
FORMATIVE AND SUMMATIVE ASSESSMENT
OF CLASS DIAGRAMS

Development and Evaluation of a Prototype

Narasimha Bolloju, Ken W. K. Lee
Department of Information Systems, City University of Hong Kong, Kowloon Tong, Hong Kong

Probir K. Banerjee
Department of Operations and MIS, University of Malaya, 50603 Kuala Lumpur, Malaysia

Keywords: Computer supported assessment, Assessment of diagrams, Prototype, Class diagrams.

Abstract: The computer-based assessment of student outputs in the field of software engineering is an area of interest
amongst instructors and researchers. However, as previous efforts in this area have been mostly directed
toward summative assessment, the formative feedback required for student learning has not received
sufficient attention. This paper presents an approach for the formative and summative assessment of class
diagrams used in systems development and reports the development, implementation and evaluation of a
prototype assessment tool. The results from this empirical study demonstrate that the tool successfully
provides formative feedback during the preparation of class diagrams, which helps to enhance student
learning, and summative feedback that can be used as a proxy for manual summative assessment.

1 INTRODUCTION

Large class sizes increase the workload of instructors,
thereby adding to the drudgery and the potential for
inconsistency in the manual assessment of work
submitted by students. To combat this problem, a
range of computer-based assessment (CBA) support
tools have been developed that grade student
submitted work by matching it with model solutions
or the correct answers. For example, one CBA tool
has been developed to support interactive practice
with electrical circuit diagrams and the grading of
student work by comparing the submitted responses
with the correct solutions (Smaill, 2005). In the field
of software engineering, CBA tools such as
CourseMarker (Foxley, Higgins, Hegazy,
Symeonidis, & Tsintsifas, 2001a; Foxley, Higgins,
Symeonidis, & Tsintsifas, 2001b) and DATsys
(Tsintsifas, 2002) have been developed to assess
computer programming skills. These CBA tools
mostly provide summative feedback to students in
terms of how well a student’s response matches a
model answer. The use of formative feedback to
enhance learning through CBA tools was not

explored in these earlier models. However, a recent
study shows evidence of an attempt to generate
formative feedback through a CBA tool named
AutoLEP (Tiantian, Xiaohong, Peijun, Yuying, &
Kuanquan, 2010). Developed for use in computer
programming courses, this tool evaluates whether or
not students’ computer programs meets the required
specification (summative assessment) and also
dynamically tests the syntax and structure of the
programs and provides interactive help (formative
feedback) to improve students’ learning experiences
in programming. Thus, there is a need to explore in
greater detail the potential of CBA tools to provide
formative feedback to students.

Existing CBA tools also have limitations in that
they are useful mostly in assessing fixed-response
learning outputs where students have to choose
answers from a pre-designated selection of
alternatives, such as multiple-choice questions, or
where the evaluation is carried out via a model
solution (e.g., Ali, Shukur, & Idris, 2007; Smith,
Thomas, & Waugh, 2004; Thomas, Waugh, &
Smith, 2005; Thomas, Waugh, & Smith, 2009). In
some problem domains and contexts, the answers
may be given in a free-response format where

402 Bolloju N., W. K. Lee K. and K. Banerjee P..
FORMATIVE AND SUMMATIVE ASSESSMENT OF CLASS DIAGRAMS - Development and Evaluation of a Prototype.
DOI: 10.5220/0003476504020410
In Proceedings of the 3rd International Conference on Computer Supported Education (ATTeL-2011), pages 402-410
ISBN: 978-989-8425-50-8
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

multiple solutions exist for the same problem. In such
situations, CBA becomes more complex because it
calls for more sophisticated algorithms compared to
those used in the evaluation of outputs in fixed-
response formats. Class diagrams are one example of
a situation where free-response format outputs may
be produced. The manual assessment of such
diagrams produced by students in large classes
becomes a challenge because there may be multiple
correct ways (free-response format) of modeling the
same problem. Apart from the excessive amounts of
time and effort required, the manual assessment of
such work is often error-prone, resulting in
inconsistent evaluation. These problems are
magnified when students attempt to model complex
real-life situations as the class diagrams invariably
become increasingly complex and the students need
support to guide them through the process. Thus, the
efficacy of CBA tools in providing formative
assessment during the development of students’ work
and summative assessment after the work is
submitted in free-response outputs, such as class
diagrams, is worthy of investigation.

