
SOFTWARE EFFORT ESTIMATION MODEL BASED
ON USE CASE SPECIFICATION

Xinguang Chen, Fengdi Shu
Lab for Internet Software Technologies, Institute of Software Chinese Academy of Sciences, Beijing, China

Ye Yang
Lab for Internet Software Technologies, Institute of Software Chinese Academy of Sciences, Beijing, China

Keywords: Use case, Software effort, Use case specification, Software estimation.

Abstract: Software effort estimation is essential for the project planning. Use case is widely used to capture and
describe the requirements of customers and used as an index of software measurement and estimation.
Based on the framework of traditional use case point estimation model, the paper presents UCSE, an effort
estimation model based on use case specification. Firstly, the model abstracts factors influencing software
effort from the use case specification and calculates the Use Case Weight, which is a kind of measurement
of use cases size. Secondly, a function is constructed to translate the software size expressed by Use Case
Weight to by software scale whose unit is kilo source line of code (KSLOC). Subsequently, effort
estimation model COCOMO II is used to estimate the software effort according to the estimated software
size measured by KSLOC. Compared with the traditional Use case point estimation model, UCSE model
makes use of more relevant information and is more operable since it provides more concrete and objective
references for the analysis and measurement of software effort factors in Use Case. What’s more, the
presented case study shows its results are more stable.

1 INTRODUCTION

How to select effective ways to improve accuracy of
software cost estimation has been the key in the
planning stage of software development. Long
software development cycle, many influencing
factors, emergencies and accidental events during
the software process lead to that people usually
make decision subjectively. That results in the
objectivity and accuracy in software cost estimation.
In 2004, Standish Organization statistics showed that
among more than 50,000 software projects, the ratio
of projects which could be completed is 29%, the
ratio of projects which could be questioned is 53%,
the ratio of projects which could be failed or
cancelled is 18%, and the ratio of projects which
could be finished but exceeded is 40% (Standish,
2004). It is widely believed that the main reason is
that people are lack of software effort estimation.

From the 1860s, software effort estimation
makes strong progress. At the beginning of research,
researchers have constructed the software effort

estimation model according to the characters of
software development and simple algorithm, such as
the SDC linear model (Boehm, 2005). Barry W.
Boehm put forward the COCOMO 81 (Boehm, 1981)
in 1981 and the COCOMO II (Boehm, 2000) in
2000. The COCOMO series establish the
relationship between software effort and software
scale, and adjust the function by a series of cost-
driving factors, which are the popular model.

As more and more software projects use the
unified modelling language (UML) to develop, use
case model is more and more used to capture and
describe the requirements of software. According to
the research of Neill in 2003, there are about 50%
projects adopting use cases or scenes to describe the
functional requirement (Neill, 2003). In 1993, the
first effort estimation method using use cases
(Karner, 1993) was proposed by Dr. Karner, which
was called use case point (UCP). Based on the UCP,
there were many related studies, which could be
generally classified to the 3 groups.

226 Chen X., Shu F. and Yang Y..
SOFTWARE EFFORT ESTIMATION MODEL BASED ON USE CASE SPECIFICATION.
DOI: 10.5220/0003463302260231
In Proceedings of the 6th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2011), pages 226-231
ISBN: 978-989-8425-57-7
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

Firstly, many case studies were used to validate
UCP. In 1999, John Smith from IBM proposed the
estimation framework based on the use case (Smith,
1999). The framework consists of five-level
structure which includes class, subsystem,
subsystem group, system, and multisystem.

Secondly, many researches were focused on the
improvements of UCP. In 2005, Carroll added a risk
parameter to the UCP (Carroll, 2005) to improve the
accuracy of UCP.

Thirdly, many researchers use UCP in different
specific areas. Nageswaran built the map from use
cases to test cases by using UCP and estimate the
test effort (Nageswaran, 2001).

To extract more concrete and objective
references for the analysis and measurement of
software effort factors in Use Case, the paper
proposes Use Case Specification Estimation model
(UCSE). The paper is organized as follows: section
2 discusses related and previous work; section 3
elaborates UCSE and section 4 presents a case study
of the model; and section 5 concludes the paper.

2 RELATED AND PREVIOUS
WORK

2.1 Use Case Point Model

Firstly, the model calculates weight of actor and
weight of use case to get the unadjusted use case
points (UUCP); secondly, the model adjusts UUCP
using technical factors and environment factors to
get UCP; finally, it establishes the relationship
between UCP and effort. Figure 1 shows the
procedure of UCP method.

