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Abstract: Data stream mining has attracted much research attention from the data mining community. With the ad-
vance of wireless networks and mobile devices, the concept of ubiquitous data mining has been proposed. 
However, mobile devices are resource-constrained, which makes data stream mining a greater challenge. In 
this paper, we propose the RA-HCluster algorithm that can be used in mobile devices for clustering stream 
data. It adapts algorithm settings and compresses stream data based on currently available resources, so that 
mobile devices can continue with clustering at acceptable accuracy even under low memory resources. Ex-
perimental results show that not only is RA-HCluster more accurate than RA-VFKM, it is able to maintain a 
low and stable memory usage. 

1 INTRODUCTION 

Due to rapid progress of information technology, the 
amount of data is growing very fast. How to identify 
useful information from these data is very important. 
Data mining is to discover useful knowledge from 
large amounts of data. Data generated by many ap-
plications are scattered and time-sensitive. If not 
analyzed immediately, these data will soon lose their 
value; e.g., stock analysis and vehicle collision pre-
vention (Kargupta et al., 2002; Kargupta et al., 
2004). How to discover interesting patterns via mo-
bile devices anytime and anywhere and respond to 
the user in real time faces major challenges, result-
ing in the concept of ubiquitous data mining (UDM). 

With the advance of sensor devices, many data 
are transmitted in the form of streams. Data streams 
are large in amount and potentially infinite, real 
time, rapidly changing, and unpredictable (Babcock 
et al., 2002; Golab and Ozsu, 2003). Compared with 
traditional data mining, ubiquitous data mining is 
more resource-constrained, such as constrained 
computing power and memory size. Therefore, it 
may result in mining failures when data streams 
arrive rapidly. Ubiquitous data stream mining thus 

has become one of the newest research topics in data 
mining. 

Previous research on ubiquitous data stream clus-
tering mainly adopts the AOG (Algorithm Output 
Granularity) approach (Gaber et al., 2004a), which 
reduces output granularity by merging clusters, so 
that the algorithm can adapt to available resources. 
Although the AOG approach can continue with 
mining under a resource-constrained environment, it 
sacrifices the accuracy of mining results. In this 
paper, we propose the RA-HCluster (Resource-
Aware High Quality Clustering) algorithm that can 
be used in mobile devices for clustering stream data. 
It adapts algorithm settings and compresses stream 
data based on currently available resources, so that 
mobile devices can continue with clustering at ac-
ceptable accuracy even under low memory re-
sources. 

The rest of this paper is organized as follows. 
Section 2 reviews related work. Section 3 presents 
the RA-HCluster algorithm. Section 4 shows our 
experimental results. Section 5 concludes this paper 
and suggests some directions for future research. 

64 Chao C. and Chao G..
RESOURCE-AWARE HIGH QUALITY CLUSTERING IN UBIQUITOUS DATA STREAMS.
DOI: 10.5220/0003467700640073
In Proceedings of the 13th International Conference on Enterprise Information Systems (ICEIS-2011), pages 64-73
ISBN: 978-989-8425-53-9
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)



 

2 RELATED WORK 

Aggarwal et al. (2003) proposed the CluStream 
clustering framework that consists of two compo-
nents. The online component stores summary statis-
tics of the data stream. The offline component uses 
summary statistics and user requirements as input, 
and utilizes an approach that combines micro-
clustering with pyramidal time frame to clustering. 

The issue of ubiquitous data stream mining was 
first proposed by Gaber et al. (2004b). They ana-
lyzed problems and potential applications arising 
from mining stream data in mobile devices and pro-
posed the LWC algorithm, which is an AOG-based 
clustering algorithm. LWC performs adaptation 
process at the output end and adapts the minimum 
distance threshold between a data point and a cluster 
center based on currently available resources. When 
memory is full, it outputs the merged clusters. 

Shah et al. (2005) proposed the RA-VFKM algo-
rithm, which borrows the effective stream clustering 
technique from the VFKM algorithm and utilizes the 
AOG resource-aware technique to solve the problem 
of mining failure with constrained resources in 
VFKM. When the available memory reaches a criti-
cal stage, it increases the value of allowable error 
(ε*) and the value of probability for the allowable 
error (δ*) to decrease the number of runs and the 
number of samples. Its strategy of increasing the 
value of error and probability compromises on the 
accuracy of the final results, but enables conver-
gence and avoids execution failure in critical situa-
tions. 

