
COMPARATION OF OWL ONTOLOGIES REASONERS
Testing Cases with Pellet and Jena

José R. Hilera, Luis Fernández-Sanz and Adela Díez
Department of Computer Science, University of Alcalá, Alcalá de Henares, Spain

Keywords: Ontology, OWL reasoner, Jena, Pellet.

Abstract: This article describes the results of an evaluation process of four OWL reasoners: Pellet and other three
included in Jena framework (OWL Default, OWL Mini, and OWL Micro). A simple ontology about
programming languages has been used for the validation process carried out by reasoners and a Java
program has been developed for testing different cases: reasoning over the original ontology model and
testing different possible inference situations.

1 INTRODUCTION

One of the reasons for building applications based
on ontologies comes from the fact that a reasoner
can be used to infer additional assertions about the
knowledge being modeled. One of the most popular
frameworks for programming in Java applications
using ontologies is Jena, which includes support for
various types of reasoners through its API for
inference (jena.sourceforge.net). A common feature
of Jena reasoners is that they create a new model
containing RDF triples resulting from the process of
reasoning, but maintaining the set of original triples
of the base model (Reynolds, 2010). When ontology
is processed using Jena, it is possible to use a
reasoner for inference. This article describes a work
about the evaluation of four reasoners when new
facts from the same OWL ontology are inferred.

2 EVALUATION

OWL Reasoners to be Evaluated. The Jena
inference system was designed to allow different
types of reasoners extract new knowledge.
Normally, access to inference is achieved using the
ModelFactory Java interface: this associates a
dataset with a reasoner to create a new ontology
model. This new model is composed of the
assertions which were present in the original data,
but also adding those ones derived from such data by
applying rules or other inference mechanisms

implemented by the reasoner. The Jena OWL
reasoners could be described as instance-based
reasoners, i.e., they use rules to propagate the “if and
only if” implications of the OWL constructs on data
instances. This approach contrasts with more
sophisticated Description Logic reasoners which
work with class expressions: they can be less
efficient when handling instance data but more
efficient with complex class expressions as well as
able to provide complete reasoning. In this work an
ontology represented in OWL is evaluated, using
four reasoners: Pellet (2011) and other three
reasoners which are included in Jena (OWL Default,
OWL Mini, and OWL Micro). We define test cases
and then compare the execution times and the results
created by the different reasoners.
Ontology for Test Cases. We have used a simple
ontology about programming languages to compare
performance of the four reasoners. The formal
knowledge modeled reflects some of the various
categories used to classify programming languages
depending on: the level of abstraction, the purpose,
the historical development, and the programming
paradigm. Figure 1 shows the classes included in the
ontology. The main class is ProgrammingLanguage.
Listing 1 presents the code about an instantiation of
the class ProgrammingLanguage, in this case, the
“Java” language. It can be noted that the property
belongsParadigm has the value "object oriented", so
it satisfies the restriction equivalentClass defined in
the class ObjectOrientedLanguage.
Software used for Evaluation. The evaluation was
done by modifying the ontology in order to test

419R. Hilera J., Fernández-Sanz L. and Díez A..
COMPARATION OF OWL ONTOLOGIES REASONERS - Testing Cases with Pellet and Jena.
DOI: 10.5220/0003471404190422
In Proceedings of the 6th International Conference on Software and Database Technologies (ICSOFT-2011), pages 419-422
ISBN: 978-989-8425-77-5
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

different possible inference situations using the four
reasoners. Listing 2 shows part of the Java code
developed for validation, using the Jena API. An
object using the InfModel interface must be created
to test each reasoner previously. InfModel is an
extension to the normal Model interface in Jena. It
supports access to any underlying inference
capability. After creating the object, the function
validate () is executed returning a validation report
about the results of the reasoning. The time devoted
to validation is measured.

Figure 1: Classes in the ontology of programming
languages.

<owl:Class
rdf:ID="ObjectOrientedLanguage">
 <owl:disjointWith>
 <owl:Class rdf:ID="FunctionalLanguage"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="LogicLanguage"/>
 </owl:disjointWith>
 <owl:disjointWith>
 <owl:Class rdf:ID="ProceduralLanguage"/>
 </owl:disjointWith>
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:hasValue>object oriented
 </owl:hasValue>
 <owl:onProperty>
 <owl:FunctionalProperty
 rdf:ID="belongsParadigm"/>
 </owl:onProperty>
 </owl:Restriction>
 </owl:equivalentClass>
 <rdfs:subClassOf>
 <owl:Class
rdf:ID="ProgrammingLanguage"/>
 </rdfs:subClassOf>
</owl:Class>

Listing 1: Ontology (class “ObjectOrientedLanguage”).