We propose an approach of addressing the
formative and summative aspects of the computer-
based assessment of student’s work. We also develop
and validate a prototype CBA tool, named
Computerized Assessor for Class Diagrams (CACD),
to assist students in preparing class diagrams and
instructors in grading class diagrams submitted by
students for evaluation. In addition, we validate the
developed tool in terms of its efficacy in providing
formative and summative assessment in an example
situation where students develop class diagrams for a
system that manages subscriptions and editorials for a
small independent software journal.

The remainder of this paper is organized as
follows. In the next section, we discuss prior research
on existing approaches to designing CBA tools that
support software engineering education and their
limitations in providing summative and formative
support to users. Section 3 presents an overview and
discussion of the approach used in the design of our
prototype for supporting the summative and
formative assessment of students’ class diagrams.
Sections 4 and 5 outline the implementation and
validation of our prototype tool. The final section
concludes the paper and makes recommendations for
future research.

2 PRIOR RELATED WORK

In this section, we review prior research on approache

to providing formative and summative assessment
of class diagrams, entity-relationship diagrams, or
similar diagrams.

2.1 Formative Assessment

Most of the existing approaches used to support the
formative assessment of class diagrams or similar
diagrams directly or indirectly through CBA tools
can be categorized based on their functionality as
generation focused, guidance focused or critique
focused.

Generation focused approaches attempt to create
class diagrams from textual descriptions of system
requirements or through question-and-answer
mechanisms. Techniques such as natural language
processing and expert systems are employed in this
approach to translate requirements into conceptual
models (Kaindl, 2004, Overmyer, Lavoie, &
Rambow, 2001, Purao, 1998). For example, Wohed
(2000) discusses a computer prototype that uses a
natural language processing technique to develop a
conceptual object model based on user responses to
a sequence of six questions. In a web-based
prototype called APSARA, object-oriented designs
are created from requirement descriptions written in
natural language using heuristics and a patterns
database (Purao, 1998). RETH, another example of
such a tool, uses natural language processing to
generate associations and relations between objects
based on natural language definitions of classes
(Kaindl, 2004). Natural language processing is also
employed to extract words from a textual document
to generate a corresponding object model (Overmyer
et al. 2001). Because generation focused tools
transform a given set of inputs to an output form,
they provide little guidance or formative feedback to
help users in developing object models. Thus,
although the extensive automation built into the
generation focused approaches make them
attractive, they have drawbacks in terms of the lack
of mechanisms offered for generating formative
feedback.

Guidance focused approaches use practitioner-
oriented recommendations to develop object models
which are often in the form of guidelines for
identifying classes and relationships, naming and
presentation conventions, and the usage of analysis
patterns and frameworks (e.g., (Bolloju, 2004),
(Batra, 2005)). In some cases, this approach
involves customizing reusable frameworks to suit
the target environment (e.g., Hakala, Hautamaki,
Koskimies, Paakki, Viljamaa, & Viljamaa, 2001,
Morisio, Travassos, & Stark, 2000, Viljamaa, 2001).

FORMATIVE AND SUMMATIVE ASSESSMENT OF CLASS DIAGRAMS - Development and Evaluation of a
Prototype

403

Anthony and Batra (2002) describe a rule-based
expert system called CODASYS that guides database
designers by asking questions and restricts the search
space for novice users, thus reducing errors. (Purao,
Storey, & Han, 2003) present details of the
development and empirical evaluation of an
intelligent assistant which generates initial conceptual
designs for later refinement and incorporates learning
mechanisms for enhancing analysis pattern reuse.
Sugumaran and Storey (2006) use domain ontologies
to guide novice and experienced modelers in creating
complete and consistent database designs. Thus, the
guidance-focused approach has elements of formative
feedback that help to develop object models which
support a given set of the requirements. However,
while the guidance-focused approach provides an
exhaustive list of dos and don’ts, few of these
suggestions have been built into the supporting tools.
As a result, this approach offers limited benefits to
users in terms of developing quality object models.

