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Abstract: Denial of Service (DOS) network attacks continue to be a widespread problem throughout the internet. 
These attacks are designed not to steal data but to prevent regular users from accessing the systems. One 
particularly difficult attack type to detect is the distributed denial of service attack where the attacker 
commandeers multiple machines without the users’ awareness and coordinates an attack using all of these 
machines. While the attacker may use many machines, it is believed that the underlying characteristics of 
the resultant network traffic are fundamentally different than normal traffic due to the fact that the 
underlying dynamics of sources of the data are different than for normal traffic. Chaos theory has been 
growing in popularity as a means for analyzing systems with complex dynamics in a host of applications. 
One key tool for detecting chaos in a signal is analyzing the trajectory of a system’s dynamics in phase 
space. Chaotic systems have significantly different trajectories than non-chaotic systems where the 
trajectory of the chaotic system tends to have high fractal dimension due to its space filling nature, while 
non-chaotic systems have trajectories with much lower fractal dimensions. We investigate the fractal nature 
of network traffic in phase space and verify that indeed traffic from coordinated attacks have significantly 
lower fractal dimensions in phase space. We also show that tracking the signals in either number of ports or 
number of addresses provides superior detectability over tracking the number of bytes. 

1 INTRODUCTION 

Denial of Service (DOS) network attacks continue to 
be widespread throughout the internet. 
Consequently, considerable research has been 
focused on developing algorithms for detecting DOS 
and distributed DOS attacks based on the 
characteristics of the incoming data patterns (Li, 
2006); (Li, 2006); (Xiang et al., 2004); 
(Limwiwatkul and Rungsawang, 2004); (Mitrokotsa 
and Douligeris, 2005); (Oke et al., 2007); (Loukas 
and Oke, 2007). The first step to developing a 
successful detection algorithm is to determine the 
characteristics of the data which may support the 
discrimination of attacks from traditional traffic. 
There are a variety of available standard datasets, 
however, the authors have found these data sets have 
one of three limitations: (i) they are from ‘honey 
pot’ servers where limited normal traffic and attack 
data are available, (ii) they are semi-fabricated 
where simulated attack data is added to normal 
traffic, or (iii) the entire data set is simulated, where 
these datasets include MIT, DARPA, USC, 

Berkeley, and KDD datasets (Li, 2006); (Mitrokotsa 
and Douligeris, 2005); (Oke et al., 2007). The 
current research discussed in this paper is unique in 
that it is developed around actual network traffic 
from the main server within the University of 
Michigan-Flint Information Technology Services 
(ITS) system. Hence the data represents significant 
portions of real-world traffic collected in two 
independent collection exercises three months apart 
in time. These data sets contain actual orchestrated 
known attacks from the parent school’s (University 
of Michigan in Ann Arbor) ITS organization which 
regularly tests the three campuses of the university 
system for security weaknesses, including using 
DOS and DDOS attacks. 

By their very nature, DDOS attacks are designed 
to be hidden from the network routers until the point 
where they overwhelm the systems. Korn and Faure 
(2003) note that ‘the tools of nonlinear dynamics 
have become irreplaceable for revealing hidden 
mechanisms”. Specifically, chaos theory has been 
successfully used to model many naturally occurring 
processes in physics, and most recently have also 
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found success in modeling biological neural activity 
(Korn and Faure, 2003). In this paper, we are 
motivated from research in chaos theory to analyze 
the signals in phase space since as Tel and Gruiz 
(2006) note “[one difference] between chaotic and 
non-chaotic systems is that, in the former case, the 
phase space objects … trace out complicated 
(fractal) sets, whereas in the non-chaotic case the 
objects suffer weak deformations”. Since it is 
extremely difficult to prove the existence of chaos in 
finite duration signals, Velaquez (2005) proposes a 
more pragmatic approach by suggesting “attractor-
like” behavior of signals rather than committing to 
the existence of true chaos. He also notes that the 
non-predictable nature of [these] signals may be 
neither from chaos or stochastic origins but from an 
aperiodic forcing phenomenon. 