The RA-Cluster algorithm proposed by Gaber 
and Yu (2006) extends the idea of CluStream and 
adapts algorithm settings based on currently avail-
able resources. It is the first threshold-based micro-
clustering algorithm and it adapts to available re-
sources by adapting its output granularity. 

3 RA-HCLUSTER 

As shown in Figure 1, RA-HCluster consists of two 
components: online maintenance and offline cluster-
ing. In the online maintenance component, summary 
statistics of stream data are computed and stored, 
and then are used for mining by the offline cluster-
ing component, thereby reducing the computational 
complexity. First, the sliding window model is used 
to sample stream data. Next, summary statistics of 
the data in the sliding window are computed to gen-
erate micro-clusters, and summary statistics are 

updated incrementally. In addition, the calculation of 
correlation coefficients is included in the process of 
merging micro-clusters to improve the problem of 
declining accuracy caused by merging micro-
clusters. Finally, a hierarchical summary frame is 
used to store cluster feature vectors of micro-
clusters. The level of the hierarchical summary 
frame can be adjusted based on the resources avail-
able. If resources are insufficient, the amount of data 
to be processed can be reduced by adjusting the 
hierarchical summary frame to a higher level, so as 
to reduce resource consumption. 

 
Figure 1: RA-HCluster. 

In the offline clustering component, algorithm 
settings are adapted based on currently available 
memory, and summary statistics stored in the hierar-
chical summary frame are used for clustering. First, 
the resource monitoring module computes the usage 
and remaining rate of memory and decides whether 
memory is sufficient. When memory is low, the size 
of the sliding window and the level of the hierarchi-
cal summary frame are adjusted using the AIG (Al-
gorithm Input Granularity) approach. Finally, clus-
tering is conducted. When memory is low, the dis-
tance threshold is decreased to reduce the amount of 
data to be processed. Conversely, when memory is 
sufficient, the distance threshold is increased to 
improve the accuracy of clustering results. 
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3.1 Online Maintenance 

3.1.1 Data Sampling 

The sliding window model is used for data stream 
sampling. Figure 2 shows an example of sliding 
window sampling, in which Stream represents a data 
stream and t0, t1, …, t9 each represents a time point. 
Suppose the window size is set to 3, which means 
three data points from the stream are extracted each 
time. Thus, the sliding window first extracts three 
data points A, B, and C at time points t1, t2, and t3, 
respectively. After the data points within the win-
dow are processed, the window moves to the right to 
extract the next three data points. In this example, 
the window moved a total of three times and ex-
tracted a total of nine data points at time points from 
t1 to t9. Table 1 shows the sampled stream data. 

Figure 2: Example of sliding window sampling. 

Table 1: Sampled stream data. 

Data 
point 

Age Salary 
(in thousands) 

Arrival 
timestamp 

A 36 34 t1 
B 30 21 t2 
C 44 38 t3 
D 24 26 t4 
E 35 27 t5 
F 35 31 t6 
G 48 40 t7 
H 21 30 t8 
I 50 44 t9 

3.1.2 Micro-cluster Generation 

For sampled data points, we use the K-Means algo-
rithm to generate micro-clusters. Each micro-cluster 
is made up of n d-dimensional data points 

nxx  ...1 and their arrival timestamp ntt  ...1 . Next, we 
compute summary statistics of data points of each 
micro-cluster to obtain its cluster feature vector, 
which consists of )32( +× d data entries and is 

represented as ( xCF 2 , xCF 1 , tCF 2 , tCF 1 , n ). 
Data entries are defined as follows: 

 xCF2  is the squared sum of dimensions, and 
the squared sum of the eth dimension can be ex-
pressed as 2

1 )(∑ =
n
j

e
jx . 

 xCF1  is the sum of dimensions, and the sum of 
the eth dimension can be expressed as ∑ =

n
j

e
jx1 . 

 tCF 2  is the squared sum of timestamp ntt  ...1 , 

and can be expressed as
 ∑ =

n
j jt1

2 . 

 tCF1  is the sum of timestamp ntt  ...1 , and can 

be expressed as
 ∑ =

n
j jt1 . 

 n  is the number of data points 
The following are the steps for generating micro-

clusters: 
Step 1: Compute the mean of sampled data. 
Step 2: Compute the square distance between the 

mean and each data point, and find the data point 
nearest to the mean as a center point. Then move the 
window once to extract data. 