The critique focused approach is aimed at
providing advice either during or after the
development of a conceptual model. For example, an
ArgoUML implementation of this approach
incorporates a set of critiquing features that aim to
address the cognitive needs of software designers by
using agents that continuously check an existing
model for potential problems and advise on areas of
improvement (Robbins & Redmiles, 1998; 2000).
Another of these approaches, which employs domain
ontologies for supporting database design, is helpful
in suggesting new entities and relationships and in
validating the data model (Sugumaran & Storey,
2002). Thus the critique focused approaches exhibit
certain elements of formative feedback that help in
the preparation of outputs. However, as with the
guidance focused approaches, the critique focused
approaches mostly provide broad sets of
recommendations in the form of lengthy checklists
that are of limited use in the development of class
diagrams.

In summary, the support of formative assessment
requires a combination of guidance and critique
focused approaches that are capable of analyzing
class diagrams as they are being created and
providing feedback on missing and invalid elements
based on given problem specifications.

2.2 Summative Assessment

In the area of summative assessment, some CBA
tools have been developed to assess computer
programming skills (Charman & Elmes, 1998)
(Rawles, Joy, & Evans, 2002); (Symeonidis, 2006).

One such CBA tool, named the CourseMarker CBA
system (Foxley et al. 2001a; 2001b), grades student-
produced programming exercises and also has the
potential to assess class diagrams through an
integrated system known as DATsys (Tsintsifas,
2002). The feasibility of automated assessment of
entity-relationship diagrams using an expert system
with domain specific inference rules has been
explored in relation to class diagrams (Smith et al.,
2004). A recent study has proposed the use of a
CASE tool for assessing class diagrams which uses
evaluation metrics and feedback mechanisms to
facilitate student learning, though there has been no
attempt to build and evaluate a prototype (Ali et al.,
2007).

Our review of prior research indicates that, while
aspects of the formative and summative assessment
of class diagrams or similar diagrams have received
attention and tools have been developed that address
aspects of both, no effort has been made to
investigate the feasibility of incorporating both
forms of assessment in a CBA tool. Elements of the
summative assessment of class diagrams and some
formative guidance during development are evident
in certain CBA tools. However, they have not been
fully developed and integrated in CASE based tools
to ensure the quality of the final output. Our review
also indicates that the existing CBA tools have
limitations in that they provide no means of
validating the outputs produced. Because the class
diagram development process is often interactive
and incremental, CBA tools must be able to provide
interactive feedback to help students understand
elements of the domain and their associations.
Furthermore, variations in the students’ solutions
must be able to be detected in relation to the model
solutions and the students’ given credit for
providing correct alternative solutions to the
problem. In the next section we discuss our
approach for developing such a CBA tool.

3 AN APPROACH FOR CLASS
DIAGRAM ASSESSMENT

We propose a two-phased approach to support the
formative and summative assessment of class
diagrams. The first phase uses a knowledge based or
expert system component to support formative
assessment of class diagrams targeted at providing
students with feedback as they prepare their
solutions. This interactive system component
analyzes the current version of a class diagram and
offers recommendations for improvements when the

CSEDU 2011 - 3rd International Conference on Computer Supported Education

404

student calls for such an assessment. The underlying
knowledge based system for this component validates
the classes, attributes and relationships presented in
the class diagram against requirements that are
specified in use case descriptions, and points out
missing and invalid elements by making use of the
system specifications. Thus, this component guides
the student towards achieving a complete solution to
the problem. First, the knowledge based component
returns a list of recommendations that may help in
improving the current version of a class diagram. The
student can then repeatedly ask for feedback on the
revised versions, as the tool does not restrict the
number of times that feedback can be called for.
When a student is satisfied with his/her class
diagram, he/she submits it for summative assessment.
This formative assessment component thus helps in
improving the quality of class diagrams in terms of
elements that are missing (completeness) and
elements that are not required or invalid (invalidity)
according to a given set of requirements.