In this paper we will demonstrate that both 
normal network traffic and DOS network traffic 
exhibit interesting yet dramatically different 
trajectories in phase space, and that fractal analysis 
of the phase space will provide a mechanism for 
differentiating DDOS attacks from normal network 
traffic in an actual university-wide network. The key 
contributions of the research discussed in this paper 
are: (i) propose analyzing network traffic in phase 
space for detecting DDOS attacks, (ii) provide a 
characterisation of normal network traffic versus 
known DDOS attack traffic in phase space, (iii) 
provide this characterization on actual real-world 
data, collected from the main network of a 
university, and (iv) use these characterizations to 
identify the best network traffic data fields for 
detecting DDOS attacks and provide values for the 
key analysis parameters to analyze these signals. 

2 RELATED WORK 

There are a number of directions of algorithmic 
approaches addressing DDOS detection, including: 
neural networks operating on raw network data 
(Mitrokotsa and Douligeris, 2005), second-order 
statistical measures of traffic (Li et al., 2008); 
(Rohani et al., 2007); (Feinstein et al., 2003) and 
rule-based detection (Limwiwatkul and 
Rungsawang, 2004). 

There have also been a number of studies using 
fractal-related measures of the time-domain network 
signals to detect attacks, including measures based 
on long-range dependencies using the Hurst 
parameter (Li, 2006); (Xiang, Lin, Lei, and Huang, 
2004), a hybrid approach using raw data and Hurst 
parameters (Oke et al., 2007), and more recently 

multi-fractal analysis (Liangxiu et al., 2002); 
(Masugo, 2002). One team has even analyzed 
network signals in phase space, however, it was for 
the detection of worms rather than DDOS attacks Hu 
et al., (2007). The directions of research using the 
Hurst parameter and multi-fractal analysis are based 
on the fact that network traffic is comprised of a 
large number of individual connections with high 
variability in duration and number of packets. 

These various studies also used a variety of data 
fields with which they analyzed the network traffic. 
The most common data across these studies are the 
number of bytes or the number of packets 
transmitted within a time window with the following 
researchers using either of these values exclusively 
(Liangxiu et al., 2002); (Masugo, 2002); (Li, 2006); 
(Xiang et al., 2004). 

Researchers such as (Limwiwatkul and 
Rungsawang, 2004); (Mitrokotsa and Douligeris, 
2005); (Oke et al., 2007) recognized that more 
sophisticated attacks, which exploit network security 
weaknesses other than basic bandwidth limitations, 
require the analysis of additional data fields such as: 
- number of source IP addresses per time interval 
- number of destination IP addresses per time 

interval 
- delay of packets within router 
- number of source ports per time interval 
- number of destination ports per time interval 
- etc. 

3 NETWORK TRAFFIC 
PARAMETERS 

Recognizing that DDOS attacks are becoming 
increasingly sophisticated, in this study we will 
analyze the phase space characteristics for normal 
and DDOS attack signals for the following data 
types: 
- number of bytes,  
- number of source and destination IP addresses, and  
- number of source and destination ports. 

 

For analyzing network data the instantaneous signal 
has been shown to be not as important as the 
aggregated signal within a time window (Masugo, 
2002); (Li and Zhao, 2008); (Gregg et al., 2001); 
(Li, 2006); (Piskozub, 2002). The aggregation 
window is set in terms of milliseconds rather than 
incoming data samples since we are specifically 
interested in the temporal variations (i.e. bursts) in 
the signal. Specifically for distributed DOS attacks 
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we anticipate that the measures such as number of 
source IP addresses and number of source ports per 
time interval may be valuable measures.  Also we 
will demonstrate that for port and destination 
address-based attacks, there is actually a very 
interesting behavior of the aggregated number of 
bytes per time interval during attacks. 

4 FRACTAL MEASURES IN 
PHASE SPACE 

When analyzing a time series, the most common 
measure for detecting chaos is the calculation of the 
Lyapunov exponents (and all related measures) of 
the phase space trajectories, which provide “ useful 
bounds on the dimensions of the attractors” 
(Eckmann and Ruelle, 1985). Eckmann and Ruelle 
(1985) also state that: “the Lyapunov exponents, the 
entropy, and the Hausdorff dimension associated 
with a phase plot …all are related to how excited 
and how chaotic a system is”. From the domain of 
fractal analysis, there are three classes of measures 
used for computing fractal dimensions: (i) 
morphological dimensions, (i) entropy dimensions 
and (iii) transform dimensions (Kinsner, 2005). 
When applied to analyzing chaotic dynamics, these 
morphological measures are applied to the phase 
space plot to estimate the fractal dimension, where 
higher fractal dimensions imply the existence of 
chaos. 

