
RESEARCH ON COMPONENT COMPOSITION BASED ON
FEATURE MODEL

Lirong Xiong1,2, Zibin Niu2

1College of Computer Science and Technology, Zhejiang University, HangZhou, China
2College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China

Jing Fan
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China

Keywords: Component semantics, Trustworthiness, Component composition, Feature meta-model, Credit rating.

Abstract: Traditional component description methods lack sufficient semantic information. It is difficult for users to
find suitable components to match their requirements. And it is also difficult in doing automatic
composition and verification of components. Furthermore, the component trustworthiness is an important
factor that must be considered during component composition process. Feature-Oriented Domain Analysis
(FODA) that uses features and relations between features to describe the problem domain can provide
necessary supports to component composition. This paper focuses on component functional semantics and
component trustworthiness. A feature meta-model is proposed to provide sufficient semantic information,
and trustworthiness is taken into account in the feature meta-model. Based on feature meta-model, it
presents the component composition algorithm. Finally, an application of the approach in the credit
evaluation domain is presented.

1 INTRODUCTION

The technology of software reuse is one of hotspots
in the field of computer software development.
Software Product Line (SPL) is one of the successful
approaches to achieve large scale software reuse
(Yuqin Lee, 2006). SPL is first introduced by SEI of
Carnegie Mellon University (CMU/SEI) that gets
the idea from product line of traditional
manufacturing. The procedure of SPL is divided into
two stages: domain engineering and application
engineering. CMU/SEI has established FODA (Kyo
C Kang, 1990) method which introduces feature and
feature model in the stage of domain engineering in
1990. Now, the concept of feature model has been
widely adopted in domain requirements capturing
and specifying (Xin Peng, Wenyun Zhao, Yunjiao
Xue and Yijian Wu, 2006). Feature model provides
necessary supports for component composition by
using features and relations between features to
describe the problem space in specific domain.

The main challenge of component composition is
to judge the usefulness of components. Functional

semantics of a component is an important factor for
users to understand and judge the usefulness (Xin
Peng, Wenyun Zhao and Leqiu Qian, 2006). So it is
necessary to give the definition of component
functional semantics. Traditional component
description methods lack of sufficient semantic
information. For this reason, it is difficult for users
to find suitable components to meet their
requirements. And automatic composition and
validation of components still are challenges, while
the research of component semantics based on
FODA has attracted lots of attentions. The structure
of component semantics is described from three
aspects: domain field, definition field and context
field in domain analysis (JIA Yu and GU Yu-qing,
2002.). However, this approach is abstract and it is
hard to go into operation. Peng Xin et al (Xin Peng,
Wenyun Zhao and Leqiu Qian, 2006) present
component semantics and they construct semantic
composition algorithm based on a feature meta-
model, while the feature meta-model ignores
dependency relations between features. Haining Yao
and Letha Etzkorn (Haining Yao, 2004) focus on

214 Xiong L., Niu Z. and Fan J..
RESEARCH ON COMPONENT COMPOSITION BASED ON FEATURE MODEL.
DOI: 10.5220/0003484302140222
In Proceedings of the 13th International Conference on Enterprise Information Systems (ICEIS-2011), pages 214-222
ISBN: 978-989-8425-55-3
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

how to classify and retrieve components based on
component semantics, but they ignore information
for component composition.

In the stage of application engineering, the
component trustworthiness has a very strong effect
on component composition. Because the
trustworthiness of Component-Based System (CBS)
is depended on the component trustworthiness.
Recent years, trustworthiness has attracted
increasing attentions among researchers. But most
researchers focus their study on measurement and
guarantee of component trustworthiness in
application engineering. Domain analysis is the first
step in software product line and an essential activity
for successful reuse. And features are viewed as
first-class objects throughout the software life cycle
and across the problem and solution domain
(Carlton, 1999). It is necessary to consider
trustworthiness in feature modelling of domain
analysis.

This paper presents feature meta-model based on
functional semantics and trustworthiness. This meta-
model provides sufficient semantics information and
takes trustworthiness into account. On the basis of
feature meta-model, this paper describes the relevant
definition of component semantics and the algorithm
of component composition. Finally, we apply our
approach in credit rating domain.