Step 3: If the current number of center points is 
equal to the user-defined number of micro-clusters 
q, execute Step 4; otherwise, return to Step 1. 

Step 4: Use the K-Means algorithm to generate q 
micro-clusters with q center points as cluster cen-
troids, and compute the summary statistics of data 
points of each micro-cluster. 

Assume that the user-defined number of micro-
clusters is three. Table 2 shows the micro-clusters 
generated from the data points of Table 1, in which 
the micro-cluster Q1 contains three data points B 
(30, 21), D (24, 26), and H (21, 30) and the cluster 
feature vector is computed as {( 230 + 224 + 221 , 

221 + 226 + 230 ), (30+24+21, 21+26+30), 
22 + 24 + 28 , 2+4+8, 3} = {(1917,2017), (75,77), 84, 

14, 3}. 

Table 2: Micro-clusters generated. 

Micro-cluster Data points Cluster feature vector 

Q1 B, D, H ((1917,2017), (75,77), 84, 14, 3) 

Q2 A, E, F ((3746,2846), (106,92), 62, 12, 3) 

Q3 C, G, I ((6740,4980), (142,122), 139, 19, 3)

 
Next, we set a maximum radius boundary λ . 

When a new data point p arrives at the data stream, 
if the square distance ),(2

impd between p and its 
nearest micro-cluster center mi is less than λ , p is 
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merged into micro-cluster Mi; otherwise, a new 
micro-cluster is generated for p. When the current 
number of micro-clusters is greater than the user-
defined number, two of the micro-clusters must be 
merged. In the merge process, we not only compute 
the distance similarity between micro-clusters, but 
also use Pearson correlation coefficientγ to identify 
the two most similar micro-clusters to merge in 
order to improve the problem of reduced accuracy 
caused by merge. Equation (1) is the calculation 
formula for Pearson correlation coefficient and is 
used for computing the direction and level of change 
of data points for each micro-cluster. The value 
ofγ is between -1 and 1. A greaterγ means a greater 
level of change; that is, the degree of correlation 
between two micro-clusters is greater. 

 
 

           (1) 

 

3.1.3 Hierarchical Summary Frame 
Construction 

After micro-clusters are generated, we propose the 
use of a hierarchical summary frame to store cluster 
feature vectors of micro-clusters and construct level 
0 (L = 0), which is the current level, of the hierarchi-
cal summary frame. In the offline clustering compo-
nent, the cluster feature vectors stored at the current 
level of the hierarchical summary frame will be used 
as virtual points for clustering. In addition, the hier-
archical summary frame is equipped with two func-
tions: data aggregation and data resolution. When 
memory is low, it performs data aggregation to ag-
gregate detailed data of lower level into summarized 
data of upper level to reduce the consumption of 
memory space and computation time for clustering. 
But if there is sufficient memory, it will perform 
data resolution to resolve summarized data of upper 
level back to detailed data of lower level. 

The representation of the hierarchical summary 
frame is shown in Figure 3. 

 L is used to indicate a level of the hierarchical 
summary frame. Each level is composed of 
multiple frames and each frame stores the clus-
ter feature vector of one micro-cluster. 

 Each frame can be expressed as [ ]es
j

i ttF , , in 

which st is the starting timestamp, et is the end-
ing timestamp, and i and j are the level number 
and frame number, respectively. 

 A detail coefficient field is added to each level 

above level 0 of the hierarchical summary 
frame, which stores the difference of data and 
is used for subsequent data resolution. 

],[ 0
1
0 tttF ],[ 21

2
0 tt ttF + ],[ 312

3
0 tt ttF +

],[ 20
1

1 tttF ],[ 412
2

1 tt ttF + ],[ 614
3

1 tt ttF +

],[ 413
4

0 tt ttF + ],[ 514
5
0 tt ttF + ],[ 615

6
0 tt ttF +

],[ 40
1
2 tttF

Figure 3: Hierarchical summary frame. 

