p1, p2, …, pn, that 
maximize O, where O is the objective function 
corresponding to U.  

The base time series in our financial example are 
shown in Table 1. We suppose that the first starting 
date in any time-series data set is t = 0. Note that 
some base time series are the direct inputs, whereas 
some are used to derive another set of time series. 
For instance, the derived time series in our case 
study are shown in Table 2. The decision parameters 
used in the case study are defined in Table 3. Let us 
consider the following constraint C as an 
illustration:  

C(SPD(t), CG(t), CCD(t), ISM(t), NLCD(t), p1, 
p2, p3, p4, p5) = SPD(t) < p1 ∧ CG(t) < p2 ∧  
CCD(t) < p3 ∧ ISM(t) < p4 ∧ NLCD(t) > p5  
 
It means that the parametric monitoring 

constraint C is satisfied, i.e., its interpretation is 
True, if the above inequalities with the decision 
parameters are satisfied at the time point t. The 
interpretation also indicates that the monitoring 
event occurs. We assume that the investor buys the 
S&P 500 index fund at the decision variable time t 
and sell it at the given tS, which is the last day of the 
given training data set. The earning function SP(tS)/ 
SP(t) – 1 ∈ R is the utility, which is maximized by 
choosing the optimal value t ∈ T, where SP(tS) and 
SP(t) are the sell and buy value of the S&P 500 
index fund at the time tS and t respectively. The 
EQPE problem and solution for our example can be 
constructed by putting the considered time series, 
parameters, constraints, and functions to the 
definitions shown in Table 4. 

Table 1: Base Time-Series Data. 

Base Time Series S Abbreviation 
S&P 500 SP500(t) 

Coppock Guide CG(t) 
Consumer Confidence CC(t) 

ISM Manufacturing Survey ISM(t) 
Negative Leadership Composite NLC(t) 
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Table 2: Derived Time-Series Data. 

Derived Time Series S Abbreviation 
Percentage decline in SP(t) at the time 

point t SPD(t) 

Points drop in CC(t) at the time point t CCD(t) 
Number of consecutive days in Bear 

Market “DISTRIBUTIOIN” of NLC(t) 
at and before the time point t 

NLCD(t) 

Time Utility Earning at the time point t, 
i.e., the index fund is bought at t and 

sold at ts, where ts is the last day of the 
learning data set 

Earning(t) 

Table 3: Decision Parameters. 

Parameter Interpretation 
p1 Test if SPD(t) is less than p1 at t. 
p2 Test if CG(t) is less than p2 at t. 
p3 Test if CCD(t) is less than p3 at t. 
p4 Test if ISM(t) is less than p4 at t. 
p5 Test if NLCD(t) is greater than p5 at t. 

Table 4: EQPE Problem and Solution Formulation for 
S&P 500 Index Fund. 

Problem and Solution 
Problem: 

<S, P, C, U>, where 
S = {SPD, CG, CCD, ISM, NLCD} 
P = {p1, p2, p3, p4, p5} 
C = SPD(t) < p1 ∧ CG(t) < p2 ∧ CCD(t) < p3 ∧  

ISM(t) < p4 ∧ NLCD(t) > p5 
U = SP(ts)/SP(t) - 1 

 
Solution: 

argmax O(p1, p2, p3, p4, p5) ≝ U(t) 
 
The values of the optimal decision parameters 

can be determined by using the learning algorithm, 
Checkpoint. Before explaining the Checkpoint 
algorithm in detail, we first review the concept of 
Dominance. 
Definition 7. Dominance ≻: Given an EQPE 
problem <S, P, C, U> and any two time points t, t' ∈ 
T, we say that t' dominates t, denoted by t' ≻ t, if the 
following conditions are satisfied:  

(1) 0 ≤ t' < t, and  
(2) ∀(p1, p2, …, pn) ∈ Rn, C(S1(t), S2(t), …, Sk(t), 

p1, p2, …, pn) → C(S1(t'), S2(t'), …, Sk(t'), p1, p2, …, 
pn). 