The remainder of the paper is organized as
follows: Section 2 presents a feature meta-model
which analyzes feature dependence based on
functional semantics and discusses component
trustworthiness from many aspects. Section 3
defines component semantics, provides a component
composition algorithm based on functional
semantics, and introduces the component
composition process. Section 4 illustrates and
analyses our approach by an example of credit rating
domain. Section 5 draws a conclusion and some
suggestions for future work.

2 FEATURE META-MODEL
BASED ON FUNCTIONAL
SEMANTICS AND
COMPONENT
TRUSTWORTHINESS

Domain analysis is the basis of component
composition. Feature modelling as the mainstream
method in domain analysis provides good supports
for the component composition.

2.1 Non-Functional Attribute in
Feature Meta-Model

A feature is a prominent or distinctive and user-
visible aspect, quality, or distinctive characteristic of
a software system or systems (Michael, 2010). The
attributes of a feature are divided into non-functional
ones and functional ones. Non-functional attributes
describe the characteristics of a feature, such as the
feature name and feature description. Functional
attributes reflect the functional dependencies of a
feature with other features. For example, one feature
requests some data provided by another feature. So
there is a dependency named HasDataDep between
the two features. In Figure 1, the non-functional
attributes of a feature consist of Name, Description,
Facet, BindingTime, BindingState, etc.
Name: This attribute is the name of a feature. It is
the unique identifier of a feature. The type of Name
is a string.
Description: This attribute is the description of a
feature. It is a brief description of a feature,
including function and application domain of the
feature. The type of Description is a string.
Mandatory: This attribute denotes whether a feature
is mandatory or not. The range of Mandatory is
Boolean type. The value“True”means this feature is
mandatory, while the value “False”means this
feature is optional.
BindingTime: This attribute presents the time when
a feature is bound. The range of BindingTime is
Time. Several common types of Time include
CompileTime, InstallTime, LoadTime, RunTime.
Take CompileTime for example, CompileTime
means the feature is bound during the program
compiling phase.
BindingState: This attribute presents the binding
status of a feature. The range of BindingState is
State. Three kinds of State are distinguished as
follows: Undecided, Bound, and Removed.
Facet: This attribute describes a feature from
different perspectives, viewpoints and dimensions. It
provides precise and detailed description of a
feature. The range of Facet is Term. A facet maps a
number of terms which make up a term space.
Map: This attribute defines the mapping relation
between features and components. Usually, there
may be several components contributing to a feature.

2.2 Functional Semantics in Feature
Meta-Model

A feature is often considered as a set of tight-related

RESEARCH ON COMPONENT COMPOSITION BASED ON FEATURE MODEL

215

requirements. Therefore a feature can be
decomposed into small unit features and also have
relations with other features. The relation between
features is reflected by feature dependencies.
Kwanwoo Lee and K.C.Kang (Kwanwoo Lee and
Kyo C. Kang, 2004) analyze feature dependencies
that are useful in the design of reusable and
adaptable product line components and extend the
feature model. They present design guidelines based
on the extended model. Although several common
types of feature dependencies are given, they are not
sufficient for development of reusable and adaptable
product line assets.

Yuqin Lee et al (Yuqin Lee,2006) classify
feature dependencies in both static and dynamic
methods, and use directed graph to analyze domain
requirement dependencies. They emphasize on how
to obtain domain requirements easily and get
effective mapping between requirements
dependencies and feature dependencies.

This paper presents a component-composition
oriented approach. The approach analyzes feature
dependencies in feature meta-model. Several types
of feature dependencies are given as follows:
HasDecomposeDep,HasDataDep, HasCommunicate
Dep,HasSequenceDep,HasParallelDep, HasControl
Dep and HasConfigDep.

Figure 1: Feature meta-model based on functional
semantics and component trustworthiness.

HasDecomposeDep: If a parent feature is
decomposed into a number of child features, the
dependency relation of the parent feature and child
feature is named HasDecomposeDep.