Most morphological-based dimension measures 
are either directly related to or motivated by the 
Hausdorff dimension,  A

s
h

 which is defined as 

(Peitgen, Jurgens, and Saupe, 1992): 
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where iU  is the set of hyperspheres of dimension s 

and of diameter of    iUdiam , providing an open 

cover over space A. 
While the Hausdorff dimension is a member of 

the morphological dimensions, it is not easily 
calculated. Fortunately, there are numerous 
dimensions, such as the Box Counting dimension 
which are closely related (and provably upper 
bounds to the Hausdorff dimension) and are 
attractive because they are relatively easy to 
compute (Kinsner, 2005). The Information 
dimension is another closely related dimension 
which is also quite popular and in some cases 

believed to be more effective, but slightly more 
complicated to compute compared to the Box 
Counting method (Kinsner, 2005). The Box 
Counting dimension  ABdim  is defined as (Peitgen 

et al., 1992); (Theiler, 1990): 
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where  AN  is the smallest number of boxes of size

 that cover the space A. Very simply, the Box 
Counting dimension is a computation of the number 
of boxes of a given size within which some portion 
of the trajectory can be found. Note, however, that it 
does not count how many points from the trajectory 
fall within the box. The Information dimension 
provides a weight as to how often the trajectory can 
be found in the box and is defined based on 
Shannon’s definition of the sum of the information 
across all boxes at a given resolution (Theiler, 
1990); (Roberts, 2005): 

  
i

i
P

i
PS    ,

2
log

 
(3)

 

 
   Aii BP  / where 

 

is the density of the phase plot 

trajectory inside box Bi and  A  is the overall 

density of the entire trajectory.  The Information 
Dimension, finfo, is then defined to be (Theiler, 
1990): 
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The management of the box sizes and their 
overlay upon the phase plot are identical in each 
method. A simple least squares fit of the log-log plot 
of the number of boxes required for the cover versus 
the box dimension provides the final dimensional 
measure. For all of the analysis in this paper, the 
Information dimension will be used since it is more 
robust to low amplitude stray orbits in the 
trajectories since it weights how often a particular 
box is visited (Roberts, 2005). 

5 PROCESSING TIME SERIES IN 
PHASE SPACE 

The processing flow for analyzing network traffic 
data in phase space is provided in Figure 1. The 
network traffic data we will be analyzing consists of 
the packet header information collected using TCP-
Dump. The critical parameters which we will be 
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analyzing to determine an optimal range of values 
are: (i) Aggregation Window Length, (ii) Data 
Window Length, (iii) Low Pass Filter Length, and 
(iv) Time Lag, and a graphical representation of how 
each fits into the data collection process is provided 
in Figure 2. The first step in the processing is to 
aggregate data. 

 

Figure 1: Processing flow for phase space analysis of 
network traffic. 

 

Figure 2: Representation of the various critical data values 
to be analyzed. 

When we analyze normal network traffic packet 
headers as shown in Figure 3 does not appear 
significant as can be seen by the modest changes in 
the phase plots shown in Figure 5, with a window 
between 5 and 50 milliseconds providing roughly 
the same fractal dimension (finfo varies from 1.43 to 
1.54 in this range). Likewise the varying time 
domain behavior of an attack signal for a range of 5 
to 50 milliseconds in Figure 4 and their 
corresponding phase plots in Figure 6. The phase 
plots provided in Figure 5 and Figure 6 show the 
dramatic difference in the structure of the phase plot 
for normal traffic versus attack traffic. The 
difference in the structure of these phase plots 
clearly reinforce the comments mentioned in the 
introduction by Tel and Gruiz (2006) regarding the 
relative complexity of phase plots between normal 
and chaotic data. The analysis of this section of the 

paper will determine the optimal parameters for 
detecting and hence exploiting this difference. 