Intuitively, t' dominates t if for any selection of 
parametric values, the query constraint satisfaction 
at t implies the satisfaction at t'. Clearly, the 
dominated time points should be discarded when the 
optimal time point is being determined. We formally 
claim that: 

Claim 1 - Given the conjunctions of inequality 
constraints, S1(t) op1 p1 ∧ S2(t) op2 p2 ∧ … ∧ Sk(t) opk 
pk and the two time points t', t such that 0 ≤ t' < t, t' ≻ t if and only if S1(t') op1 S1(t) ∧ S2(t') op2 S2(t) ∧ … ∧ Sk(t') opk Sk(t). The proof is shown in Appendix. 

For example, suppose there are three time series 
S1, S2, S3 and three decision parameters p1, p2, p3. 
And the constraints are C(S1(t), S2(t), S3(t), p1,  p2, p3) 
= S1(t) ≥ p1 ∧ S2(t) ≥ p2 ∧ S3(t) ≤ p3. Also assume the 
values for S1, S2, and S3 at the time point t1, t2, and t3 
respectively in Table 5 shown in the next page. 

In this case, the time point t3 is dominated 
because there is a time point t1 that make the 
inequality, S1(t1) ≥ S1(t3) ∧ S2(t1) ≥ S2(t3) ∧ S3(t1) ≤ 
S3(t3), equal to true.  

On the contrary, for all t' < t, if S1(t') ¬op1 S1(t) ∨ 
S2(t') ¬op2 S2(t) ∨…∨ Sn(t') ¬opn Sn(t) is satisfied, t is 
not dominated by t' denoted by t' ⊁ t. Let us 
consider the same example above. Because S1(t1) < 
S1(t2) ∨ S3(t1) > S3(t2), t2 is not dominated. 

4 CHECKPOINT ALGORITHM 
AND EXPERIMENTAL 
EVALUATION 

Conceptually, we can search a particular set of 
parameters {p1, p2, …, pn} which is at the earliest 
time point t that is not dominated by any t' such that 
the value of the objective function O is maximal 
among all the instantiations of values into 
parameters. However, the problem of this approach 
is that for every single parameter set at t in a 
learning data set, the parameter set at t has to be 
examined with all the previous sets of parameters at 
t' for checking the non-dominance before the 
optimal solution can be found. In fact, due to the 
quadratic nature, the conceptual approach is time 
consuming and expensive particularly if the size of 
the learning data set is significantly large. Instead, 
the Checkpoint algorithm uses the KD-tree data 
structure and searching algorithm to evaluate 
whether a time point t is dominated based on the 
Claim 1 for checking the non-dominance. The 
pseudo code of the algorithm is: 
 

Input: <S, P, C, U> 
Output: p[1…k] is an array of the 
  optimal parameters that  maximize 

the objective. 
 

Data Structures: 
1. N is the size of the learning data 

 set. 
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2. Tkd is a KD tree that stores the 
 parameter vectors that are not 
 dominated so far. 

3. MaxT is the time point that gives 
 the maximal U so far, denoted by  MaxU. 

 
Processing: 
STEP 1: Tkd := <S1(0), S2(0), …,  

  Sk(0)>;  
MaxT := 0;  
MaxU := U(0); 

 
STEP 2: FOR t := 1 TO N - 1 DO { 

Non-Dominance Test: Query the Tkd 
to find if there exists a point 
(ऀ1, ऀ2, …, ऀk) in the Tkd, which 
is in the range [S1(t), ∞) x 
[S2(t), ∞) x … x [Sk(t), ∞). 

 
IF (NOT AND t is not dominated 
AND U(t) > MaxU) THEN Add 
<S1(t), S2(t), …, Sk(t)> to Tkd;  
MaxT := t;  
MaxU := U(t);} 

 
STEP 3: FOR i := 1 TO k DO { 

p[i] := Si(MaxT);} 
 
STEP 4: RETURN p[1…k]; 
 
Clearly, the first time point is not dominated 

because there is no time point preceding it. 
Therefore, <S1(0), S2(0), …, Sk(0)> can be added to 
Tkd. 0 and U(0) can be assigned to MaxT and MaxU 
respectively. 