HasDataDep: When one feature changes data which
is used by another feature, the dependency relation
of the two features is named HasDataDep.
HasCommunicateDep: If one feature sends a
message to another feature and notifies it to update
itself according to the message, the dependency
relation of the two features is named
HasCommunicateDep.
HasSequenceDep: If one feature must be active after
another feature, the dependency relation of the two
features is named HasSequenceDep. The feature
being active first is called precondition feature,
while the other is called postcondition feature.
HasParallelDep: If two or more features work
together to finish a task and must be synchronized
during their active period, the dependency relation
of the two features is named HasParallelDep.
HasControlDep: If one feature determines the status
or behavior of another feature, the dependency
relation of the two features is named
HasControlDep.
HasConfigDep: When one feature is bound
according to another feature, the dependency
relation of the two features is named HasConfigDep.

Among these features dependencies,
HasParallelDep is bidirectional and the others are
unidirectional. HasParallelDep describes two or
more features that depend on each other and work
together to finish a task.

2.3 Trustworthiness in Feature
Meta-Model

A trusted component is a reusable software element
possessing specified and guaranteed property
qualities. The component trustworthiness includes
all the quality attributes (GUO Shu-Hang, 2007). In
2003, Bertrand Meyer (Bertrand Meyer, 2003)
brought forward a framework for a component
quality model which is called “ABCDE”. “A” stands
for acceptance, “B” for behaviour, “C” for
constraints, “D” for design, and “E” for extension.

The ISO/IEC 9126 standard (GB／T 16260. ISO
／IEC 9126, 2003) is a general model to specify and
evaluate the component quality from different
perspectives. This model includes two parts. The
first part defines both internal and external
characteristics. The second part defines quality in
use characteristics. Based on “ABCDE” and
ISO/IEC component quality models, we adopt
component trustworthiness in our component-
composition oriented feature meta-model.
Component trustworthiness includes 8 aspects:

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

216

Functionality, Reusability, Security, Reliability,
Usability, Efficiency, Maintainability, and
Portability.

In the feature meta-model, two new non-
functional attributes are adopted named Retru and
SerTru.
Retru: This attribute defines trustworthiness a
feature requires.
SerTru: This attribute defines trustworthiness a
feature provides.

The range of Retru and SerTru is
Trustworthiness. Trustworthiness has two attributes
which is called Weight and Priority. These
attributes are used to guide the development and
composition of reusable components.

As to component development, trusted
components are very important for trusted CBS.
Component developers try to develop trusted
components according to requirements of
trustworthiness weight and trustworthiness priority.
For example, in Large-scale real-time 3D game
system, the painting and rendering component must
have high efficiency to meet the players’ needs of
high speed. So efficiency of trustworthiness has a
heavy weight and a high priority. From this way,
component developers’ focus is to solve the
efficiency of painting and rendering components.

As to component composition, users try to find
available trusted components using trustworthiness
weight and priority as selection criteria. For
instance, when developing E-commerce systems, for
those same functional semantic components,
security is the most important indicator. Components
with high security are preferred.

Because ontology has good presentation skill and
reasoning ability, it has been widely adopted in
domain knowledge modelling. In this paper, we
adopt ontology language (OWL) as the definition
foundation of the feature meta-model. Figure 1
shows the feature meta-model we proposed.

In Figure 1, Feature, Time, State, Term and
Trustworthiness are defined as owl
Class(owl:Class). BindingTime, BindingState, Facet,
ReqTru and SerTru are defined as owl
ObjectProperty(owl:ObjectProperty), range
(rdfs:range) of which is owl Class(owl:Class).
Name, Description and Mandatory are defined as
owl DataProperty (owl: DataProperty),
range(rdfs:range) of which is datatype(rdf:datatype).