 

(a) 

(b) 

(c) 

(d) 

Figure 3: Time series for number of source ports for 7000 
samples with 5000 point time lag for normal signal traffic: 
(a) 5 millisecond aggregation window, (b) 10 millisecond 
aggregation window, (c) 20 millisecond aggregation 
window, and (d) 50 millisecond aggregation window. 

One tradeoff on the aggregation window will be 
the sheer magnitude of the data to be integrated. We 
would like to eventually develop algorithms for 
detecting and removing these chaotic signals within 
the network routers and hence would like to 
maintain reasonable data lengths. As we see in 
Figure 4 aggregation windows as short as 5-10 
milliseconds provide reasonable signal 
manifestation. Another factor to maintain shorter 
aggregation windows is that longer windows can 
adversely affect the non-chaotic nature of an attack 
signal since it will be buried in an extremely large 
amount of normal network traffic. This effect can be 
seen in Figure 7 showing the histograms of the 
Information Dimension calculated for a run within a 
data file containing known attack signals 
interspersed in a background of normal traffic. Thus 
there should be two peaks in the histogram, one 
corresponding to the periods of attack and one 
during periods of normal traffic. These histograms 
were generated for 5, 10, 20, and 50 millisecond 
aggregation windows. Notice at the longer 50 
millisecond aggregations the attacks become masked 
by the normal traffic and there is no clear distinction 
in the histogram. Likewise there appears to be the 
beginnings of a breakdown in separability at 20 
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milliseconds, and the clearest distinction between 
attack and normal traffic is at 10 milliseconds, where 
the separability is actually quite promising.  Thus for 
the remainder of this study we will use a 10 
millisecond aggregation period. 

 

(a) 

(b) 

(c) 

(d) 

Figure 4: Time series for number of source ports for 7000 
samples with 5000 point time lag for attack signal traffic: 
(a) 5 millisecond aggregation window, (b) 10 millisecond 
aggregation window, (c) 20 millisecond aggregation 
window, and (d) 50 millisecond aggregation window. 

The second step of the processing is to build the 
data windows from which the phase plots will be 
constructed. Its value is driven by the desired time 
lag and number of points that can be used to build 
the trajectories in phase space. Shorter times are not 
representative, and longer times have less negative 
impact but do increase processing and storage loads. 
We found that between 1000 and 2000 samples 
build a robust and representative phase space 
trajectory. Note that the actual time duration of these 
data windows will vary since we are integrating 
numbers of aggregated samples rather than specific 
time periods. We will show in subsequent analysis 
that a 5000 point time lag produces the best 
separation in fractal dimension between normal and 
attack traffic. The combination of desired lag time 
and adequacy of developed phase space trajectory 
results in the selected time window to be 7000 
samples. 
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Figure 5: Exploring the effect of aggregation window size 
on phase plot for number of source ports of 7000 
aggregated samples with a time lag of 5000 for normal 
traffic: (a) 5 millisecond aggregation window (finfo =1.41), 
(b) 10 millisecond aggregation window (finfo =1.34), (c) 20 
millisecond aggregation window (finfo =1.35), and (d) 50 
millisecond aggregation window (finfo =1.31). 
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Figure 6: Exploring the effect of aggregation window size 
on phase plot for number of source ports of 7000 
aggregated samples with a time lag of 5000 for attack 
traffic: (a) 5 millisecond aggregation window (finfo =1.30), 
(b) 10 millisecond aggregation window (finfo =0.81), (c) 20 
millisecond aggregation window (finfo =0.99), and (d) 50 
millisecond aggregation window (finfo =0.74). 

The third step in the processing defined in Figure 
1 is to apply a low pass filter to the aggregated data 
stream. Low pass filtering is a critical step in the 
processing since it has been found that the presence 
of noise can mask the effects of chaos in phase 
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space, which is tellingly shown in the phase plots of 
Figure 10 (a) and Figure 11 (b). The length of the 
low-pass filter is a particularly sensitive parameter 
since having too large of a filter window will 
introduce correlation in the signal and likewise 
distort the chaotic nature of the underlying signal, 
thereby reducing the space-filling nature of the 
trajectory (Rosenstein and Collins, 1994). 