The second component provides the functionality
for the summative assessment of the submitted class
diagram(s). It includes two components: a) an
automated component that assesses the final
submitted class diagram and assigns a grade after
comparing it to a model or expected solution, and b)
an interactive component that lists unmatched
elements to enable the instructor to determine
possible alternative, but correct representations of the
expected solution and to manually revise the grades
initially given by the tool. Manual refinement of the
initial assessment can be done by the instructor
whereby credit may be given for elements that the
tool identified as unmatched but which the instructor
determines to be a correct alternative representation
of the problem. Both assessment stages are integrated
into a single system so that the grader can initiate an
automated assessment and review the partial result in
the same environment.

The overall assessment process is depicted in
Figure 1 as an activity diagram with activities
corresponding to the instructor, student, CACD tool,
and a grader who can be different from the instructor.
The instructor sets the assessment task by preparing a
use case diagram and a set of use case descriptions,
and provides a correct diagram corresponding to the
problem. Each student prepares a draft class diagram
and invokes the formative assessment component for
feedback. Once satisfied with the revisions, which
have been made according to the recommendations
given by the tool, the student submits the final class
diagram for summative assessment. The summative
assessment component collects and processes all

student submissions using the correct or expected
class diagram, and reports the grades. A grader may
review any of the class diagrams submitted and
adjust the matches performed by the automated
assessment subcomponent. The system then
recalculates the grades for any manually adjusted
diagrams.

4 SYSTEM IMPLEMENTATION

This section describes the technical details and
implementation of the prototype system for
supporting formative and summative assessment.
The implementation of the proposed approach
includes: a) the extension of an existing CASE tool
for developing class diagrams, b) the identification
and representation of a knowledge base for the
diagnostic process, c) a mechanism for diagnosing a
class diagram, and d) a facility for scoring and
comparing class diagrams.

The formative assessment component is
implemented through the extension of an existing
UML CASE tool ArgoUML. This component
performs a diagnosis of the current diagram when
invoked to do so by the user. A windows-based
facility in the CBA tool allows the instructor to see
the recommendation in terms of missing and
unmatched elements in the student’s submitted work
generated as a result of the initial assessment by the
CBA tool. The display of feedback, presented in the
form of a table, is designed to be simple to follow
and yet facilitate critical thinking and analysis of
how the recommendations may be incorporated in
the revised version of the class diagrams.

In the typical usage of the system, the instructor
is required to prepare one use case diagram and
specify descriptions of the use cases present in the
diagram in terms of trigger, pre- and post-
conditions, and to describe the steps in the main and
alternate scenarios. The instructor then releases the
diagram as an ArgoUML project for the student to
complete. The student is expected to proceed
through the activities of reviewing the
recommendations, applying any relevant
recommendations to the class diagram and invoking
the formative assessment function, as long as the
recommendations provided by the system are
applicable, before submitting his/her work to the
tutor. This component uses natural language
processing techniques to extract relevant
information from the textual use case descriptions,
domain-independent heuristics and knowledge
collected from practitioner guidelines and analysis

FORMATIVE AND SUMMATIVE ASSESSMENT OF CLASS DIAGRAMS - Development and Evaluation of a
Prototype

405

patterns to analyze a given class diagram. The
diagnosis results are tabulated as a set of
recommendations for improvements in terms of
missing and invalid elements.

Stage 1 – Automated assessment: This assessment
component takes two inputs: a model solution as the
expected class diagram and a class diagram submitted
by a student.

Stage 2 – Incremental manual assessment support
component: This component helps in adjusting the
matchings performed by the stage 1 component.
Because it is often expected that multiple class
diagrams can be acceptable solutions, it is not
possible to recognize every element during the first
stage of automated assessment.

Figure 1: Integrated formative and summative assessment process.

CSEDU 2011 - 3rd International Conference on Computer Supported Education

406

5 RESULTS AND DISCUSSION

The prototype system, CACD, was used to assess
several class diagrams produced by undergraduate
students enrolled in a systems analysis and design
course at a major metropolitan university in Hong
Kong. During a two-hour lab session, the students
created class diagrams pertaining to a journal
publisher case study. The students were also
provided with a use case diagram containing six use
cases and associated descriptions to supplement the
case study. This exercise took place after the
students had been introduced to object-oriented
concepts and had a chance to practice class
diagramming skills using the ArgoUMl tool in a two
hour lab session.