The process of data aggregation and data resolu-
tion utilizes the Haar wavelet transform, which is a 
data compression method characterized by fast cal-
culation and easy understanding and is widely used 
in the field of data mining (Dai et al., 2006). This 
transform can be regarded a series of mean and dif-
ference calculations. The calculation formula is as 
follows: 

 The use of wavelet transform to aggregate 
frames in the interval can be expressed as 

( )
β

β

β

∑
== 1i

iF
W

 , in which F represents the 

frame. 
 k wavelet transforms can be expressed as 

 
 

(2) 

Figure 4 shows an example of hierarchical sum-
mary frame, in which the aggregation interval β is 
set to 2, indicating that two frames are aggregated in 
each data aggregation process. Suppose the current 
level L = 0 stores four micro-clusters, and the sums 
of dimension are 68, 12, 4, and 24, respectively, 
represented as }24,4,12,68{0 =L . When memory is 
low, data aggregation is performed. Because the 
aggregation interval is 2, it first computes the aver-
age and difference of the first frame 1

0F and the sec-
ond frame 2

0F of level 0, resulting in the value 
(12+68)/2=40 and detail coefficient (12-68)/2=-28 
of the first frame 1

1F of level 1, and then derives the 
timestamp [ ]3,0  of 1

1F by storing the starting time-
stamp of 1

0F  and the ending timestamp of 2
0F . It then 

moves on to the third frame 3
0F and the fourth 
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frame 4
0F of level 0, resulting in the value 

(24+4)/2=14, detail coefficient (24-4)/2=10, and 
timestamp [ ]7,4 of the second frame 2

1F of level 1. 
After all frames of level 0 are aggregated, the data 
aggregation process ends and level 1 of the hierar-
chical summary frame is constructed, which is rep-
resented as }14,40{1 =L . Other levels of the hier-
archical summary frame are constructed in the same 
way. In addition, we can obtain the Haar transform 
function ( )( ) ( )10,28,13,27 −−=xfH by storing the 
value and detail coefficient of the highest level of 
the hierarchical summary frame, which can be used 
to convert the aggregated data back to the data be-
fore aggregation. 

 

]1,0[1
0F

]3,0[1
1F

]7,0[1
2F

]3,2[2
0F ]5,4[3

0F ]7,6[4
0F

]7,4[2
1F

)10,28,13,27())(( −−=xfH  
Figure 4: Example of hierarchical summary frame. 

When there is sufficient memory, data resolution 
is performed to convert the aggregated data back to 
the detailed data of lower level, using the Haar trans-
form function obtained during data aggregation. To 
illustrate, assume that the current level of the hierar-
chical summary frame is L=2. }14,40{1 =L  is ob-
tained by performing subtraction and addition on the 
value and detail coefficient of level 2, {40, 
14}={[27-(-13), 27+(-13)]}. L0 = {68, 12, 4, 24} is 
obtained in the same way, except that there are two 
values and detail coefficients at level 1. Therefore, 
to obtain {68, 12, 4, 24} = {[40-(-28), 40+(-28), 14-
10, 14+10]}, we first perform subtraction and addi-
tion on the first value and detail coefficient, then 
perform the same calculation on the second value 
and detail coefficient. 

3.2 Offline Clustering 

3.2.1  Resource Monitoring and Algorithm 
Input Granularity Adjustment 

In the offline clustering component, we use the re-
source monitoring module to monitor memory. This 
module has three parameters mN , mU , and mLB , 
which represent the total memory size, current 
memory usage, and lowest boundary of memory 
usage, respectively. In addition, we compute the 

remaining rate of memory mmmm NUNR /)( −= . 
When <mR mLB , meaning that memory is low, we 
will adjust the algorithm input granularity. Algo-
rithm input granularity adjustment refers to reducing 
the detail level of input data of the algorithm in 
order to reduce the resources consumed during algo-
rithm execution. Therefore, when memory is low, 
we will adjust the size of the sliding window and the 
level of the hierarchical summary frame in order to 
reduce memory consumption. 

