
CLOSING THE GAP BETWEEN WEB APPLICATIONS
AND WEB SERVICES

Marc Jansen
Ruhr West University of Applied Sciences, Computer Science Institute, Tannenstr. 43, 46240 Bottrop, Germany

Keywords: Web Service, Web Application.

Abstract: The WWW is the killerapp of the internet. In recent years an enormously increasing number of Web
Applications, as a means of human-to-computer interaction, showed up, that allows a visitor of a certain
website to interact with the website. Additionally the approach of Web Services was introduced in order to
allow computer-to-computer interaction on the basis of standardized protocols. This paper shows how the
gap between Web Applications and Web Services can be closed by making Web Applications available to
computer-to-computer interaction by a systematic approach.

1 INTRODUCTION

From the very early days of the internet, the Word
Wide Web (WWW) was one of the most frequently
used developments. According to (Hammerschall,
2005) Web Applications can be categorized at
different levels. At the lowest level, simple static
websites provide information to a visitor. The next
step are interactive Web Applications that allow to
receive data from a visitor and use this data in order
to perform certain calculations with the result
presented to the visitor. The last step of web
technologies are Web Services. The major difference
between a usual Web Application, that is a mean for
human-to-computer interaction, is that Web Services
are built to foster computer-to-computer interaction.

From an architectural point of view, formulars of
a Web Application can be seen as interfaces to
services in a service-oriented architecture (SOA).
The major goal of this work, is to close the gap
between Web Applications and Web Services by
making Web Applications available for computer-to-
computer interaction.

The developed prototype that is presented here
achieves this goal by implementing a Web Service
façade to Web Applications. This approach is
explained in more detail in the following sections.

2 THE ARCHITECTURAL
APPROACH

From an architectural point of view, the gap between
a Web Application and a Web Service can be closed
by providing a façade to the Web Application,
according to the façade design pattern (Gamma,
1994). This façade allows to call the formular of a
Web Application via a Web Service. The major goal
of the façade design pattern is to provide an interface
to a subsystem that allows to use the subsystem in an
easier way. In this example the façade eases the use
of Web Applications in different ways:

- The usage of a Web Service, as an interface to
a Web Application allows to use standardized
methods (like WSDL, SOAP and UDDI) in
order to consume the service provided by the
Web Application.

- The façade can decrease the number of
parameters that need to be passed to the Web
Application. This is described in more detail in
section 4.

- Last but not least, the façade does not need to
provide an external interface to all services of a
Web Application but can be limited to certain
services of interest.

To be able to provide a certain façade to a Web
Application three major steps need to be performed.
First of all the website, that provides access to the
Web Application, needs to be parsed and the
services (in their representation as forms) need to be

627Jansen M..
CLOSING THE GAP BETWEEN WEB APPLICATIONS AND WEB SERVICES.
DOI: 10.5220/0003464806270630
In Proceedings of the 7th International Conference on Web Information Systems and Technologies (WSPA-2011), pages 627-630
ISBN: 978-989-8425-51-5
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

extracted. In a second step the parameters of each of
the forms need to be extracted and it needs to be
determined which parameters are necessarily
provided within the Web Service interface. Last but
not least, the Web Service itself needs to be
implemented, including all the descriptions that are
necessary to deploy the Web Service to a usual
application server. This step also includes the
packaging of the Web Service itself and the
necessary descriptions in a deployable package, e.g.
a WAR archive.

Here, the first two steps (extracting the forms and
extracting the necessary parameters for each form)
can be done with the help of the pipes and filters
design pattern (Buschmann and Rohnert, 1996). The
approach presented here uses the results of these two
filters to provide an XML description of the services
provided by the Web Application that later-on
allows to easily implement the Web Service
(including its necessary descriptions) via an
eXtended Stylesheet Language Transformation
(XSL/T). An overview of the suggested architecture
is provided in Figure 1:

Figure 1: Proposed architecture for the creation of a Web
Service facade to a Web Application.

The following provides a closer look to the
solutions of the presented approach.