3 COMPONENT COMPOSITION
BASED ON FEATURE
META-MODEL

3.1 Component Semantics

In order to narrow the gap between the problem
domain and the solution domain, an explicit and
formal mapping must be used for consistency
checking and automatic composition (Tijs, 2007.). In
the above feature meta-model ， non-functional
property information of feature is presented,
including Name, Description, Facet, BindingTime,
BindingState, etc. The functional dependencies
between features consist of HasDecomposeDep,
HasDataDep, HasCommunicateDep,
HasSequenceDep, HasParallelDep, HasControlDep
and HasConfigDep. Base on the feature meta-model,
our approach is applied for component composition
on two accounts: first, features are mapped to
components (artifacts), second, we regard feature
dependencies as the functional dependencies
between components(or artifacts) and component
trustworthiness is an important factor in the process
of component composition.

Definition 1: Set of feature dependencies.
FeatureDepSet={HasDecomposeDep,HasDataDe

p,HasCommunicateDep,HasSequenceDep,HasParall
elDep,HasControlDep,HasConfigDep }

If FeatureA is dependent on FeatureB, it is
recorded as (FeatureA) HasDep (FeatureB) where
HasDep belongs to FeatureDepSet,. Here, FeatureA
is subject, and FeatureB is object.

Definition 2: Mapping between feature and
component.

Figure 2: The mapping between features and components.

RESEARCH ON COMPONENT COMPOSITION BASED ON FEATURE MODEL

217

The expression “CompA.Feature” maps a
component “CompA” to a feature “Feature” in
feature meta-model.

The equation “CompA.Feature=CompB.Feature”
means that components “CompA and CompB” are
mapped to the same feature in the feature meta-
model.

As shown in Figure 2, if (CompA.Feature)
HasDep (CompB.Feature), we can get (CompA)
HasDep (CompB).

Considering trustworthiness, if CompA requires
function provided by CompB, the trustworthiness
CompA requires is denoted as
(CompA)ReqTru(CompB). Meanwhile, the
trustworthiness which is provided by CompB, is
denoted as (CompB)SerTru(CompA).

Definition 3: Component semantic.
Component Semantic::=<ZDDepSet,BDDepSet,

ReqTruSet, SerTruSet >
Take a component named CompA for example,

The details of each set are given below.
ZDDepSet: This set defines a relationship that a

component initiatively requires other components.
This relationship is reflected by the features that
components map to.

CompA.ZDDepSet={(CompX.Feature)HasDep(
CompY. Feature)|CompX=CompA,
HasDep� FeatureDepSet };

BDDepSet: This set defines a relationship that a
component is required passively by other
components. This relationship is also reflected by
the features that components map to.

CompA.BDDepSet={(CompX.Feature)HasDep(
CompY. Feature)|CompY=CompA, HasDep�
FeatureDepSet};

ReqTruSet: When a component requires other
components, this set defines the value set of
trustworthiness that a component requires other
components.

CompA.ReqTruSet={(CompX)ReqTru(CompY)
|(CompX.Feature)HasDep(CompY.Feature)� Comp
A.ZDDepSet};

SerTruSet: When a component is required by
other components, this set defines the value set of
trustworthiness that a component is required by
other components,

CompA.SerTruSet={(CompX)SerTru(CompY)|(
CompX. Feature)HasDep(CompY.Feature)�
CompA.BDDepSet }

The inferences from the above definitions are as
follows:

1. The sufficient and necessary condition for
CompA to be dependent on CompB is CompA.
ZDDepSet∩CompB. BDDepSet≠ ∅ ;

2. The sufficient and necessary condition of
meeting requirement of trustworthiness is
(CompA)ReqTru(CompB)≤(CompB)SerTru(Comp
A).

(CompA) ReqTru(CompB) ≤ (CompB)
SerTru(CompA) is an abstract expression, which
means the trustworthiness CompB provides is higher
than that CompA requires.

3.2 Component Composition based on
Component Semantics

In product line engineering, automatic configuration
of product line instances still remains a challenge
(Don, 2006). The whole process of component
composition can be decomposed into a series of
chain processes. Two small granular components are
combined to be a big granular component. Then this
big granular component and another component are
combined to be a bigger granular component. In this
iterative process, the software system is developed.

Figure 3: Composition algorithm based on component
semantics.