First, we adjust the size of the sliding window. A 
larger window size means a greater amount of 
stream data to be processed, which will consume 
more memory. Thus, we multiply the window size w 
by the remaining rate of memory mR to obtain the 
adjusted window size. As mR gets smaller, so is the 
window size. Figure 5 shows an example of window 
size adjustment, with the initial window size w set to 
5. In scenario 1, the memory usage

mU is 20 and the 
computed mR is 0.8. Then, through 58.0 ×=× wRm  
we obtain the new window size of 4, so we reduce 
the window size from 5 to 4. In scenario 2, the 
memory usage mU is 60 and the computed mR is 0.4. 
Then, through 54.0 ×=× wRm we obtain the new 
window size of 2, so we reduce the window size 
from 5 to 2. 

458.0,8.0
100

20100,20,100 =×==
−

=== wRUN mmm

254.0,4.0
100

60100,60,100 =×==
−

=== wRUN mmm

Figure 5: Example of window size adjustment. 

Next, we perform data aggregation to adjust the 
level of the hierarchical summary frame. This proc-
ess will be done only when mR  < 20% because it 
will reduce the accuracy of clustering results. On the 
other hand, we will perform data resolution when 
( )mR−1  < 20%, which indicates there is sufficient 
memory. The process of data aggregation and data 
resolution has been described in details in Section 
3.1.3. 

3.2.2 Clustering 

Figure 6 shows the proposed clustering algorithm. 
The algorithm inputs the number of clusters k, the 
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distance threshold d , the lowest boundary of mem-
ory usage mLB , and the cluster feature vectors 
stored in the current level of the hierarchical sum-
mary frame as virtual points x. The algorithm out-
puts the finally generated k clusters C. The steps of 
the algorithm are divided into three parts. The first 
part is for cluster generation (line 4-10). Every vir-
tual point is attributed to the nearest cluster center to 
generate k clusters. The second part is for the ad-
justment of distance threshold d  (line 11-14). The 
adjustment of d is based on the current remaining 
rate of memory. A smaller d implies that virtual 
points are more likely to be regarded as outliers and 
discarded in order to reduce memory usage. The 
third part is for determination of the stability of 
clusters (line 15-31). Recalculate cluster centers of 
the clusters generated in the first part and use the 
sample variance and total deviation to determine the 
stability of clusters. Output the clusters if they are 
stable; otherwise repeat the process by returning to 
the first part. 

The parameters of the clustering algorithm are 
defined as follows: 

 k is the user-defined number of clusters. 
 d is the user-defined distance threshold. 
 mLB is the user-defined lowest boundary of 

memory usage. 
 }1{ nixx i ≤≤= is the set of virtual points 

stored in the current level of the hierarchical 
summary frame. 

 }1{ kjCC j ≤≤= is the set of k clusters gener-
ated by the algorithm. 

 
mN is the total memory size 

 }1{ kjcc j ≤≤= is the set of k cluster centers. 
 ),(2

ji cxd is the Euclidean distance between 
virtual point xi and cluster center cj. 

 }1,1),({ 2 kjnicxdD jii ≤≤≤≤= is the set 
of Euclidean distances between virtual point xi 
and each cluster center, with the initial value 
of ∅. 

 ][ iDMin is the Euclidean distance between vir-
tual point xi and its nearest cluster center. 

 
mU is the memory usage. 

 mR is the remaining rate of memory. 
 E is the total deviation. 
 2S is the sample variance. 
 )( jCcount is the number of virtual points in the 

cluster
jC . 

 E′ is the total deviation calculated from the new 
cluster center. 

 2Ŝ is the sample variance calculated from     the 
new cluster center. 

 
 

Input: k, d , mLB , x  

Output: C  
1. compute mN ; 
2. ←c Random (x); 
3. Repeat 
4.   For each xxi ∈  do 

5.     For each cc j ∈  do 

6.       )},({ 2
jiii cxdDD ∪← ; 

7.     If ][ iDMin < d  then 

8.       }{ ijj xCC ∪←  s.t. ][),(2
iji DMincxd = ; 

9.     Else 
10.        delete ix ; 
11.   compute mU ; 

12.   mmmm NUNR /)( −← ; 
13.   If mR < mLB  then ( )mRddd −×−← 1 ; 

14.   If ( )mR−1 <20% then ×+← ddd mR ; 

15.   For each jC  do 

16.     ∑
∈

−←
ji Cx

ji cxE 2)( ; 