<ProgrammingLanguage rdf:ID="Java">
 <belongsGeneration>third
 </belongsGeneration>
 <belongsParadigm>object oriented
 </belongsParadigm>
 <hasExtension>.class</hasExtension>
 <hasExtension>.jar</hasExtension>
 <hasExtension>.java</hasExtension>
 <hasLevel>high</hasLevel>
 <hasReservedWord>void</hasReservedWord>
 <hasReservedWord>public</hasReservedWord>
 <isCreatedBy>
 <Person rdf:ID="JamesGosling"/>
 </isCreatedBy>
 <isCreatedIn
 rdf:datatype="&xsd;gYear">1995
 </isCreatedIn>
 <supportsOperatingSystem>
 <OperatingSystem rdf:ID="MacOSX"/>
 </supportsOperatingSystem>
 <supportsOperatingSystem>
 <OperatingSystem rdf:ID="Linux"/>
 </supportsOperatingSystem>
 <supportsOperatingSystem>
 <OperatingSystem rdf:ID="Windows"/>
 </supportsOperatingSystem>
 <supportsOperatingSystem>
 <OperatingSystem rdf:ID="Solaris"/>
 </supportsOperatingSystem>
</ProgrammingLanguage>

Listing 2: Ontology source code (individual “Java”).

//Validation with OWL Default reasoner
long startTime= System.currentTimeMillis();
InfModel im = ModelFactory.createInfModel
 (ReasonerRegistry.getOWLReasoner(),
 modelOWL.getRawModel());
ValidityReport vr = im.validate();
if (vr.isValid())
 System.out.println("Correct model");
else
 for(Iterator<Report>I = vr.getReports();
 i.hasNext();)
 System.out.println("____+++___"+i.next());
long endTime = System.currentTimeMillis();
System.out.println(endTime–startTime);

Listing 3: Java code for evaluation of time for reasoning.

Test Case 1: Validation of the Original Model. In
this first case we used the original ontology, only
considering cardinality constraints and values
applied to the parent class and to child classes
generated by the value of the functional properties
that define a particular classification. As seen in
Table 1, the results for all the reasoners are the
same, resulting in a correct validation of the model,
but with significant differences in the execution
time. The time taken by the default reasoner is four
times the one by OWL Mini, because this avoids
infinite expansions when bNodes are included,
where restrictions as minCardinality or
someValuesFrom enter in the process, so it leads to a
significant performance improvement. Validation
with OWL Micro is similar in time values to the
ones by Pellet, with an execution time 56 times

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

420

lower than the default reasoned: this is possible
because it restricts its functionality to RDFS
hierarchies, and intersectionOf, unionOf and
HasValue axioms.

Table 1: Results of the test cases for validation of
restrictions (execution time in “ms” and error messages).

Test
case

OWL
Default

OWL
Mini

OWL
Micro

Pellet

1 21036 7635 855 1022

2 49902 6440 505
727

(KB is
inconsistent)

3

38071
Too

many
values,
Conflict

12342
Too

many
values,
Conflict

1073
Conflict

977
KB is

inconsistent

4 71494 13912 1029 1080

5.1

187200
Too

many
values

18056
Too

many
values

1392
Too

many
values

1144
KB is

inconsistent

5.2 48068 10786 1002 1136

5.3
(val.2) 52742 14490

1142

1096
(KB is

inconsistent)

5.3
(val.1)

Code

exception

27276
Too

many
values

1235
1152
KB is

inconsistent)

Test Case 2: Validating Value restrictions on
Data. This test case requires changing the original
model by altering the values of the properties that
settle ratings for any of the defined individuals. For
example, the value of the property belongsParadigm
has been changed in the case of the individual
"Java", from "object oriented" to "imperative". As a
value not covered by the range of data that has been
assigned to the property domain, the validation of
the resulting model would be incorrect. Table 1
shows the results. While all reasoners incorporated
in Jena get a successful validation, Pellet recognizes
the inconsistency in the model and launched a bug
report. The cause might be found in the
documentation on Jena inference: "The critical
constructs which go beyond OWL lite and are not
supported in the Jena OWL reasoner are oneOf and
complementOf" (Reynolds, 2010). Due to the
transformation of DataRange as combined lists with
oneOf in the modified ontology, the reasoners skip
checking this type of construction and continue
validating the rest of the model, returning a positive
result.
Test Case 3: Validating Cardinality Restrictions
on Functional Properties. A functional property is
one that can take only a single value for each