3 PARAMETER HANDLING

As described before, the parameters for the methods
provided by the Web Service façade are basically
the parameters provided by the form that represents
the service of the Web Application. Basically, two
types of parameters need to be distinguished to
answer the question which parameters the Web
Service façade needs. Parameters that need to be
passed to a Web Application might be of two
different types. On the one hand there are parameters
that usually need to be provided directly by the user
of a certain Web Application, e.g. the security
identification number of a certain stock in a Web
Application that provides stock values. On the other
hand there are certain parameters that are provided
by the Web Application itself, e.g. parameters used
for session identification. The type of the parameter
can easily be determined by an attribute of an input
parameter of an HTML-Form: each input parameter

might have an attribute called type. In case of the
parameters that are provided by the Web Application
itself, this attribute has the value hidden. All other
parameters of an HTML-Form are usually
parameters that need to be provided by the user of
the Web Application in question. The Web Service
façade to a certain Web Application obviously only
needs to have these kind of parameters in its
signature that usually need to be provided by the
user of the Web Application and usually not the
parameters that are provided by the Web Application
itself.

In the developed prototype, for convenience
purposes, all parameters that the Web Service
provides are of type String. Of course it would not
be much more difficult to provide different types of
parameters, but this doesn’t seem to be necessary for
the development of a prototype.

4 RETURN VALUES

Beside the parameter handling of the provided Web
Services, the handling of the return value is another
topic of interest. The following two sections provide
an overview about how the developed prototype
deals with the return value.

4.1 Different Types of Return Values

Basically a Web Application might have different
types of return values. At the first abstraction three
different types of return values might be of interest:

- single – The Web Application might return a
single value that is of interest. This is e.g. the
case for a Web Application that provides stock
values.

- list – Alternatively, the Web Application might
provide more than one result. This type of
return value is represented as a list. A popular
example for this kind of return value might be
the answer of a request to a search engine, that
provides a list of URLs with information on a
certain topic.

- void – Last but not least, a Web Application
might not return data that is of interest to the
user. This might e.g. be the case if the Web
Application just starts a particular package of
work. This kind of return value is quite unusual
for Web Applications but might still be of
interest to some Web Application, therefore it
is also concerned in the developed prototype.

Again, just for the sake of lower complexity, the
return value within the Web Service façade is of

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

628

type String (respectively String[]) for the first two
kinds of return values, and of type void for the last
one.

4.2 Determing the Return Value

One major challenge during the implementation of
the prototype was the determination of the actual
return value. Usually Web Applications provide
their result within a webpage. Therefore it is
necessary to parse the webpage and determine the
result of interest. In order to be able to do so, the
position where the information of interest is located,
has to be described. Usually an absolute description
of the position, e.g. the information is placed
between the n-th and m-th character doesn’t work,
since Web applications usually provide the
information of interest in specially designed
websites where the absolute position of the
information changes dramatically. Here another
approach was necessary. Within the developed
prototype we found that a contextual representation
of the position of the information worked very well.
Therefore we designed regular expressions to
describe what kind of information is of interest to us
on the webpage that the Web Application returns.
For example, in the case of a certain search engine,
the regular expression for the return type looks like
this:

.*

Here, the . represents any character. Therefore in
this example the return value is an array of type
String with all character sequences that are within
the left border () and the right
border ().

5 XML REPRESENTATION

As already shown in the architectural overview in
Figure 1, the implemented approach produces an
intermediate XML representation of the service of
interest on its way to the final Web Service. The
following two sections provide an overview first on
the XML representation and the structure itself.
Afterwards we provide a solution how this XML
representation is used in order to implement the Web
Service, including its necessary descriptions, with
the help of XSL/T.