17.     ( ) ( )1)(/22 −⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−← ∑

∈
j

Cx
ji CcountcxS

ji

; 

18.      )(/)( j
Cx

ij Ccountxc
ji

∑
∈

←′ ; 

19.      If jj cc ≠′  then 

20.         ∑
∈

′−←′
ji Cx

ji cxE 2)( ; 

21.         ( ) ( )1)(/ˆ 22 −⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
′−← ∑

∈
j

Cx
ji CcountcxS

ji

; 

22.         If ( 2Ŝ < 2S ) and ( E′ < E ) then  
23.           jj cc ′← ; 

24.         Else 
25.           output jC ; 

26.           ji Cx ∈∀  }{ ixxx −← ; 

27.           }{ jccc −← ; 
28.      Else  
29.        output jC ; 

30.        ji Cx ∈∀  }{ ixxx −← ; 

31.        }{ jccc −← ; 

32. Until 
jC∀  )( jj cc =′ or )ˆ( 22 SS ≥ or )( EE ≥′  

33. return; 

Figure 6: Clustering algorithm. 
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The following is a detailed description of the 
steps of the clustering algorithm. 

Step 1 (line 1): Use a system built-in function to 
compute the total memory size. 

Step 2 (line 2): Use a random function to ran-
domly select k virtual points as initial cluster centers. 

Step 3 (line 4-10): For each virtual point, com-
pute the Euclidean distance between it and each 
cluster center. If the Euclidean distance between a 
virtual point and its nearest cluster center is less than 
the distance threshold, the virtual point is attributed 
to the cluster to which the nearest cluster center 
belongs; otherwise, the virtual point is deleted. 

Step 4 (line 11-14): Compute the memory us-
age mU and the remaining rate of memory mR . If 

mR < mLB , meaning that memory is low, then de-
crease d by subtracting the value of multiplying 
d by the memory usage rate ( )mR−1 . When the 
memory usage rate is higher, d is decreased more. 
On the other hand, if ( )mR−1 <20%, meaning that 
memory is sufficient, then increase d by adding the 
value of multiplying d by the remaining rate of 
memory mR . When the remaining rate of memory is 
higher, d is increased more. 

Step 5 (line 15-31): Steps 5.1 and 5.2 are exe-
cuted for each cluster. 

Step 5.1 (line 16-18): Compute the sample vari-
ance 2S and the total deviation E of virtual points 
contained in the cluster. Next, compute the mean of 
virtual points contained in the cluster as the new 
cluster center jc′ . 

Step 5.2 (line 19-31): If the new cluster cen-
ter jc′ is the same as the old cluster center jc , then 
output the cluster

jC , meaning that
jC will not change 

any more, and delete the virtual points and cluster 
center of

jC ; otherwise, use jc′ to recalculate the 
sample variance 2Ŝ  and the total deviation E′ , and 
determine whether both 2Ŝ and E′ are decreased. If 
yes, replace the old cluster center with the new one; 
otherwise, output the cluster 

jC and delete the virtual 
points and cluster center of

jC . 
Repeat the execution of Step 3 to Step 5 until for 

every cluster the cluster center is not changed or the 
sample variance or total deviation is not decreased. 

Assume k = 2, d = 10, mLB = 30%, and the vir-
tual points stored in the current level of the hierar-
chical summary frame are A (2,4), B (3,2), C (4,3), 
D (5,6), E (8,7), F (6,5), G (6,4), H (7,3), I (7,2), the 
algorithm output two clusters 1C = [A, B, C] and 2C = 
[D, F, G, H, I]. 

 
 
 

4 PERFORMANCE EVALUTION 

4.1 Experimental Environment 
and Data 

To simulate the environment of mobile devices, we 
use Sun Java J2ME Wireless Toolkit 2.5 as the de-
velopment tool to write programs and conduct per-
formance evaluation on the J2ME platform. Table 3 
shows the experimental environment. 

Table 3: Experimental environment. 