In figure 3, the process of component
composition goes as follows:

1. For two components named A and B, if
A.ZDDepSet∩B.BDDepSet≠ ∅ , we can draw a
conclusion that A is dependent on B. Then go to
next step. Else, go to step 6.

2. The functions a component provides is
reflected by its interfaces, including parameters,
return types and exceptions etc. Start to match
component interfaces. If the matching succeeds, go

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

218

to next step. Else, go to step 6.
3. Component runtime environment consists of

operating platform and application domain etc. Start
to match component runtime environment. If the
matching succeeds, go to next step. Else, go to step
6.

4. If (A)ReqTru(B)≤(B)SerTru(A),go to next
step. Else, go to step 6.

5. If the matching succeeds in other aspects, A
and B are combined to form a new component
named AB, and component AB’s semantic is as
below.

AB.ZDDepSet=A.ZDDepSet� B.ZDDepSet-
(A.ZDDepSet ∩B.BDDepSet);

AB.BDDepSet=A.BDDepSet� B.BDDepSet-
A.ZDDepSet∩B.BDDepSet);

AB.ReqTruSet=A.ReqTruSet� B.ReqTruSet-
((A)ReqTru (B));

AB.SerTruSet=A.SerTruSet� B.SerTruSet-
((B)SerTru (A)).

The composition succeeds, go to step 7.
6. The matching fails.
7. End.

3.3 Component Composition based on
Component Semantics

Figure 4 shows the component composition process
based on feature model. Firstly, based on domain
knowledge, the feature model of the specific domain
is obtained by refining features and analyzing
functional dependencies of features. Then based on
feature model, the ontology knowledge depository is
constructed and a serial of components are
developed by component developers during domain
application stage. Components are notated, managed
and organized in component library. Then suitable
components can be easily retrieved to composite
compound component based on component semantic
information and trustworthiness calculation.

As to the calculation of trustworthiness, the
indicators of trustworthiness have great ambiguity
and fuzziness, so there are no uniform and standard
methods or models to calculate component
trustworthiness. It is impossible to give an absolute
grade or value to indicate the trustworthiness of a
component. Based on the evaluation principles,
several evaluation models and approaches are
proposed to measure the trustworthiness of
component, such as neural network, fuzzy analytic
hierarchy process, fuzzy multiple criteria decision
making.

For those components that can complete the
same task, the most suitable component is selected

Figure 4: The component composition process based on
feature model.

according to component’s trustworthiness. Finally,
the users composite a system based on component.

4 COMPONENT COMPOSITION
IN CREDIT RATING DOMAIN

The above approach of feature modeling and
component compositing method is applied in the
design and realization of credit rating system. With
rapid economic development, credit rating has
become more and more important in our life. And
nowadays, software systems should be much more
flexible to accommodate the frequent changes of
user requirements and operating environments
(Sheng-Xiang Zou, 2005). In order to promote
software reusability, improve software efficiency
and quality, it is necessary to manage and organize
the product line assets of credit rating domain.

First, a feature model of credit rating domain is
obtained after domain analysis. In Figure 5, the

feature dependencies in the credit rating domain are
presented. There may be two or more types of

feature dependencies between two features, so two
or more feature dependencies are needed to describe

feature relationships. In order to simplify the

RESEARCH ON COMPONENT COMPOSITION BASED ON FEATURE MODEL

219

Figure 5: Feature model of credit rating domain.

relationship between features, we use only one key
feature dependency.

Feature-oriented domain analysis is a time-
consuming process. It is usually difficult to obtain
complete and accurate feature model because of the
complexity of feature dependencies. So, we simplify
the feature models to get high efficiency.

Figure 6: Component Library of credit rating domain.

After developing a serial of components based
on domain feature model, we have developed a
component library to manage and organize these
components, as shown in figure 6. The process of
component composition is described briefly. Take
Comp_DataPreprocess for example, according to

ontology knowledge repository and composition
algorithm, we easily draw this conclusion, as shown
in Table 1.

Table 1: The functional dependencies of
Comp_DataPreprocess.