During the first half of the lab session for the
case study, the students created a draft class
diagram, which they submitted by uploading into a
Blackboard assignment folder. During the second
half of the lab session, they utilized the formative
assessment component to receive feedback,
modified their work based on the feedback provided
and then uploaded the revised or final version of
their class diagram.

To demonstrate the utility of the prototype
system, we present results obtained from a detailed
analysis of 41 pairs of class diagrams submitted by
the students. As part of this analysis, each class
diagram was compared with the model solution by a
student helper after a pilot assessment of a small set
of diagrams by a research assistant and the student
helper. This process was supported by the
incremental manual assessment component that first
automatically matched elements in the student
solutions with the expected solutions. The assessor
then attempted to match unmatched elements while
looking for alternative representations.

Figure 2: Average numbers of required and invalid
elements in the class diagram pairs.

5.1 Effect of Formative Feedback

Figure 2 depicts the average numbers of required
and invalid elements found in the 44 class diagram
pairs. The values for the required elements indicate
the number of elements in the student solutions that
match with the expected solutions while accounting
for alternative representations, such as two classes in
a student’s solution mapping to one class in a
student’s solution and differently named or designed
classes or attributes. The values for invalid elements
indicate the number of elements in a student’s
solution that are not valid (i.e., out of scope
elements) with respect to the expected solution. All
the increases in the numbers of elements in the
second version compared to the first version were
found to be significant (p < 0.01).

The expected solution is required to contain 14
classes, 40 attributes and 13 relationships.
Comparing these numbers with the average numbers
found in the student solutions we conclude that the
second version of student solutions, on average,
contained only about half the required elements.
Contrary to our expectations, the numbers of invalid
elements identified also increased in the assessment
of the second version. Further analysis (discussed
below) was conducted to investigate the reasons for
this anomaly.

5.2 Quality of the Feedback Provided

To investigate the quality of the feedback provided
by the formative assessment component, further
analysis of the feedback provided was performed by
two student helpers who were given training on the
expected solution and its possible variations. A
research assistant and the student helpers studied
each feedback item and categorized it as either
‘useful’, ‘not useful’ or ‘may be’. They also
identified which feedback had actually been
incorporated into the revised version. We accounted
for the subjectivity in assigning feedback items to
different categories only after obtaining a
satisfactory inter-rater reliability with a small set of
class diagrams as part of the training process.

Table 1 lists the different types of feedback items
provided and the usefulness of those items for the
current version of class diagram. Based on these
results, we found that much of the feedback
provided was fairly useful, except for missing
relationships, and that a good percentage of
feedback items were assimilated and incorporated by
the students except for invalid classes and attributes.

FORMATIVE AND SUMMATIVE ASSESSMENT OF CLASS DIAGRAMS - Development and Evaluation of a
Prototype

407

Table 1: Quality of feedback provided and incorporated.

 % feedback
items per
class diagram
pair

% feedback
items
incorporated
from those
suggested

% feedback
items
considered
useful

% feedback
items
considered
not usefula

% feedback
items
considered
useful &
incorporated

% feedback
items
considered
NOT useful &
incorporated

Missing classes
2.50 31.82 65.45 34.55 48.61 7.89

Missing
attributes 1.00 31.82 70.45 29.55 45.16 7.69
Missing
relationships 17.84 0.51 2.04 97.96 25.00 6.37
Invalid classes 6.23 3.65 40.15 59.85 9.09 1.22
Invalid
attributes 23.25 4.11 40.86 49.76 10.05 3.54
Invalid
relationships 3.07 26.67 82.96 17.04 32.14 26.09

a values in this column exclude the recommendations that fall in the “may be” category.

5.3 Efficiency of the Formative and
Summative Assessment Processes

The prototype system was found to provide quick
formative assessment support directly through the
ArgoUML used for developing the class diagram.
On average, the tool took around 5 seconds to
analyze a draft class diagram and generate feedback
items. For the summative assessment, Stage 1
(automated assessment) was completed in a fraction
of a second for each class diagram and Stage 2
(manual incremental assessment) took around 4.4
minutes (std 2.32), compared to an average of 14.07
minutes (std 2.89) required to complete a manual
assessment without any tool support. The correlation
between the fully automated and manual incremental
assessments was also high (required elements 0.337,
p < 0.05 and invalid elements 0.484, p < 0.01),
pointing towards the efficiency of the assessment
process.