 
(a) (b) 

 
(c) (d) 

Figure 7: Histograms of the fractal dimensions calculated 
with aggregation window size on phase plot for number of 
source ports of 7000 aggregated samples with a time lag of 
5000 for network traffic containing both normal traffic 
(higher fractal dimensional peak) and attack traffic (lower 
fractal dimensional peak): (a) 5 millisecond aggregation 
window, (b) 10 millisecond aggregation window, (c) 20 
millisecond aggregation window, and (d) 50 millisecond 
aggregation window. 

The signal characteristics for normal traffic of 
the number of source ports ranging from raw data 
(filter length of one) to a filter integration window of 
50 samples is provided in Figure 8, and the resultant 
phase plots of these signals are provided in Figure 
10.  Likewise signal characteristics for attack traffic 
of the number of source ports ranging from raw data 
(filter length of one) to a filter integration window of 
50 samples is provided in Figure 9 and the resultant 
phase plots of these signals are provided in Figure 
11. In Figure 10 (a) the randomness of the phase plot 
for normal traffic is due to the underlying noise, 
while in Figure 10 (b) the structure of the phase plot 
becomes apparent. Note how the trajectory of the 
signal is less space filling from Figure 10 (b) and (c) 
to Figure 10 (d) as the filter window increases to 50 
samples. The noise in the signal is also clearly 
visible in the phase plot of the attack signal without 
filtering shown in Figure 11 (a). Also as the filter 
length increases, the fact that the longer filter can 
negatively impact the fractal nature of the 
underlying signal can be witnessed clearly when 
comparing  Figure 12 (a) and (b) of the histograms 
of the fractal dimension of the network traffic.  

Notice that the large peak on the right side of the 
histogram is clearly separable from the non-fractal 
traffic represented by the lower fractal dimension 
left peak in Figure 12 (a) while in Figure 12 (b) the 
peak of higher fractal dimension has dramatically 
migrated to the left hence mixing with the lower 
fractal dimension peak thereby greatly reducing the 
separability of the normal and attack traffic. 

 

(a) 

(b) 

(c) 

(d) 

Figure 8: Time series for number of source ports for 
normal signal traffic: (a) without filtering, (b) with 10 
point low pass filter, (c) with 20 point low pass filter, and 
(d) with 50 point low pass filter. 

(a) 

(b) 

(c) 

(d) 

Figure 9: Time series for number of source ports for attack 
signal traffic: (a) without filtering, (b) with 10 point low 
pass filter, (c) with 20 point low pass filter, and (d) with 
50 point low pass filter. 
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A window size between ten and twenty samples 
appears optimal for unmasking the underlying 
trajectory structure and providing the greatest 
separation in the fractal dimension of the normal and 
attack traffic as can be seen from the fractal 
dimension of Figure 10 (b) and Figure 11 (b).  Since 
the shorter window requires less processing we will 
use a ten point Gaussian low-pass filter for all the 
signals in this paper. 
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Figure 10: Exploring the effects of low pass filtering on 
phase plot for number of source ports (7000 samples with 
5000 point time lag) for normal signal traffic: (a) without 
filtering (finfo =1.20), (b) with 10 point low pass filter (finfo 
=1.30), (c) with 20 point low pass filter (finfo =1.32), and 
(d) with 50 point low pass filter (finfo =1.12). 

The fourth stage in the processing defined in 
Figure 1 performs the actual generation of the phase 
plots. One key value we will see is also the Lag 
Time which is critical to the construction of the 
phase plots. The phase plot of the signal is computed 
by mapping each point in the time series to an 
(amplitude, delta amplitude) location. The delta 
amplitude value is computed by comparing a 
specific time series point i, with a sample i - ∆t, 
where ∆t is referred to as the time lag. This sequence 
of values calculated for each point in the time series 
creates the trajectory in phase space. For time lags 
that are too small, the chaotic nature of the signal 
does not emerge, and the trajectory remains confined 
to a smaller region of phase space as can be seen in 
Figure 13 (a) and Figure 14 (a) for normal and attack 
traffic respectively. As the time lag is increased, the 
chaotic trajectory begins to emerge as is seen in 
Figure 13 (b) and Figure 14 (b). To generate the 
phase plots in Figure 13 and Figure 14 we needed to 
maintain a constant length of the phase space 
trajectory so while the aggregation value was fixed 