Component Specification 

Processor Pentium D 2.8 GHz 
Memory 1 GB 
Hard disk 80 GB 

Operating system Windows XP 

We use the ACM KDD-CUP 2007 consumer 
recommendations data set as the real data set. This 
data set contains 480,000 customer data, 17,000 
movie data, and 1 million recommendations data 
recorded between October 1998 and December 
2005. We use 200,000 recommendations data for the 
experiments. Furthermore, in order to use a variety 
of number of data points and dimensions to carry out 
the experiments, we use Microsoft SQL Server 2005 
with Microsoft Visual Studio Team Edition for Da-
tabase Professional to generate synthetic data sets, 
which are in uniform distribution. Table 4 shows the 
description of generating parameters of synthetic 
data. All data points are sampled evenly from C 
clusters. All sampled data points show a normal 
distribution. For example, B100kC10D5 represents 
that this data set contains 100k data points belonging 
to 10 different clusters and each data point has 5 
dimensions. 

Table 4: Generating parameters of synthetic data. 

Parameter Description 
B Number of data points 
C Number of clusters 
D Number of dimensions 

4.2 Comparison and Analysis 

As RA-VFKM is also a ubiquitous data stream clus-
tering algorithm that can continue with mining under 
constrained resources, we compare the performance 
between RA-HCluster and RA-VFKM in terms of 
stream processing efficiency, accuracy, and memory 
usage. 
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4.2.1 Stream Processing Efficiency 

We use the number of data points processed per 
second to measure the stream processing efficiency 
with the consumer recommendations data set as 
experimental data. Figure 7 and Figure 8 show the 
comparison of stream processing efficiency between 
RA-HCluster and RA-VFKM, where the horizontal 
axis is the elapsed data processing time in seconds 
and the vertical axis is the number of data points 
processed per second. 

 
Figure 7: Comparison of stream processing efficiency. 

 
Figure 8: Comparison of stream processing efficiency for 
a longer elapsed time. 

As shown in Figure 7, because RA-HCluster 
needs to generate micro-clusters and compute cluster 
feature vectors as soon as stream data arrive, the 
initial stream processing is more inefficient. After 20 
seconds while micro-clusters have been generated, 
the stream processing efficiency of RA-HCluster 
increases and stabilizes. In contrast, because RA-
VFKM uses Hoeffding Bound to limit the sample 
size, the initial stream processing efficiency is better. 
But over time, the stream processing efficiency of 
RA-VFKM is worse than that of RA-HCluster. 

As shown in Figure 8, for a longer elapsed time, 
the stream processing efficiency of RA-HCluster is 
poor only initially. By the 60th second, its stream 
processing efficiency is about the same as RA-

VFKM, and it gradually overtakes RA-VFKM in 
terms of stream processing efficiency after 80 sec-
onds. 

4.2.2 Accuracy 

We use the average of the sum of square distance 
(Average SSQ) to measure the accuracy of cluster-
ing results. Suppose there are hn data points in the 
period h before the current time Tc. Find the nearest 
cluster center nic for each data point hn in the period 
h and compute the square distance ),(2

nii cnd be-

tween in and nic . The ),( hTSSQAverage c for the 
period h before the current time Tc equals to the sum 
of all square distances between every data point in h  
and its cluster center divided by the number of clus-
ters. A smaller value of Average SSQ indicates a 
higher accuracy. 

 
Figure 9: Comparison of accuracy with consumer recom-
mendations data set. 

 
Figure 10: Comparison of accuracy with synthetic data set. 

Figure 9 and Figure 10 show the comparison of 
accuracy between RA-HCluster and RA-VFKM 
with the consumer recommendations data set and 
synthetic data set, respectively. The horizontal axis 
is the data rate (e.g., data rate 100 means that stream 
data arrive at the rate of 100 data points per second) 
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and the vertical axis is the Average SSQ. As shown 
in Figure 9 and Figure 10, the accuracy of RA-
HCluster is about the same as that of RA-VFKM 
only when the data rate is from 50 to 100. When the 
data rate is over 200, the accuracy of RA-HCluster is 
higher than that of RA-VFKM. 

In Figure 10, the differences in Average SSQ are 
not obvious because synthetic data of the same dis-
tribution are used, but we can still see that the Aver-
age SSQ of RA-HCluster is smaller. The reason is 
that RA-HCluster uses the distance similarity be-
tween micro-clusters as the basis for merge, and 
employs the sample variance to identify more dense 
clusters in the offline clustering component, so as to 
increase the clustering accuracy. In contrast, RA-
VFKM increases the error value ε to reduce the 
sample size and merges clusters to achieve the goal 
of continuous mining, so as to reduce the clustering 
accuracy. 