The overall support for summative assessment
was found to be more efficient than the manual
alternative and reasonably complete. Analysis of the
system-generated grades indicates that the
automated assessment results are acceptable for
rough grading purposes. The incremental manual
assessment was also found to be quite efficient and
uniform compared to the manual alternative. As a
result, student helpers or graduate assistants may be
able to perform this grading exercise with high
levels of accuracy and consistency.

In summary, the prototype system was found to
be efficient with regard to the time taken to match
the initial class diagram with the model solution and
to automatically assign a grade. The prototype

therefore has the potential to greatly reduce the
workload of instructors. The consistency of
evaluation, which was verified manually, also
ensures a high degree of uniformity of assessment
across the student population.

6 CONCLUSIONS

We have presented an approach for the formative
and summative assessment of class diagrams and
outlined the details of the development and
evaluation of a prototype system to support the
proposed approach. Instructors are capable of
benefiting from a reduced workload as a result of the
automated assessment carried out by the tool, which
also ensures that the students get due credit for
alternative correct representations that may differ
from model solutions. Students are capable of
benefiting from the feedback provided by the
prototype system to enhance their class
diagramming skills. We believe this research makes
an important contribution to the field of automated
assessment of student-produced free-response
outputs such as class diagrams. To our knowledge,
our prototype is the first of its kind in this domain to
provide integrated support for formative and
summative assessment. Thus, our research makes an
important contribution to the body of knowledge in
the field of computer based support for learning and
assessment.

A limitation of this research is that our empirical
analysis only provided an indirect measure of the
contribution the formative assessment component
made to student learning. More direct measures,

CSEDU 2011 - 3rd International Conference on Computer Supported Education

408

such as estimating student learning through a follow-
up test, could validate our claim for efficacy of the
formative assessment component included in the
prototype system. Another limitation, that is
attributable directly to the prototype system, is that
the students did not fully assimilate and use the
recommendations generated by the system in their
revised versions. Future versions of the prototype
may need to be developed that address these
observed limitations. On the other hand, the concept
used in this research may be used to develop CBA
tools that address a wide range of learning and
assessment activities.

ACKNOWLEDGEMENTS

The work described in this paper was substantially
supported by a grant from City University of Hong
Kong (Project No. 7008016).

REFERENCES

Ali, N. H., Shukur, Z., & Idris, S., 2007. A design of an
assessment system for UML class diagram (pp. 539-
546). Presented at the Fifth International Conference
on Computational Sceince and Applications, Kuala
Lumpur, Malaysia: IEEE Computer Society.

Antony, S. R., & Batra, D., 2002. CODASYS: a
consulting tool for novice database designers. SIGMIS
Database, 33(3), 54-68.

Batra, D., 2005. Conceptual Data Modeling Patterns:
Representation and Validation. Journal of Database
Management, 16(2), 84-106.

Bolloju, N., 2004. Improving the quality of business object
models using collaboration patterns. Communications
of the ACM, 47(7), 81-86.

Charman, D., & Elmes, A., 1998. Computer Based
Assessment (Volume 2): Case studies in Science and
Computing. Plymouth, UK: SEED Publications.

Foxley, E., Higgins, C., Hegazy, T., Symeonidis, P., &
Tsintsifas, A., 2001a. The CourseMaster CBA System:
improvements over Ceilidh. In Proc. of Intl. Computer
Assisted Assessment Conference.

Foxley, E., Higgins, C., Symeonidis, P., & Tsintsifas, A.,
2001b. The CourseMaster automated assessment
system - a next generation Ceilidh. In Computer
Assisted Assessment Workshop. Warwick, UK.

Hakala, M., Hautamaki, J., Koskimies, K., Paakki, J.,
Viljamaa, A., & Viljamaa, J., 2001. Annotating
Reusable Software Architectures with Specialization
Patterns. In Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (p. 171).
Washington, DC, USA: IEEE Computer Society.

Kaindl, H., 2004. Active tool support for requirements
engineering through RETH. In 12th IEEE

International Requirements Engineering Conference
(RE'04) (pp. 362-363). Kyoto, Japan: IEEE Computer
Society.