Using the Checkpoint algorithm step by step for 
the problem shown in Table 5, we can search 
through a particular set of parameters {p1, p2, p3} 
which is at the earliest time point t that is not 
dominated by any t' such that the value of the utility 
function U is maximal. In STEP 1, the <S1(t1), 
S2(t1), S3(t1)> is added to the Tkd since it is the first 
time point. Then t1 and U(t1) are assigned to MaxT 
and MaxU respectively. In STEP 2, t2 is not 
dominated because S1(t1) < S1(t2) ∧ S2(t1) > S2(t2) ∧ 
S3(t1) > S3(t2) does not satisfy the Claim 1. However, 
t3 is dominated because S1(t1) > S1(t3) ∧ S2(t1) > S2(t3) ∧ S3(t1) < S3(t3) does satisfy the Claim 1. <S1(t2), 
S2(t2), S3(t2)> is added to the Tkd because t2 is not 
dominated and U(t2) > U(t1). Thus t2 and U(t2) are 
assigned to MaxT and MaxU respectively. In STEP 
3, p[1] := S1(MaxT), p[2] := S2(MaxT), and p[3] := 
S3(MaxT) in the for-loop statement. In STEP 4, the 
algorithm returns 25, 15, and 2. 

The time complexity for the range search and 
insertion of a parameter vector in the Tkd tree is 
O(klogN) respectively.  
Theorem 1: For N parameter vectors in the data set, 
the Checkpoint algorithm correctly computes an 
EQPE solution, i.e., argmax O(p1, p2, p3, p4, p5), 

where O is the objective function of the EQPE 
problem, with the complexity O(kNlogN). The proof 
of the theorem is shown in Appendix.  

Using the Checkpoint algorithm, we can obtain 
the optimal decision parameters and the maximal 
earning from the training data set for the financial 
problem shown in Table 6. The time complexity of 
the MLE for the logit regression model is O(k2N), 
where k is the number of decision parameters, and N 
is the size of the learning data set. For the 
Checkpoint algorithm, the complexity is O(kNlogN). 
Using the decision parameters from the financial 
expert (i.e., -20%, 0, -30, 45, 180 days), the logit 
regression model, and the Checkpoint algorithm, the 
“Best Buy” opportunities in stock and their earnings 
are shown in Table 7. Note that the Checkpoint 
algorithm considerably outperforms both the 
financial expert’s criteria and the logit regression 
model. 

Table 5: Values of S1, S2, S3, and U at the time point t1, t2, 
and t3. 

Time S1 S2 S3 U 
t1 13 27 3 10 
t2 25 15 2 200 
t3 10 20 5 150 

Table 6: Optimal Decision Parameters and Maximum 
Earning (%) from the Learning Data Set1. 

p1 p2 p3 p4 p5 O(p1,p2,p3,p4,p5) 

-29.02 -
20.01 

-
26.61 49 70 53.37 

Table 7: Investors’ Earning of the S&P 500 Index Fund 
from the Test Data Set2. 

Decision 
Approach 

Best 
Buy 

S&P 
500 Index 

Earning
% 

Financial Expert’s 
Criteria 10/09/08 909.92 1.03 

Logit Regression 
Model 11/26/08 887.68 3.56 

Checkpoint 
Algorithm with 

Financial Expert’s 
Template 

03/10/09 719.6 27.8 

1. The learning data set is from 06/01/1997 to 06/30/2005. 
2. The test data set is from 07/01/2005 to 06/30/2009 that is the 

sell date of the fund with the value of 919.32. 
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5 MTSA DATA MODEL 
AND QUERY LANGUAGE 

5.1 Data Model 

The time-series (TS) data model is an extension of 
the relational model with specialized schemas. A 
time-series schema is of the form TSname(T:Time, 
Vname:Vtype), where Time and Vtype are data 
types, Vtype is either Real or Integer, and TSname 
and Vname are names chosen by users. 

A time-event (TE) schema is of the form 
TEname(T:Time, Ename:Binary), where Binary is 
the binary type corresponding to the domain {0,1}, 
and TEname and Ename are names chosen by users. 

A TS database schema is a set of relational 
schemas which may include (specific) TS and/or TE 
schemas. 