instance. We have added in the ontology a property
belongsGeneration in the case of individual
"Prolog" and it is set to "fourth". Since this kind of
special properties are not sensitive to context (in a
global level), an error should emerge in the
validation when a second literal is added. In this
case, all reasoners notify errors, but with different
error reports (table 1). The differences between
OWL Mini and Default are minimal. Most notable
differences appear in the case of OWL Micro
reasoner, which suppress the validation of the
functional property value, but recognizes that there
is a case of incompatibility between disjoint classes.
The validation would have been positive if it had
been declared as a value of this property, an out of
range value, because this checking is not
implemented in this reasoner, so it would have not
provoked inconsistency between classes (there
would be no disjunction between classes). The error
launched by Pellet just affects the value of the
functional properties, rather than class operations.
Test Case 4: Validating minCardinality
Restrictions. In this test case, we have defined a
lower value for the same type properties to the same
instance, so that they remain below the declared
value for that restriction. It has been eliminated the
property isCreatedBy of the individual "SQL" so
reference to the creators of this language has been
missed. With this scenario, a priori, the resulting
model validation should fail. However, as shown in
table 1, the validation with all the four reasoners is
correct, showing an unexpected result. This happens
because, as in other ontology languages, the
semantics of OWL adopt the Open World
Assumption (OWA) approach. OWA model holds
that an agent or observer cannot have a complete
view of the world, and therefore it cannot make
assertions about facts which are unknown. This
involves, directly, an incomplete inference process
with open world reasoners, against those based on
closed world assumption, in which the lack of
information is automatically translated into an
assertion of falsehood. In essence, we can say that it
is wrong to expect that the absence of information in
the OWL model validation will generate an error,
taking into account the principles governing OWA,
and adopted by RDF and OWL. For a simulation of
the closed world assumption, it is possible to use the
Jena framework "Eyeball" and the new integrity
checker that offers the Pellet reasoner for OWL.
Test Case 5: Validating maxCardinality
Restrictions. This case requires reversing the
changes to the previous point, i.e., we defined a
larger number of the same type of properties on the
same instance, so that they are higher than the

COMPARATION OF OWL ONTOLOGIES REASONERS - Testing Cases with Pellet and Jena

421

declared maximun value for that restriction. There
are no problems in the case of working with
DataType properties, but in the case of Object type
properties, we can test the differences when
individuals are different or not. We have validated
the following possibilities:

1) Exceeding the Maximum Cardinality of a
DataType Property. We changed the restriction
associated to the property hasExtension,
defining as maxCardinality the value "2". With
this assumption, should fail in the case of the
individual "Java" of the class
lenguajeProgramacion, which has three
properties of this type. In this case, the reasoners
generate incorrect validation reports (table 1).
The Default OWL and OWL reasoners behave
in the same way. There are two types of warning
in reports: one about the classes and subclasses
to which the individual "Java" belongs and
another one referred to nodes with names
related to the ID assigned to each constraint that
define each subclass. In the case of OWL Micro
reasoner the message only shows the first
occurrence where there is conflict and stops
validation. Pellet also shows a validation
message that is enough to verify that it has
exceeded the value of a particular property, but
it does not show what the individual or class is
affected.

2) Exceeding the Maximum Cardinality of an
Object Property without defining the
Individuals involved as Different. We changed
one of the restrictions,
supportsOperatingSystem, defining a maximum
cardinality "2", in order to see how it acts on
individuals (as "Prolog", "SQL", "Java") which
have assigned more than 2 operating systems.
We can realize in this case the validation is
successful with all the reasoners (table 1),
because we have to explicitly state that
individuals are different for the cardinality
constraints operate as desired although each of
the three individuals has various instances of
supportsOperatingSystem property. Here it is a
consequence of the paradigm OWA because it
cannot cause any definitive deductions whether
knowing if the individuals are identical or not.

3) Exceeding the Maximum Cardinality of an
Object Property identifying the Individuals
involved as Different. We took the same case
as above excepting that define the operating
systems as different from each other (for this
example, four individuals: "Windows", "Linux",
"MacOSX" and "Solaris"). To do this, the

individual "SQL" of ProgrammingLanguage
was modified by adding the four instances for
the property supportsOperatingSystem. In this
case, validation should be wrong for all
reasoners. But Pellet reasoner was the only one
that detected that cardinality is exceeded for any
individual. This is because the sublanguage on
which are built the OWL Jena reasoners, OWL
Lite, only supports 0 or 1 as cardinality
constraints (Reynolds, 2010). So we can
consider this limitation and change the value of
the maximum cardinality from 2 to 1. The
validation with this change produces the results
shown in table 1. In this case, the OWL default
reasoner gets hooked in an infinite loop trying to
insert blank nodes for all generated classes that
take the cardinality constraint, throwing an
exception message. OWL Mini reasoner is very
helpful to avoid this because it prevents these
expansions and performs validation controlling
this inconsistency in the model. Finally, Pellet
also locates directly this inconsistency.

3 CONCLUSIONS

From results of test cases we can conclude that the
reasoners embedded in Jena to provide inference and
validation are incomplete and with important
limitations. In the case of OWL reasoners, the
validation capacity is quite limited, assuming as
valid cardinality restrictions broken in the ontology.
In these situations, the external reasoner Pellet
provides a more complete reasoning based on OWL
DL version with shorter response times. Moreover,
certain aspects of the programming interface are
obsolete, as Jena has been built based on OWL 1.

ACKNOWLEDGEMENTS

This research has been partially funded in Spain by
CAM and UAH (grant CCG10-UAH/TIC-5915).

REFERENCES

Pellet, 2011. Pellet: OWL 2 Reasoner for Java, Clark &
Parsia. http://clarkparsia.com/pellet.

Reynolds, D., 2010. Jena 2 Inference support, souceforge.
http://jena.sourceforge.net/inference/index.html.

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

422