Morisio, M., Travassos, G. H., & Stark, M. E., 2000.
Extending UML to Support Domain Analysis. In
Proceedings of the 15th IEEE international conference
on Automated software engineering (p. 321).
Grenoble, France: IEEE Computer Society.

Overmyer, S. P., Lavoie, B., & Rambow, O., 2001.
Conceptual modeling through linguistic analysis using
LIDA. In Proceedings of the 23rd International
Conference on Software Engineering (pp. 401-410).
Toronto, Ontario, Canada: IEEE Computer Society.

Purao, S., 1998. APSARA: a tool to automate system
design via intelligent pattern retrieval and synthesis.
SIGMIS Database, 29(4), 45-57.

Purao, S., Storey, V. C., & Han, T., 2003. Improving
Analysis Pattern Reuse in Conceptual Design:
Augmenting Automated Processes with Supervised
Learning. Information Systems Research, 14(3), 269-
290.

Rawles, S., Joy, M., & Evans, M., 2002. Computer-
Assisted Assessment in Computer Science: Issues and
Software. University of Warwick. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.
1.1.19.1209.

Robbins, J. E., & Redmiles, D. F., 1998. Software
architecture critics in the Argo design environment.
Knowledge-Based Systems, 11(1), 47-60.

Robbins, J. E., & Redmiles, D. F., 2000. Cognitive
Support, UML Adherence, and XMI Interchange in
Argo/UML. Information and Software Technology,
42(2), 79-89.

Smaill, C., 2005. The implementation and evaluation of
OASIS: a web-based learning and assessment tool for
large classes. Education, IEEE Transactions on, 48(4),
658-663.

Smith, N., Thomas, P., & Waugh, K., 2004) Interpreting
imprecise diagrams. Diagrammatic Representation
and Inference, 239–241.

Sugumaran, V., & Storey, V. C., 2002. Ontologies for
conceptual modeling: their creation, use, and
management. Data & Knowledge Engineering, 42(3),
251-271.

Sugumaran, V., & Storey, V. C., 2006. The role of domain
ontologies in database design: An ontology
management and conceptual modeling environment.
ACM Transactions on Database Systems, 31(3), 1064-
1094.

Symeonidis, P., 2006. Automated assessment of java
programming coursework for computer science
education (Ph.D. Thesis). University of Nottingham.

Thomas, P., Waugh, K., & Smith. K., 2005. Experiments
in the automatic marking of ER-diagrams. In
Proceedings of the 10th annual SIGCSE conference on
Innovation and technology in computer science
education (p. 162).

Thomas, P., Waugh, K., & Smith, N., 2009. Generalised
diagram revision tools with automatic marking. In
Proceedings of the 14th annual ACM SIGCSE

FORMATIVE AND SUMMATIVE ASSESSMENT OF CLASS DIAGRAMS - Development and Evaluation of a
Prototype

409

conference on Innovation and technology in computer
science education (pp. 318-322). Paris, France: ACM.

Tiantian, W., Xiaohong, S., Peijun, M., Yuying, W., &
Kuanquan, W., 2010. Ability-training-oriented
automated assessment in introductory programming
course. Computers & Education, (In Press).

Tsintsifas, A., 2002. A framework for the computer-based
assessment of diagram-based coursework (Ph.D.
Thesis). University of Nottingham. Retrieved from
http://www.cs.nott.ac.uk/~azt/research.htm

Viljamaa, A., 2001. Pattern-Based Framework Annotation
and Adaptation - A Systematic Approach. Helsinki,
Finland: Department of Computer Science, University
of Helsinki.

Waugh, K. G., Thomas, P. G., & Smith, N., 2004. Toward
the automated assessment of entity-relationship
diagrams. In Proceedings of the 2nd LTSN-ICS
Teaching, Learning and Assessment in Databases
Workshop. Edinburgh, UK.

Wohed, P., 2000. Tool support for reuse of analysis
patterns: a case study. In Proceedings of the 19th
international conference on Conceptual modeling (pp.
196-209). Salt Lake City, Utah, USA: Springer-
Verlag.

CSEDU 2011 - 3rd International Conference on Computer Supported Education

410