Figure 1: Use case point model.

1）Unadjusted Actor Weight
The model classifies actors into 3 types: Simple,

Normal and Complex. We count the number of
actors in each type and multiply weighting factor
(WF) which the actor of every type corresponds to.
The unadjusted actor weight (UAW) is the sum of

all the results above. The symbol n is the quantity of
use cases.

n
UAW= Actor *WFi ii=1

∑ (1)

2）Unadjusted Use Case Weight
The model classifies use cases into 3 types
according to the scale of use case: Simple, Normal
and Complex. We count the number of use cases in
each type and multiply weighting factor (WF) which
the use case of every type corresponds to. The
unadjusted use case weight (UUCW) is the sum of
all the results above. The symbol n is the quantity of
use cases.

n
UUCW= UseCase *WFi ii=1

∑ (2)

3）Unadjusted Use Case Points
UAW plus UUCW equals unadjusted use case points
(UUCP).

UUCP=UAW+UUCW (3)

4）Other factors
The model uses technical complexity factors (TCF)
and environmental complexity factors (ECF) to
adjust the UUCP. TCF reflects the internal
properties of software, such as security, reusability
etc. ECF reflects the external properties of software,
such as personnel experience etc. Every factor has a
value of 0 to 5. The value reflects the degree of
every factor and judged subjectively. The equations
of TCF and ECF are shown below:

i=1
TCF=0.6+0.01*(T *Weight)i i13

∑ (4)

i=1
ECF=1.4+(-0.03)*(E *Weight)i i8

∑ (5)

We can calculate the UCP and Effort using
Equation (6) and (7):

UCP=UUCP*TCF*ECF (6)
Effort=UCP*Productivity Factor (7)

Productivity Factor is a coefficient of software
project which is calculated by historical data. Dr.
Karner thought that productivity factor equalled to
20 man-hours.

The traditional UCP considered sufficiently
information of use case in software development and
some impacts, but there are three problems: Firstly,
there is no definite reference to classify the actor and
use case. It is difficult to use. Secondly, some

SOFTWARE EFFORT ESTIMATION MODEL BASED ON USE CASE SPECIFICATION

227

information in use case which is also relevant with
software effort, such as extended event, is neglected.
Thirdly, the value of technical and environmental
factors is subjective.

2.2 COCOMO II

COCOMO II was proposed by Barry Boehm in 2000.
The model adjusts and updates the cost-driving
factors. EM is a multiplier of software effort; SF is
an index of scale factor; A and B are the parameters
whose value is adjusted by historical data.

nEEffort=A*(KSLOC) * EMii=1
∏ (8)

5
E=B+0.01* SFjj=1

∑ (9)

To COCOMO II：A＝2.94, B=0.91
Every cost-driving factor is corresponding to a

value of EM. Every value of EM should be put into
the function above to calculate software effort, cost
and schedule. The key of COCOMO II is the Kilo
source line of code (KSLOC). The accuracy of effort
depends largely on the accuracy of software scale.
Boehm thought the important input in COCOMO II
is KSLOC (Boehm, 2000).

3 UCSE MODEL

UCSE consists of several parts. First, based on the
framework of the traditional UCP, we analyse the
structure of use case specification, calculate the use
case weight (UCW) according to the document of
use case specification, and establish the relationship
between UCW and KSLOC. Subsequently, software
effort is calculated by COCOMO II based on the
estimated size in KSLOC. Use case specification is
used because it has full information to make up the
second problem of UCP presented in section 2.1.

The overview of UCSE model is shown in
Figure 2 and its main components are introduced in
following.

Figure 2: UCSE Model.

3.1 Unadjusted Actor Weight

The type of actors is important. In the use case
specification, actors could be easy to classify.
According to UCP and use case specification, the
actor factor is described in Table 1, which including
its classes and corresponding classification rules and
weights.

Table 1: Actor Factor.

Actor Class Rule Weight
Simple Only one actor 1

Medium Two actors 2
Complex Three or more actors 3

As shown in formula 10, unadjusted actor weight
(UAW) equals to the sum of the product of actor
class (AC) and class weight (CW), where n is the
quantity of use cases.

n
UAW = AC *CWii=1

∑ (10)

3.2 Event Weight

Event flow in use case specification describes the
scene of use case and reflects the steps of software
execution. Event flow is the main part in use case
specification. It has two types: primary event and
extended event. Effort is influenced differently by
two types. Primary event flow is important to scale
of use case, while extended event flow occurs in
some abnormal or special occasions. The traditional
UCP neglected the extended event. That may
produce some errors.