at ten for each and the low pass filter length was 
fixed at ten, the window lengths was varied so that 
each trajectory consisted of 2000 points. Notice that 
in for the normal traffic phase plots in Figure 13, the 
fractal dimension is varies only slightly between finfo 
= 1.3 and finfo = 1.4. 
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Figure 11: Exploring the effects of low pass filtering on 
phase plot for number of source ports (7000 samples with 
5000 point time lag) for attack signal traffic: (a) without 
filtering (finfo =1.05), (b) with 10 point low pass filter (finfo 
=0.81), (c) with 20 point low pass filter (finfo =0.92), and 
(d) with 50 point low pass filter (finfo =1.06). 

(a) (b) 

Figure 12: Histograms of the fractal dimensions calculated 
with filter window length on phase plot of number of 
source ports for 7000 aggregated samples with a time lag 
of 5000 for network traffic containing both normal and 
attack traffic: (a) with 10 point low pass filter and (b) with 
50 point low pass filter. 

For the attack signals the phase plots in Figure 14 
show moderate fractal dimensions for the middle 
ranges of time lags (100 to 1000) samples, and then 
a dramatic reduction at time lags of 5000. Figure 15 
shows the histograms of the fractal dimension 
calculations for a time series with known attack 
signals embedded, and note the general separation of 
a lower fractal dimension hump between 0.5 and 1.0, 
which contains the attack signals, and then the 
higher amplitude, and higher fractal dimension 
hump in the histogram for the background data.  As 
can be expected from Figure 14, there are significant 
sections of these time series where for the lower 
time lags there would be overlaps in the fractal 
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dimensions of the attack signals with the normal 
background signals as shown in Figure 16. The 5000 
sample lag time sequences had no high amplitude 
fractal dimensions during any of the attack periods 
which results in a more distinct lower fractal 
dimension peak in the histogram in Figure 15 (f) 
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Figure 13: Exploring effects of time lag in phase plot for 
number of source ports during normal traffic: (a) time lag 
of 1 sample (finfo =0.68), (b) time lag of 10 samples (finfo 
=1.40), (c) time lag of 100 samples (finfo =1.43), (d) time 
lag of 500 samples (finfo =1.46), (e) time lag of 1000 
samples (finfo =1.34), and (f) time lag of 5000 samples (finfo 
=1.30). 

The effects of shorter time lags can possibly be 
mitigated if the system were designed to detect the 
immediate onset of the attack since the transitions 
from normal traffic to attacks result in an immediate 
and dramatic change in fractal dimension; however, 
there is also the chance of higher false alarm rates 
from single amplitude spikes. Using a longer time 
lag can allow the system to track the existence of the 
attack signal for a longer period of time before 
declaring an attack detection, which would 
dramatically reduce the system false alarm rate. 
Likewise the shorter time lags will reduce the ability 
to continue to detect the presence of a longer 
duration attack since the phase plot will begin to 
exhibit multi-fractal behavior as shown in the phase 
plots in Figure 16 which may fool a system into 
thinking the attack is over. 
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Figure 14: Exploring effects of time lag in phase plot for 
number of source ports during an attack: (a) time lag of 1 
sample (finfo =0.79), (b) time lag of 10 samples (finfo 
=1.29), (c) time lag of 100 samples (finfo =1.05), (d) time 
lag of 500 samples (finfo =1.23), (e) time lag of 1000 
samples (finfo =1.18), and (f) time lag of 5000 samples (finfo 
=0.81). 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 15: Histograms of the fractal dimensions of phase 
plots calculated with varying time lags for attack traffic: 
(a) time lag of 1 sample, (b) time lag of 10 samples, (b) 
time lag of 100 samples, (c) time lag of 500 samples, (e) 
time lag of 1000 samples), and (f) time lag of 5000 
samples. 
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Figure 18 provides the details of the address-
based attacks. Notice again the direct correlation 
between the number of source and destination 
addresses attempted within the aggregation window 
as can be seen in Figure 18 (a) and (b). Notice the 
direct correlation of the drop in bytes within the 
packets aggregated as is shown in Figure 18 (c). 
Also note that during address-based attacks the 
number of ports (both source and destination) 
identified in the aggregated packet traffic resembles 
normal network traffic as can be seen in Figure 18 
(d) and (e). 
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Figure 16: Phase plots for potential detection errors in 
attack signal traffic due to varying lag times: (a) 10 
sample lag (finfo =1.49), (b) 100 sample lag (finfo =1.45), 
(c) 500 sample lag (finfo =1.45), and (d) 1000 sample lag 
(finfo =1.42). 

