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Abstract: From the viewpoint of user management, continuous or on-demand biometric authentication is effective for
achieving higher security. In such a case, the biometrics which is able to present biometric data unconsciously
is needed and we have proposed to use the brain wave as the unconscious biometrics. In this paper, assuming
driver authentication, we measure brain waves of drivers when they are tracing routes as a mental task. And
we evaluate verification performance using the difference between the mean power spectrum atα-β band in
relaxed condition and that in mental-tasked condition as an individual feature. As a result, the EER of 31 % is
obtained among 12 subjects.

1 INTRODUCTION

For secure networked society, person authentication
using biometrics gains public attention. Among bio-
metric traits, the fingerprint and the iris achieve higher
performance and are already used in consumer secu-
rity systems. However, it has been reported that au-
thentication systems using them were circumvented
by using fake fingers or printed iris images (Mat-
sumoto et al., 2002; Matsumoto et al., 2007). The
reason is that the fingerprint and iris are revealed on
body surfaces. The vein is kept in the body; therefore,
it is expected to have tolerability to the circumvention.
However, it is also reported that even the authentica-
tion system using the vein accepted artifacts in enroll-
ment and verification (Matsumoto, 2006). This is due
to lack of the function of liveness detection which ex-
amines whether an object is a part of a living body.
The liveness detection scheme is necessary for pro-
tecting biometric authentication systems from spoof-
ing using artifacts.

On the other hand, conventional biometric sys-
tems mainly assume applications based on one-time-
only authentication such as access control, banking,
passport control, and so on. However, from the view-
point of user management, the one-time-only authen-
tication is low-security. After authenticating by a gen-
uine user, even if he/she is switched to an imposter,
the one-time-only authentication system could not de-
tect such spoofing.
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Figure 1: Styles of authentication.

Figure 1 shows conceivable styles of authentica-
tion where (a) is the one-time-only authentication.
Assuming that both authentication and application ex-
ecution are simultaneously achieved in a single sys-
tem, the one-time-only authentication is not a heavy
load since the authentication is achieved only once at
the start of the application while security is not guar-
anteed after the authentication.
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In order to cope with this problem, continuous
authentication is proposed (Altinok and Turk, 2003;
Kwang et al., 2009), which is shown as (b) in Fig. 1.
The security is guaranteed all the while that the appli-
cation is executed but the continuous authentication
brings a heavy load for the system. In fact, it was
reported that overhead of 42% was yielded in a con-
tinuous authentication system (Kwang et al., 2009).

On the other hand, we have proposed on-demand
authentication, where users are authenticated on a
regular or nonregular schedule on demand of authen-
tication from the system (Nakanishi et al., 2010). It is
illustrated as (c) in Fig. 1 and makes the system load
lighter.

By the way, the fingerprint and the iris are not suit-
able for the on-demand authentication because they
ask users to present their biometric data every au-
thenticating. In other words, the continuous or on-
demand authentication needs unconscious biometrics.
As the unconscious biometrics, the face, ear, voice,
keystroke and gate are applicable but the face and the
ear are easily imitated using artifacts and the voice,
keystroke and gate limit applications.

It has been proposed to use the brain wave as the
biometrics (Poulos et al., 1999c; Poulos et al., 1999a;
Poulos et al., 1999b; Paranjape et al., 2001; Ravi and
Palaniappan, 2005; Palaniappan, 2005b; Mohammadi
et al., 2006; Marcel and Millan, 2007; Palaniappan
and Mandic, 2007; Singhal and Ramkumar, 2007; Ri-
era et al., 2008). The brain wave is generated by ac-
tivities of neurons in the cerebral cortex; therefore,
it is kept in the body and so it is effective for anti-
circumvention. Of course, the brain wave possesses
the function of liveness detection because it is gener-
ated only by live human beings. Moreover, the brain
wave is generated autonomously and unconsciously;
therefore, it enables the on-demand authentication.
Conversely, since users are required to put sensors on
their scalp every authentication under present tech-
nologies, the brain wave is not suitable for the one-
time-only authentication1.

Considering these facts, operator verification of
systems such as computers and vehicles are suitable
for the authentication using the brain wave as shown
in Fig. 2. The operator wears a brain wave sensor
and he/she is verified on demand while using the sys-
tem. For instance, in remote education systems, stu-
dents should be authenticated while learning. It is
even more so for the students who are trying to obtain
some academic degree or public qualification. Also,
operators of public transportation systems should be
authenticated while operating since hundreds of hu-

1It will be solved if contactless sensors for detecting
brain waves are invented in the future.
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Figure 2: Authentication of operators using the brain wave.

man lives depend on them. There are other examples:
pilots of aircrafts, drivers of emergency vehicles, op-
erators of military weapons and so on.