4.2.3 Memory Usage 

Because the greatest challenge in mining data 
streams using mobile devices lies in the constrained 
memory of mobile devices and insufficient memory 
may lead to mining interruption or failure, we com-
pare the capability of continuous mining of algo-
rithms by analyzing their memory usage. Figure 11 
shows the comparison of memory usage among RA-
HCluster, RA-VFKM, and traditional K-Means, 
where the horizontal axis is the elapsed data process-
ing time in seconds and the vertical axis is the re-
maining memory in megabytes (MB). The experi-
mental data is the consumer recommendations data 
set, with a parameter setting of C = 10, data rate = 
100, and 

mN = 100 MB. As shown in Figure 11, 
traditional K-Means is not able to continue with 
mining and mining interruption occurs after 450 
seconds. Although RA-VFKM is able to continue 
with mining, it is incapable of adapting to the evolu-
tion of data stream effectively because the fluctua-
tion in memory usage is very large. In contrast, even 
though RA-HCluster uses more memory in the be-
ginning, it is able to maintain low and stable mem-
ory usage thereafter. The reason is that RA-VFKM 
releases resources by merging clusters at the end of 
the clustering process, but RA-HCluster adapts algo-
rithm settings during the clustering process so that 
mining can be stable and sustainable. 
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Figure 11: Comparison of memory usage. 

Figure 12 shows the comparison of memory us-
age between RA-HCluster and RA-VFKM under a 
variety of data size, where the horizontal axis is the 
data size in kilobytes (KB) and the vertical axis is 
the memory usage in megabytes (MB). The experi-
mental data is the consumer recommendations data 
set. As shown in Figure 12, RA-VFKM requires 
more memory under various sizes of data and its 
memory usage increases significantly when the data 
size is over 600 KB. In contrast, because RA-
HCluster compresses data in the hierarchical sum-
mary frame through the data aggregation process, it 
can still maintain a stable memory usage even when 
dealing with larger amounts of data. 

 
Figure 12: Comparison of memory usage by data size. 

Figure 13 shows the comparison of memory us-
age between RA-HCluster and RA-VFKM under a 
variety of execution time, where the horizontal axis 
is the elapsed data processing time in seconds and 
the vertical axis is the memory usage in megabytes 
(MB). The experimental data is a synthetic data set 
B100kC10D5. As shown in Figure 13, even though 
RA-HCluster uses more memory in the beginning, it 
then decreases the memory usage by reducing the 
input granularity. After 40 seconds, therefore, the 
memory usage is decreased and stabilized. In con-
trast, RA-VFKM uses less memory than RA-
HCluster only in the beginning, and it uses more 
memory after 37 seconds. 
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Figure 13: Comparison of memory usage by execution 
time. 

5 CONCLUSIONS AND FUTURE 
WORK 

In this paper, we have proposed the RA-HCluster 
algorithm for ubiquitous data stream clustering. This 
algorithm adopts the resources-aware technique to 
adapt algorithm settings and the level of the hierar-
chical summary frame, which enables mobile de-
vices to continue with mining and overcomes the 
problem of lower accuracy or mining interruption 
caused by insufficient memory in traditional data 
stream clustering algorithms. Furthermore, we in-
clude the technique of computing the correlation 
coefficients between micro-clusters to ensure that 
more related data points are attributed to the same 
cluster during the clustering process, thereby im-
proving the accuracy of clustering results. Experi-
mental results show that not only is the accuracy of 
RA-HCluster higher than that of RA-VFKM, it can 
also maintain a low and stable memory usage. 

Because we have only dealt with mining a single 
data stream using mobile devices in this paper, for 
future research we may consider dealing with multi-
ple data streams. In addition, we can consider factors 
such as battery, CPU utilization, and data rate to the 
resource-aware technique, so that algorithms can be 
more effectively adapted with respect to the current 
environment of mobile devices and the characteris-
tics of data stream. For practical applications, we 
may consider applications such as vehicle collision 
prevention, intrusion detection, stock analysis, etc. 
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