A TS tuple over a schema TSname(T:Time, 
Vname:Vtype) is a relational tuple over that schema, 
i.e., a mapping m: {T, Vname} → Dom(Time) x 
Dom(Vtype), such that m(T) ∈ Dom(Time) and 
m(Vname) ∈ Dom(Vtype).  

A TE tuple over a similar schema 
TEname(T:Time, Ename:Binary) is a mapping m: 
{T, Ename} → Dom(Time) x Dom(Binary), such 
that m(T) ∈ Dom(Time) and m(Ename) ∈ 
Dom(Binary). 

Let us consider our financial example. In the 
market-bottom scenario, the service provider can use 
the querying service to create the base, derived, and 
related time-series tables as inputs and store them in 
the database. The base time-series tables are 
SP500(T, Index), CG(T, Index), CC(T, Index), 
ISM(T, Index), and NLC(T, Index). 

5.2 Querying Service 

Using the base time series tables, we can generate 
derived time series tables (if any) by the traditional 
SQLs. In our case study, some derived time series 
tables, e.g., SPD(t), CCD(t), etc., are: 

 
CREATE VIEW SPD AS ( 
SELECT After.T, After.Average /  

Before.Average – 1 AS Value  
FROM (SELECT SP1.T,AVG(SP2.Index)  

AS Average  
 FROM SP500 SP1, SP500 SP2  
 WHERE SP2.T <= SP1.T  
 AND SP2.T >= SP1.T – 6  
 AND SP1.T – 6 >= 0 
 GROUP BY SP1.T) After, 
 
(SELECT SP1.T, AVG(SP2.Index) AS 
Average  
FROM SP500 SP1, SP500 SP2  
WHERE SP2.T <= SP1.T – 150  

AND SP2.T >= SP1.T – 156  
AND SP1.T – 156 >= 0  
GROUP BY SP1.T) Before  

WHERE After.T = Before.T); 
 
CREATE VIEW CCD AS ( 
SELECT After.T, (After.Average –  

Before.Average) AS Value  
FROM (SELECT CC1.T,AVG(CC2.Index)  

AS Average  
 FROM CC CC1, CC CC2  
 WHERE CC2.T <= CC1.T  
 AND CC2.T >= CC1.T – 6  
 AND CC1.T – 6 >= 0  
 GROUP BY CC1.T) After, 

 
 (SELECT CC1.T,AVG(CC2.Index)  

AS Average  
 FROM CC CC1, CC CC2  
 WHERE CC2.T <= CC1.T – 150  
 AND CC2.T >= CC1.T – 156  
 AND CC1.T – 156 >= 0  
 GROUP BY CC1.T) Before  

WHERE After.T = Before.T); 

5.3 Monitoring and Recommendation 
Service 

Using the monitoring and recommendation service 
over the new incoming data, the financial analyst 
can recommend the investors whether or not they 
should buy the stock. In our example, the input 
parametric time series tables for monitoring are 
SPD(T, Value), CG(T, Index), CCD(T, Value), 
ISM(T, Index), and NLCD(T, Value). The 
monitoring and recommendation service can be 
expressed by a monitoring view and executed by the 
MONITOR command. 

 
CREATE VIEW MarketBottomTable AS ( 
SELECT SPD.T,(CASE WHEN SPD.Value <  

PR.p1 AND CG.Index < PR.p2 
AND CCD.Value < PR.p3 AND 
ISM.Index < PR.p4 AND 
NLCD.Value > PR.p5 THEN ‘1’ 
ELSE ‘0’ END) AS MB  

FROM SPD, CG, CCD, ISM, NLCD,  
  Para PR  
WHERE SPD.T = CG.T AND CG.T =   

 CCD.T AND CCD.T = ISM.T AND   ISM.T = 
NLCD.T); 

 
 
 
CREATE VIEW    
MB_Monitoring_Recommendation  
AS (SELECT MBT.T, (CASE WHEN MBT.MB  

= ‘1’ THEN ‘Market 
Bottom Is Detected. 
Buy Stock Is 
Recommended.’  
END) AS Action 

FROM MarketBottomTable MBT); 
 
MONITOR MB_Monitoring_Recommendation; 
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where Para is a table to store the decision 

parameters, e.g., p1 = -20, p2 = 0, p3 = -30, p4 = 45, 
and p5 = 180. If the parametric monitoring constraint 
in the CASE WHEN clause is satisfied at the current 
time point t, the value of the attribute “MB” 
dedicates “1”. The service then recommends the 
financial analysts to buy the index fund for the 
investors since the market bottom is predicted.  