UCSE model provides classification rules of the
primary event and each class of primary event has its
weight, which is shown in Table 2:

Table 2: Primary Event Factor.

Event Type Rule Weight

Simple The number of primary event
flows ≤ 3

10

Medium The number of primary event
flows is between 4 and 7

15

Complex The number of primary events
flows ≥ 7

20

As shown in formula 11, unadjusted primary
event weight (UPEW) equals to the sum of the
product of primary event class (PEC) and class
weight (CW), where n is the quantity of use cases.

n
UPEW = PEC *CWii=1

∑ (11)

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

228

UCSE model provides classification rules of the
extended event and each class of extended event has
its weight, which is shown in Table 3:

Table 3: Extended Event Factor.

Event Type Rule Weight

Simple
The number of extended event
flows ≤ 5

5

Complex
The number of extended event
flows ≥ 5

7

As shown in formula 12, unadjusted extended
event weight (UEEW) equals to the sum of the
product of extended event class (EEC) and class
weight (CW), where n is the quantity of use cases.

n
UEEW = EEC *CWii=1

∑ (12)

As shown in formula 13, unadjusted event
weight (UEW) equals to the sum of UPEW and
UEEW.

UEW=UPEW+UEEW (13)

3.3 Unadjusted Use Case Weight

Actor and event are the most important parts in use
case specification, so unadjusted use case weight
(UUCW) the sum of UAW and UEW.

UUCW=UAW+UEW (14)

3.4 Business Rules

Traditional UCP has 13 TCFs and 8 ECFs, which
reflect two points in the software development: one
is restraint of actors; the other is the restraint of
operation rules. In the UCP, we identify these values
of factors subjectively. Business rules (BR) in the
document of use case specification reflect directly
the status of persons and technology and is more
objective to reflect the real status in software
development.

BR has two types: one is the global rules, the
other is special rules. Global rules usually are related
to every use case. For example, an actor needs to be
authorized to execute a use case, so the execution of
use case is corresponding to the level of Authority
Classes, or operations of users need to be recorded
in the system and so on. Special rule only exists in
the extended event. It cannot change as external
environment changes. For example, an order at least
has one type of goods, and the quantities of goods
need to be less than 5 and so on. Besides, data

verification belongs to special rule. For example, the
number of identification card must be 15 or 18
digits, and zip code must be 6 digits and so on. We
classify special rules into Standard, Medium and
Complex, which is shown in Table 4:

Table 4: Business Rules.

Type Rule Weight
Global Rules global rules exist 1.05

Special
Rules

Simple No special rule 1.0

Medium
≤ 50 percent of use
cases has special rules

1.5

Complex
≥ 50 percent of use
cases has special rules

2

Use case weight (UCW) equals to the product of
UUCW and BR.

UCW=UUCW*BR (15)

3.5 Relationship between UCW and
KSLOC

KSLOC measures the scale of software, and UCW
measures the scale of use case. The UCSE model
establishes the relationship between KSLOC and
UCW.

Regression is a common statistical method to
determine the quantitative relationship between two
or more variables. Regression has two types: one is
linear regression, the other is non-linear regression.
Exponential function and logarithmic function are
common non-linear function. We will determine the
function between KSLOC and UCW by using data
of 14 projects. The function is shown as:

KSLOC=f(UCW) (16)

3.6 Effort Function

We input KSLOC into COCOMO II and the
function of effort is shown as:

n
E

i
i=1

Effort=A*(f(UCW)) * EM∏ (17)

5

j
j=1

E=B+0.01* SF∑ (18)

4 CASE STUDY

We carry out a case study on 14 software projects
based on their use case specification. The first 10
projects (EP1 to EP10) are used to make regression

SOFTWARE EFFORT ESTIMATION MODEL BASED ON USE CASE SPECIFICATION

229

analysis on KSLOC and UCW. The other four (VP1
to VP4) are used to validate the UCSE model.

EP1 is a human resource system; EP2 is a tool
which integrating some estimation tools; EP3~EP10
are different versions of a software process
management platform. The data of these projects are
shown Table 5:

Table 5: Data of Projects.