6 STRUCTURE OF ATTACK 
SCENARIOS 

There are a number of ways in which a DDOS attack 
can be orchestrated. The first type, which has been 
used for the examples throughout the paper are the 
port attacks where the attacker is using large 
numbers of source ports and attempting to connect 
to a correspondingly large number of destination 
ports. The characteristics of the number of ports 
during the attack seen can be seen in Figure 17 (a) 
and (b). Notice the direct correlation of the number 
of source ports and destination ports time series. 
Another interesting feature is the corresponding drop 
in the number of bytes within the traffic that is 
similarly correlated with the number of 
source/destination ports as can be seen from Figure 
17 (c). Notice also that during port attacks the 

number of addresses (both source and destination) 
identified in the network traffic resembles normal 
network traffic as can be seen in Figure 17 (d) and 
(e). 

(a) 

(b) 

(c) 

(d) 

(e) 

Figure 17: Time series for port attacks: (a) time series of 
number of source ports, (b) resultant time series of number 
of destination ports, (c) resultant time series of number of 
bytes, (d) resultant time series of number of source 
addresses, and (e) resultant time series of number of 
destination addresses. 

For developing an attack detection strategy, there 
will be a need then to monitor both the aggregated 
number of addresses and the aggregated number of 
ports in the network traffic. The source and 
destination values do not both appear to be required 
since they are well correlated. One interesting 
observation is that the numbers of bytes in the 
aggregated traffic are directly correlated with either 
attack, which has been exploited by a number of 
researchers who used number of bytes per 
aggregation window for their detection scheme. 
Consequently, we may also be able to only exploit 
the aggregated number of bytes in the network 
traffic for attack detection, where any sudden 
changes in the fractal value of the number of bytes 
then corresponds to a probable attack scenario. 
Unfortunately, only monitoring the number of 
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aggregated bytes does not appear to be an optimal 
solution as can be seen in the structure of the 
histograms of the fractal dimensions shown in 
Figure 19. In these histograms, we have integrated 
the values of the fractal dimensions of phase plots of 
incoming network traffic collected over an entire 
afternoon of the University of Michigan- Flint when 
there were known external attacks.  

 

(a) 

(b) 

(c) 

(d) 

(e) 

Figure 18: Time series for address attacks: (a) time series 
of number of source addresses, (b) resultant time series of 
number of destination addresses, (c) resultant time series 
of number of bytes, (d) resultant time series of number of 
source ports, and (e) resultant time series of number of 
destination ports. 

The separability of the number of aggregated 
ports from normal to attack traffic shown in Figure 
19 (c) and (d) is significantly better than the 
separability of the number of aggregated bytes 
shown in Figure 19 (e). Likewise, the number of 
aggregated source and destination addresses shown 
in Figure 19 (a) and (b) appears slightly better than 
that for the byte traffic. 

The underlying cause of the number of bytes 
being inferior data to analyze when compared to the 
number of ports or addresses can be seen in Figure 20 
where we provide a snapshot of an attack traffic 
segment showing the aggregated number of source 
ports, Figure 20 (a), and the aggregated number of 
bytes traffic time series, Figure 20 (b).  The 
corresponding phase plots for these time series are 

provided in Figure 20 (c) and (d), with the 
corresponding fractal dimensions provided, and 
where the increased fractal nature of the byte traffic 
during the attack is clearly visible.  This relatively 
greater fractal value of the byte information 
translates into the peak corresponding to attack 
traffic in Figure 19 (e) being shifted significantly to 
the right (into the normal traffic peak and above the 
fractal value of 1.0). This thereby reduces the quality 
of the number of bytes as a measure for detecting the 
transition from non-chaotic to chaotic signals. 