5.4 Parameter Learning Service 

As we discussed, the expert’s suggested parameters 
(-20. 0, -30, 45, 180) are not accurate enough to 
monitor the dynamic financial market at all time; 
thus, the parameter learning service should be 
adopted by expressing as follows: 

 
Step 1: Store base TS tables, e.g.,  

SP500, CG, CC, ISM, and NLC, in 
the database. 

 
Step 2: Define SQL views for derived 

  TS tables, e.g, SPD, CCD,   
 etc., shown in Section 5.2. 

 
Step 3: Create a parameter table  

  which stores the optimal   
 decision parameters.  

 
CREATE VIEW Para ( 

p1 REAL, 
p2 REAL, 
p3 REAL, 
p4 REAL, 
p5 REAL); 

 
Step 4: Create a TS view for the  

  time utility. 
 

CREATE VIEW Earning AS (SELECT 
SP1.T, 
 ((Last.Index/SP1.Index   – 
1) * 100) AS Percent  FROM SP500 
SP1,  
 (SELECT SP2.Index  
 FROM SP500 SP2  
 WHERE SP2.T >= ALL   
 (SELECT SP3.T  
 FROM SP500 SP3)) Last); 

 
Step 5: Create a learning event and  

 then execute the event   
 construct to learn the   
 parameters. 

 
CREATE EVENT 
LearnMarketBottomParameter ( 

LEARN Para PR 
FOR MAXIMIZE E.Percent 
WITH SPD.Value < PR.p1 AND 
CG.Index < PR.p2 AND 
CCD.Value < PR.p3 AND 

ISM.Index < PR.p4 AND 
NLCD.Value > PR.p5 
FROM SPD, CG, CCD, ISM,  
NLCD, Earning E 
WHERE SPD.T = CG.T AND 
CG.T = CCD.T AND CCD.T = 
ISM.T AND ISM.T = NLCD.T 
AND NLCD.T = E.T;) 

 
EXECUTE 
LearnMarketBottomParameter; 

 
When the event “LearnMarketBottomParameter” 

is executed, the command “LEARN” will call for the 
Checkpoint algorithm to solve the corresponding 
EQPE problem and will put its solution in the Para 
table, where all parameters, e.g., p1, p2, p3, p4, and p5 
are instantiated with optimal values. 

6 CONCLUSIONS AND FUTURE 
WORK 

To the best of our knowledge, this is the first paper 
to propose a service framework for multivariate time 
series analytics that provides model definition, 
querying, parameter learning, model evaluation, 
monitoring, and decision recommendation over 
multivariate time series data. The parameter learning 
services combine the strengths of both domain-
knowledge-based and formal-learning-based 
approaches for maximizing utility over multivariate 
time series. It includes a mathematical model and a 
learning algorithm for solving Expert Query 
Parametric Estimation problems. Using the 
framework, we conduct a preliminary experiment in 
the financial domain to demonstrate that our model 
and algorithm are more effective and produce results 
that are superior to the two approaches mentioned 
above. We also develop MTSA data model and 
query language for the services of querying, 
monitoring, and parameter learning. There are still 
many open research questions, for example, what 
models can capture different types of events and 
how those events impact the services that the 
framework provides. 
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APPENDIX 

Claim 1 - Given the conjunctions of inequality 
constraints, S1(t) op1 p1 ∧ S2(t) op2 p2 ∧ … ∧ Sk(t) opk 
pk and the two time points t', t such that 0 ≤ t' < t, t' ≻ t if and only if S1(t') op1 S1(t) ∧ S2(t') op2 S2(t) ∧ … ∧ Sk(t') opk Sk(t). 
 

Proof:  
Without loss of generality, we assume that opi = 

“≤”, for all 1 ≤ i ≤ k. It is because “≥” can be 
replaced with ≤ by changing a corresponding time 
series Si(t) to - Si(t). For opi = “=”, we can use the 
conjunction with both ≥ and ≤.  