Project Number of Use case UCW KSLOC
EP1 5 125 6.034
EP2 7 199.5 13.52
EP3 60 3307.5 169.7
EP4 164 4192 250
EP5 186 4110 194
EP6 189 3687.08 191
EP7 195 5471.55 228
EP8 222 6575.1 294.8
EP9 312 13657.8 618

EP10 278 16989 824.8

4.1 Regression Analysis

We use UCW and KSLOC to make regression
analysis. The result is shown in Figure 3:

Figure 3: Regression Curve.

The result of the three regression equations is
shown in Table 6:

Table 6: Regression Equation.

 Regression Equation 2R

Linear regression 0.046 13.43y x= + 0.988

Indicial Regression
0.00141.31 xy e= 0.595

Power Regression
0.9620.069y x= 0.993

The result shows that the power function
regression equation is very simple and ideal. The
coefficient is highest (0.993). Therefore, UCSE
model uses the power function. The graph of power
function regression equation is shown in Figure 4:

Figure 4: Graph of power regression equation.

So the equation is shown as:

0.962KSLOC=0.069*UCW (19)

4.2 Result Analysis

VP1-VP4 was developed based on their use case
specifications. VP2 is a customized software process
management platform. The four projects were
estimated by UCP and UCSE model respectively to
get estimated effort. We calculate relative error,
average relative error and standard deviation to
compare two models. In Table 7, EE is the
Estimated Effort and RE is the Relative Error. The
result is shown in Table 7:

Table 7: Estimation Results of UCSE and UCP.

Real
Effort

UCSE Model UCP Model

EE RE EE EE

VP1 2281.39 2840.24 0.24 3114.40 0.37

VP2 3426.65 3865.64 0.13 3931.20 0.15

VP3 2625.58 2505.10 -0.05 2479.80 -0.06

VP4 3110.75 3697.62 0.19 3587.90 0.15

Average Relative
Error

0.1519 0.1803

Standard
Deviation

0.0739 0.1135

From Table 7, we can see that the estimation
results of UCSE model are better than those of UCP
model except as for VP4. The average relative error
and standard deviation of UCSE model are less than
the UCP model. The UCSE model analyses the
document of use case specification sufficiently,
includes the extended event which was neglected by
UCP model, improves the way to identify the weight
of actors and event flows, and uses business rules
instead of TCFs and ECFs. UCSE model improves

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

230

the operability so that the results are more accuracy
and steady.

5 CONCLUSIONS

Use case is a common tool and penetrates through
the software development. Use case specification is
the document of use case and is easy to reflect and
describe the software process. The paper proposes
UCSE model to improve the accuracy of estimating
and be more operable since it provides more
concrete and objective references for the analysis
and measurement of software effort factors in use
case. The result of UCSE model is better than
traditional model. However, the usage of the model
is related to the form of the use case specification,
which lacks uniform standard. So the future work
includes how to overcome this limit and enhance the
applicability of UCSE model.

ACKNOWLEDGEMENTS

This work is supported by the National Natural
Science Foundation of China under Grant
Nos.60873072 ， 61073044, and 60903050; the
National Science and Technology Major Project; the
National Basic Research Program under Grant
No.2007CB310802; CAS Innovation Program.

REFERENCES

The Standish Group. (2004). The 3rd Quarter Research
Report. (n.d.), from http://www.standishgroup.com.

Boehm B. W., Valerdi R. (2005). Achievements and
challenges in software resource estimation. Retrieved
May 13, 2005, from http://sunset.usc.edu/public
ations/TECHRPTS/2005/usccse2005-513/usccse2005-
513.pdf

Boehm. B. W. (1981). Software Engineering Economics
(1st ed.). NJ: Prentice-Hall

Boehm. B. W., Madachy R. and Steece B. (2000).
Software Cost Estimation with COCOMOII (1st ed).
NJ: Prentice-Hall

Guarv Karner. (1993). Resource Estimation for Objectory
Projects. Objective Systems SF AB (Copyright owned
by Rational Software)

John Smith. (1999). The estimation of effort based on use
cases. Rational Software White Paper

Neill C. J., Laplante P. A. (2003). Requirements
engineering: the state of the practice. IEEE. 20 (11).
40-45, doi:dx.doi.org/10.1109/MS.2003.1241365.

Carroll E. R. (2005). Estimating software based on use
case points. Proceedings of the Companion to the 20th
annual ACM SIGPLAN conference. 257-265.
doi:dx.doi.org/10.1145/1094855.1094960.

Nageswaran S. (2001). Test effort estimation using use
case points. Proceedings of the 14th Internet &
Software Quality Week.

SOFTWARE EFFORT ESTIMATION MODEL BASED ON USE CASE SPECIFICATION

231