We had confirmed verification performance using
the α band in the case where users were relaxed in
eye-closed condition (Nakanishi et al., 2009). Also,
assuming user authentication of computers, we eval-
uated the verification performance when users were
concentrating on the mental composition with closed
eyes (Nakanishi et al., 2010). The mental composi-
tion was a mental task in which the user was mentally
making sentences. However, these were in eye-closed
condition. For applying the authentication using the
brain wave in practical environments, it is needed to
evaluate verification performance in eye-opened con-
dition.

In this paper, assuming driver authentication,
users (drivers) are authenticated by using brain waves
while virtual-driving. As a mental task in eye-opened
condition, we adopt route tracing in which the drivers
verify actual routes with memorized ones.

If the detection of catnapped and/or drunkard op-
erators using the brain wave is possible, it is ex-
pected to be integrated with the operator’s on-demand
authentication and will become valuable protection
against having accidents.

2 VERIFICATION USING BRAIN
WAVES

2.1 Brain Wave

Electrical changes from large number of synapses
(neurons) in the cerebral cortex are accumulated and
then detected as a brain wave (Electroencephalogram:
EEG) on scalp using an electrode. Because of spa-
tiotemporal dispersiveness of neurons, there are not
distinct patterns in the EEG in general. However,
when the activity of the cerebral cortex becomes
low, brain waves partially become synchronous and
thereby some distinctive wave is observed. As such
waves,δ (0.5-3Hz), θ (4-7Hz), α (8-13Hz), andβ
(14-30Hz) are well known and detectable when hu-
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Figure 3: Block diagram of the proposed verification system.

man beings are during deep sleep, getting sleepy, re-
laxed with closed eyes, and in some mental activity,
respectively. In particular, theα and/orβ waves are
applicable for person authentication.

2.2 Feature Extraction and Verification

In order to actualize the authentication using the
EEG, architecture for feature extraction and verifica-
tion must be as simple as possible.

We have confirmed that the spectral distribution
in theα band is an important feature for distinguish-
ing individuals (Nakanishi et al., 2009). It is, how-
ever, known that when some mental activity is being
done, theα wave is suppressed while theβ wave be-
comes detectable. Also, for verification in mental-
tasked condition, we proposed to fuse an individual
feature in theβ band with those in theα band (Nakan-
ishi et al., 2010).

In this paper, dividingα-β band into several parti-
tions, the difference between a mean value of power
spectra in tasked condition and that in relaxed con-
dition at each partition are utilized as an individual
feature.

The reason why theα-β band is divided is that
the distribution of spectra in theα-β band depends
on an individual; therefore, each partition has differ-

ent effect on verification Distribution of spectra atα-β
band is not a uniform state. Therefore, to find and uti-
lize distinguishable partitions might be effective for
verification.

The block diagram of the proposed verification
system is described in Fig. 3. In advance of the verifi-
cation, the enrollment of templates is performed. The
enrollment has two stages. Firstly, EEGs of a user in
relaxed and eye-opened condition are measured sev-
eral (L) times and then an ensemble mean value ofL
power spectra in each partition is calculated. Next,
in mental-tasked condition, similar measurements are
done and then each ensemble mean value of power
spectra is obtained. The mean values in all partitions
are stored as templates in the system.

In the verification, an EEG is measured once in
the mental-tasked condition and the verification score
S is calculated by

S=

P

∑
p=1

||sr
t − sm

t |− |sr
t − sm||p (1)

whereP is the number of partitions,sr
t and sm

t are
templates in the relaxed and tasked condition, respec-
tively and sm is a mean value of a partition in the
tasked condition at the verification stage.

If S is less than a threshold, the user is authenti-
cated genuine.

SECRYPT 2011 - International Conference on Security and Cryptography

92



3 DRIVER AUTHENTICATION
WHILE ROUTE TRACING

Several authentication methods using the EEG in
mental activities have been proposed (Palaniappan,
2005b; Marcel and Millan, 2007; Palaniappan,
2005a). The mental tasks are, however, invented
from a viewpoint of brain sciences: mental arithmetic,
mental rotation of a three-dimensional block and so
on. In the case of on-demand authentication, if actual
tasks (works) are different from mental ones, users
are required to perform the mental task every authen-
tication and thereby it makes the authentication con-
scious. The mental task should be related with the ac-
tual one for keeping the authentication unconscious.

In the authentication of computer users, we mea-
sured EEGs during a mental task where subjects are
making sentences mentally (Nakanishi et al., 2010).
This task was called the mental composition. In this
paper, we assume authentication of drivers and mea-
sure EEGs when subjects are driving.

3.1 Route Trace

Drivers control their cars by processing audio-visual
information and then moving four limbs. Addition-
ally, the information processing and the motion are
repeated in no time; therefore, it is difficult to extract
only the mental task in practical driving. On the other
hand, it carries a risk of having some accident in ex-
periments for subjects to drive cars actually. As a re-
sult, it is necessary to define what a mental task is with
risk-free in driving.