 
If Direction:   
Assume that S1(t') ≤ S1(t) ∧ S2(t') ≤ S2(t) ∧ … ∧ 

Sk(t') ≤ Sk(t). For any (p1, p2, …, pk) ∈ Rk
 and every i 

= 1, 2, …, k, if S1(t) ≤ p1, then S1(t') ≤ p1 because 
S1(t') ≤ S1(t). Therefore, S1(t) ≤ p1 ∧ S2(t) ≤ p2 ∧ … ∧ 
Sk(t) ≤ pk → S1(t') ≤ p1 ∧ S2(t') ≤ p2 ∧ … ∧ Sk(t') ≤ pk 
and then t' ≻ t. 

 
Only If Direction: 
Assume that t' ≻ t. Then S1(t) ≤ p1 ∧ S2(t) ≤ p2 ∧ 

… ∧ Sk(t) ≤ pk → S1(t') ≤ p1 ∧ S2(t') ≤ p2 ∧ … ∧ Sk(t') 
≤ pk. Therefore, for any (p1, p2, …, pk) ∈ Rk

 and 
every i = 1, 2, …, k, we have Si(t) ≤ pi → Si(t') ≤ pi. 

 
Proof of Theorem 1: The Checkpoint algorithm 

correctly solves the EQPE problem, i.e., if argmax 
O(p1, p2, p3, p4, p5), where O is the objective 
function of the EQPE problem.  

The time complexity is O(kNlogN), where k is 
the number of time series and N is the size of the 
learning data set. 

Proof: To prove the correctness of the algorithm 
if it is sufficient to show Claim 2: The Non-
Dominance test in STEP 2 of the Checkpoint 
Algorithm is satisfied for the time point t if and only 
if there does not exist t' that dominates t, where 0 ≤ t' 
< t. 

We prove it by induction on t, where 1 ≤ t ≤ N. 
For t = 1, Tkd = ∅ and t = 1 is not dominated; 
therefore, the “if and only if” condition holds. 
Assuming the correctness for 1, 2, …, t-1; it follows 
the STEP 2 of the algorithm that Tkd at point t 
contains all non-dominated time points t', where t' ≤ 
t - 1. 

 
 
 
 

If Direction: 
The IF part of Claim 2 is straightforward since if 

t is not dominated by an earlier time point t', such 
point cannot appear on the Tkd tree; therefore, the 
Non-Dominance Test must be satisfied by Claim 1. 

 
Only If Direction: 
For the ONLY IF part of the Claim 2, assume 

that the Non-Dominance test in STEP 2 of the 
algorithm is satisfied. Then there does not exist the 
time point t' on Tkd for which (S1(t'), S2(t'), …, Sk(t')) ∈ [S1(t), ∞) x [S2(t), ∞) x … x [Sk(t), ∞), where 0 ≤ t' 
< t. Assume that Tkd at time t contains the time 
points ݐଵ < ଶݐ < ⋯ < ݐ  and assume, by 
contradiction, that there exists t' that dominates t, t' ≻ t, where 0 ≤ t' < t. Clearly, t' is not one of ݐଵ < ଶݐ < ⋯ < ݐ  because they do not dominate t 
by the induction hypothesis. Because t' was not 
added to the Tkd tree and the induction hypothesis, ݐ ≻ ݐ ′ for some j = 1, 2, …, m. From the 
contradiction assumption t' ≻ t and the transitivity of ≻, it follows that ݐ ≻ (ݐ)Thus, by Claim 1, ଵܵ .ݐ ≤ ଵܵ(ݐ) ∧ ܵଶ(ݐ) ≤ ܵଶ(ݐ) ∧ ⋯∧ ܵ(ݐ) ≤ܵ(ݐ) which contradicts the fact that the Non-
dominance test in STEP 2 was satisfied for t. This 
completes the proof of Claim 2 and of the 
correctness of the algorithm. 

 
Time Complexity: The algorithm performs N 

iterations in STEP 2, spending time O(klogN) using 
the Tkd algorithm (Bentley, 1975 & 1979) for the Tkd 
range query in Non-Dominance Test. Thus the 
overall complexity is O(kNlogN). 
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