Subject HasDep� Feature-
DepSet

Object

Comp_Data-
Preprocess HasControlDep Comp_Rating-

Object
Comp_Data-
Preprocess HasDecomposeDep Comp_Data-

Analysis
Comp_Data-
Preprocess HasDecomposeDep Comp_Data-

Selection
Comp_Data-
Preprocess HasDecomposeDep Comp_Data-

Quantization
Comp_Credit-
RatingService HasDecomposeDep Comp_Data-

Preprocess
Comp_Rating-
Approach

HasDataDep,
HasSequenceDep

Comp_Data-
Preprocess

Comp_Rating-
Model

HasDataDep,
HasSequenceDep

Comp_Data-
Preprocess

When the interface and runtime environment
between components match successfully, we decide
to choose suitable components in a set of
components which have the same functions. One
example shows as following.

Assuming component A and B are similar
components which implement the same feature
DataQuantization. The expression is A.Feature=
B.Feature.

Table 2: The trustworthiness information of A and B.

 A B
Functionality 0.9 0.8
Reusability 0.7 0.8

Security 0.6 0.6
Reliability 0.8 0.9
Usability 0.7 0.6

Efficiency 0.7 0.9
Maintainability 0.8 0.6

Portability 0.5 0.7

Assuming the maximum value of trustworthiness
is 1.0 and the minimum value of trustworthiness is 0.
If the trustworthiness of a component is measured to
be 1.0, it is absolutely trusted. If the trustworthiness
of a component is measured to be 0.0, it is not
trusted at all. Table 2 shows trustworthiness
information of component A and B.

For components that quantize data, their
Functionality and Efficiency are more important. So
we give Functionality and efficiency heavy weight.
Weight coefficient of the factors, in the order shown

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

220

as above table, is 30%, 10%, 5%, 10%, 10%, 20%,
10%, 5%.

The trustworthiness of A is
0.9*30%+0.7*10%+0.6*5%+0.8*10%+0.7*10%

+0.7*20%+0.8*10%+0.5*5%=0.765
The trustworthiness of B is
0.8*30%+0.8*10%+0.6*5%+0.9*10%+0.6*10%

+0.9*20%+0.6*10%+0.7*5%=0.775
Obviously, the trustworthiness of component B

is higher than that of component A (0.775>0.765),
we tend to choose B for composition.

In another way, the priority of the
trustworthiness factors is set as: Functionality,
Efficiency, Reusability, Reliability, Usability,
Maintainability, Security, and Portability.
Functionality is first priority. Functionality of A is
higher than that of B (0.9>0.8). In this condition, we
think A is more suitable component.

In order to get the result of credit rating, we need
to composite a serial of components. Figure 7 shows
the example that three component are combined to a
component that completes the task of credit rating.
These three components are named
Comp_RatingObject, Comp_DataPreprocess, and
Comp_RatigModel. Comp_RatingObject operates
the object of credit rating. Comp_DataPreprocess
preprocesses the data of credit rating.
Comp_RatigModel is a ratig model that calculates
the result of credit rating according to the credit data.

Figure 7: The example of component composition.

In figure 7, we input the credit rating object, the
credit rating data and the credit rating model. Figure
8 shows the result of credit rating

Figure 8: The result of credit rating.

5 CONCLUSIONS

This paper builds feature meta-model based on
functional semantics and credibility. This meta-
model provides sufficient semantics information and
take credibility into account. We introduce ontology
as a description basis of domain feature modeling so
as to achieve the formal description and automatic
reasoning. On the basis of feature element model,
the relevant definitions of component semantics and
component assembly algorithms are presented.
Finally, we adopt applications of credit rating
domain to conduct the research on feature modeling,
component composition, etc. The main research
works of this paper are as follows:

1. This paper analyzes the dependencies between
features and summarizes some functional semantics
dependencies such as decomposition dependency,
data dependency, communication dependency from
the perspective of functional dependence. These
functional semantics can be transited to component
functional semantics.

2. This paper introduces trustworthiness into
feature meta- model. We refine trustworthiness from
Functionality, Reusability, Security, Reliability,
Usability, Efficiency, Maintainability, and
Portability. And then we can obtain trustworthiness
parameter and set weight and priority for these
trustworthiness factors. Thus, trustworthiness is
regarded as an important factor to guide component
development and composition.