In this paper, we define a new mental task where
drivers are checking landmarks in view with their
memorized ones. For convenience, we call this task
route trace hereafter. The route trace is a supposable
task for the drivers; therefore, it enables unconscious
authentication.

3.2 Making of Driving Scenes

In order to perform the route trace in a laboratory en-
vironment, we prepared driving scenes which were
presented to subjects. They were captured by a digi-
tal video camera which was put on a dashboard in the
forward direction of a car. A still image of the scene
is indicated in Fig. 4.

The car was driven to turn at as many intersections
as possible in order to give the subjects a heavy mental
load in verifying landmarks in view with their memo-
rized ones. Captured scenes are loaded in a computer
and scenes with poor visibility and/or out-of-focus are

Figure 4: A driving scene.

eliminated and as a result, we prepared a driving scene
of three minutes long.

3.3 Measurement of Brain Waves

The number of subjects was 12. All are male around
20 years old and had driver’s licenses. Firstly, the
driving scene was presented to them while they were
requested to memorize landmarks. Next, a brain wave
sensor was worn on them and the same driving scene
was presented again. The subjects were requested to
trace a route by checking the landmarks.

The brain wave sensor was a consumer single-
channel electroencephalograph. By using a headband,
a single electrode (sensor) was set on the frontal re-
gion of head which corresponded to the frontal pole
(Fp1) defined by the international standard: 10/20
method. The specifications are summarized in Table
1.

Table 1: Specifications of the brain wave sensor.

Frequency Range 1-24 Hz
Minimum Voltage 5 µVp−p
Maximum Voltage 80µVp−p
Sampling Frequency 128 Hz

An experimental scene is shown in Fig. 5. Distance
between the subjects and a display was about 1 m.

The measurement was carried out twice a day and
it was repeated five days and so 10 EEGs were ob-
tained from each subject and 120 EEGs were obtained
in total. In addition, for making templates, five EEGs
in relaxed condition for each subject were obtained by
measuring once a day for five days.
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Figure 5: An experimental scene.

3.4 Verification Experiments

EEGs of one minute long were used in verification.
The average numberL was set to five, that is, five
EEGs of each subject were used for generating his/her
templates. The rest five data of each subject were used
for the verification and all other subjects’ data were
used as those of imposters.

For reference, spectra of two subjects atα −
β band in relaxed and mental-tasked condition are
shown in 6. Additionally, frequencies which caused
these variations depend on the subjects; therefore, it is
expected that the difference between the power spec-
tra in relaxed and in mental-tasked condition becomes
an individual feature.

In this paper, setting the number of partitions inα-
β band:P to 4, that is, 8-11 Hz, 11-14 Hz, 14-17 Hz
and 17-20 Hz, we evaluated verification performance
at each partition by using the equal error rate (EER)
where the false acceptance rate (FAR) is equal with
the false rejection rate (FRR). The results are summa-
rized in Table 2. It is interesting that each band has

Table 2: Verification performance.

Partition (Hz) EER (%)
8-11 41
11-14 37
14-17 32
17-20 34

a different EER. In particular, the EER of 8-11 Hz is
the biggest. As shown in Fig. 6, the discriminative
spectra inα band in the relaxed condition were not
observed in the mental-tasked condition. Such a large
variation might have an influence on increasing the er-
ror rate since normalization was not performed in this
verification.

Next, we evaluated the performance by combin-
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(b) Subject B

Figure 6: Spectra of two subjects, in (a): relaxed condition
and (b): mental-tasked condition.

ing scores in three partitions except the 8-11 Hz. The
variation of the FAR and FRR with the threshold in
the final decision are plotted by the solid line and the
dashed one, respectively in Fig. 7. The intersection
of these curves corresponds to the EER and it was 31
% in this case.
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Figure 7: Error rate curves.

4 CONCLUSIONS

Assuming driver authentication as one of applications
based on on-demand operator authentication, we mea-
sured EEGs of drivers when they were route-tracing.
And we evaluated verification performance using the
difference between the power spectrum atα-β band in
relaxed condition and that in mental-tasked condition
as an individual feature. Using 12 subjects, we ob-
tained the best EER of 31 % when the scores in 11-14
Hz and 14-17 Hz are combined.

However, the performance is not high enough to
conclude that the authentication using the brain wave
is ready for practical use. There are many problems
to be overcome. We are now assembling the database
of the brain wave using large number of subjects and
evaluating the verification performance. It is also a
problem to introduce more powerful method into ver-
ification. In the future, it is necessary to evaluate
not only verification performance but also usability in
the on-demand authentication system using the brain
wave.
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