5.1 An XML Datastructure for the
Definition of Web Applications

The here described XML representation of the
methods finally implemented in the resulting Web
Service is a minimal set of information necessary in
order to be able to implement the Web Service later
on. The Document Type Definition (DTD) that
defines the grammar of the XML representation
looks like this:
<!ELEMENT forms (form*)>
<!ATTLIST forms name CDATA #REQUIRED>

<!ELEMENT form (parameter*)>
<!ATTLIST form action CDATA #REQUIRED
 leftBorder CDATA #REQUIRED
 rightBorder CDATA #REQUIRED
 method (get|post) #REQUIRED
 result (single|list|void) #REQUIRED
 methodName CDATA #REQUIRED>

<!ELEMENT parameter EMPTY>
<!ATTLIST parameter name CDATA #REQUIRED
 value CDATA #IMPLIED
 hidden (true|false) #REQUIRED>

The root element of a certain XML representation is
a forms element. This one is basically necessary in
order to encapsulate the different services that a
Web Application provides. As an attribute, the forms
element provides the possibility of a name that
might be interpreted as an acronym for the provided
service.

On the next level the XML representation
consists of a number of form elements. Each form
element describes a single service of the Web
Application on a syntactical level. Therefore it
provides attributes that represent the URL under
which the service is available (action), the left and
the right border for the determination of the return
values (leftBorder, rightBorder), the HTTP method
used to invoke the service (method), the result type
as explained in section 5.1 (result) and the name that
the method of the Web Service façade
(methodName) should have.

At the lowest level, each of the forms elements
consists of potentially several parameter elements.
Each parameter element consists of potentially three
attributes that describe the parameter: first of all,
each parameter can be identified (name), potentially
parameters might have a value (value) that can be
interpreted as the default value of this parameter
and, last but not least, as already described in section
4 some parameters might not be visible to the end-
user of the service (hidden).

This XML representation of a certain service is
enough to implement the corresponding Web
Service façade automatically, as describe in the next
section.

CLOSING THE GAP BETWEEN WEB APPLICATIONS AND WEB SERVICES

629

5.2 Transforming Web Applications to
Web Services Via XSL/T

The XML datastructure described in the last section
is used to automatically implement the Web Service
façade including the related descriptions. Therefore
we developed a eXtended Stylesheet Language
Transformation (XSL/T) script that on the one hand
implements a Java class with the necessary
annotations to expose the methods as Web Services
according to Java Specifiction Request 181 (JSR
181) (Mullendore, 2009). The following represents
an extract of this XSL script:
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/forms">

import …;

@WebService

public class <xsl:value-of select="@name" />Service {

<xsl:for-each select="form">

@WebMethod

public String <xsl:value-of select="@methodName"/>
/>(<xsl:copy-of select="$parameters" />) {

…

}

}

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

On the other hand to deploy the Web Service later-
on to a usual application server like JBoss or
Glassfish the deployment description for the Web
Service needs to be implemented in form of a
web.xml file. This web.xml file is also automatically
generated from the described XML representation
with a similar XSL script as mentioned above for the
creation of the Web Service source code.

Last but not least, the developed prototype
compiles the created Web Service classes and
packages these classes, together with the created
web.xml file, into a deployable web archive (.war)
file. This .war file is now ready for deployment in a
standardized application server like JBoss or
Glassfish.

6 CONCLUSIONS
AND OUTLOOK

As shown in this paper, the gap between Web
Applications and Web Services can be closed at

least semi automatically. Especially the
determination of the position of the Web
Applications return value, as describe in section 5.2,
needs to be defined manually. In the next research
step, a completely automatically determination also
of the return value of the Web Application can be
concerned.
Another interesting idea would be to deploy the
presented prototype in a Cloud Computing
environment. This would allow to flexibly deploy
and scale the resulting Web Service façade
according to the demands of a certain customer.

REFERENCES

Hammerschall. Verteilte Systeme und Anwendungen,
2005, Pearson Studium

Gamma, Helm, Johnson. Elements of Reusable Object-
Oriented Software. 1994, Addison-Wesley

Buschmann, Meunier, Rohnert, Sommerland. A System of
Patterns: Pattern-Oriented Software Architecture,
1996, John Wiley & Sons

Mullendore. JSR 181: Web Service Metadata for the Java
Platform, 2009, Java Community Process

WEBIST 2011 - 7th International Conference on Web Information Systems and Technologies

630