3. Based on feature element model, this paper
defines component semantics. Then, component
composition algorithm based on component
semantics is presented. This algorithm emphasizes
on how to judge component reusability and consider
credibility.

4. This paper takes credit rating domain as
application example, and conduct corresponding
feature modeling and component composition in this
domain. And it proves that our method is feasible
and effective.

Component composition is a complex process of
multi-dimensional matching. When the matching
fails, it’s impossible to composite components. On
this condition, we need to modify the component on
some aspects. Based on the above work, we will
research on how to adapt component when the
matching fails.

ACKNOWLEDGEMENTS

This paper is supported by the subproject (No. 2-1)

RESEARCH ON COMPONENT COMPOSITION BASED ON FEATURE MODEL

221

of the key Science and Technology innovation team
project (2009R50009), Zhejiang province.

REFERENCES

Yuqin Lee, Chuanyao Yang, Chongxiang Zhu and
Wenyun Zhao, 2006. “An Approach to Managing
Feature Dependencies for Product Releasing in
Software Product Lines,” Lecture Notes in Computer
Science, vol.4039, pp.127 - 141.

Kyo C Kang, Sholom G Cohen, and James A Hess, 1990.
“Feature-oriented domain analysis feasibility study,”
SEI Technical Report CMU/SEI-90-TR- 21.

Xin Peng, Wenyun Zhao, Yunjiao Xue and Yijian Wu,
2006. “Ontology-Based Feature Modeling and
Application-Oriented Tailoring,” Lecture Notes in
Computer Science, vol.4039, pp.87 - 100.

Xin Peng, Wenyun Zhao and Leqiu Qian, 2006. “Semantic
Representation and Composition of Business
Components Based on Domain Feature Ontology,”
ACTA ELECTRONICA SINICA. vol.34, pp.2473 -
2477.

JIA Yu and GU Yu-qing, 2002. “Domain Feature Space
Based Semantic Representation of Component,” Ruan
Jian Xue Bao (J. Softw.), vol.13, pp. 37 - 49. Jan.

Haining Yao and Letha Etzkorn, 2004. “Towards a
semantic-based approach for software reusable
component classification and retrieval,” ACM-SE 42
Proceedings of the 42nd annual Southeast regional
conference, pp.110 - 115.

Carlton Reid Turner, Alfonso Fuggetta and Luigi Lavazza,
1999. “A conceptual basis for feature engineering,”
Journal of Systems and Software, vol. 49, pp.3-15.

Michael Eichberg, Karl Klose, Ralf Mitschke and Mira
Mezini, 2010. “Component Composition Using
Feature Models,”Lecture Notes in Computer Science,
vol. 6092, pp.200 - 215.

Kwanwoo Lee and Kyo C. Kang, 2004. “Feature
Dependency Analysis for Product Line Component
Design,” Lecture Notes in Computer Science,
vol.3107, pp. 69-85.

GUO Shu-Hang, LAN Yu-Qing and JIN Mao-Zhong,
2007. “Some Issues about Trusted Components
Research,” Computer Science, vol.34, pp.243 - 246.

Bertrand Meyer, 2003. “The grand challenge of trusted
components,” Software Engineering Proceedings
25th-Interuational Conference, vol.3, pp. 660 - 667.

GB ／ T 16260. ISO ／ IEC 9126, 2003. “Software
engineering-Product quality,”.

Tijs van der Storm, 2007. "Generic Feature-Based
Software Composition," Computer Science, vol.4829,
pp.66 - 80.

Don Batory, David Benavides and Antonio Ruiz-Cortes,
2006. “Automated analyses of feature models:
Challenges ahead,” Communications of the ACM -
Software product line,vol.49, pp.45 - 47.

Sheng-Xiang Zou, Wei Zhang, Hai-Yan Zhao and Hong
Mei, 2005. “Modeling variability in software product

family,” Ruan Jian Xue Bao (J. Softw.). vol.16, pp.
311 - 316. Jan.

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

222