 

(a) (b) 

(c) (d) 

 
(e) 

Figure 19: Histograms of the fractal dimensions of phase 
plots for an afternoon of network traffic during period of 
known attacks: (a) number of source addresses, (b) 
number of destination addresses, (c) number of source 
ports, and (d) number of destination ports, and (e) number 
of bytes. 
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Figure 20: Comparison of detectability of port information 
versus byte information: (a) time series of number of 
source ports, (b) time series of number of bytes, (c) phase 
space for port information (finfo = 0.61), and (d) phase 
space for byte information (finfo = 1.15). 
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In summary, based on the fractal dimension 
histograms in Figure 19 the best separability can be 
provided if the aggregated number of destination 
addresses (shown in Figure 19 (b)) and the 
aggregated number of source ports (shown in Figure 
19 (c)) are both monitored.  The other signal 
parameters provide no additional information and 
have generally lower separability of normal network 
traffic from attack traffic. 

7 CONCLUSIONS 

This paper presented an approach to detecting 
Distributed Denial of Service attacks using fractal 
analysis of the phase space trajectories of the 
incoming network traffic. The paper demonstrated 
the key differences in behavior of attack traffic and 
normal network traffic when analyzed in phase 
space. The paper demonstrated the differences in the 
characteristics of port and addresses flooding 
attacks, and also demonstrated a negative correlation 
of the aggregated number of bytes relative to the 
aggregated number of ports or addresses referenced.  
The paper demonstrates these concepts on actual 
network traffic incoming to the University of 
Michigan-Flint when it was under a test attack from 
the University of Michigan-Ann Arbor. 

The results highlighted in the paper demonstrate 
there is significant separability between normal 
traffic and network traffic when analyzing the 
aggregated number of source ports and the 
aggregated number of destination addresses. The 
paper defined an optimal set of values for the key 
parameters related to analyzing these signals in 
phase space, namely: (i) the length of the 
aggregation window, (ii) the length of the data 
analysis window, (iii) the length of low-pass filter, 
and (iv) the time lag between samples used to build 
the phase space trajectories. These values can be 
used to develop an embedded DDOS detection 
algorithm in network routers. The paper 
demonstrated the efficacy of using the Information 
Dimension measure for detecting the changes in the 
fractal nature of the phase space trajectories of the 
normal and attack traffic. Future work will be 
directed at implementing a detection and attack 
packet removal algorithm based on the fractal 
dimension of the incoming signals and developing 
complete Receiver Operating Characteristics (ROC) 
curves. 

ACKNOWLEDGEMENTS 

The authors would like to thank Dr. Stephen Turner, 
Anthony Wingett from the Computer Science, 
Engineering, and Physics department, and Josh 
Weber and the entire University of Michigan-Flint 
Information Technology Services organization for 
assisting in the data collection process. 

REFERENCES 

Hu, J. Gao, and N. S. Rao, 2007. Defending against 
internet worms using a phase space method from 
chaos theory. In SPIE Proceedings # 6570, Data 
Mining, Intrusion Detection, Information Assurance, 
and Data Networks Security, SPIE. 

M. Li, Y-Y Zhang, and W. Zhao, 2008. A practical 
method for weak stationarity test of network traffic 
with long-range dependence. In Proceedings of the 8th 
WSEAS International Conference on Multimedia 
Systems and Signal Processing, IEEE. 

H. Liangxiu, C. Zhiwei, C. Chunbo, and G. Chuanshan, 
2002. A new multifractal network traffic model. In 
Chaos, Solitons and Fractals, Elsevier. 

M. Masugo, 2002. Multi-fractal analysis of IP-network 
traffic based on a hierarchical clustering approach. In 
Communications in Nonlinear Science and Numerical 
Simulation, Elsevier. 

M. Li and W. Zhao, 2008. Detection of variations of local 
irregularity of traffic under DDOS flood attack. In 
Mathematical Problems in Engineering, Hindawi. 

D. Gregg, W. Blackert, D. Heinbuch, and D. Furnanage, 
2001. Assessing and quantifying denial of service 
attacks. In Proceedings IEEE Military 
Communications Conference, IEEE. 

M. Li, 2006. Change trend of averaged Hurst parameter of 
traffic under DDOS flood attacks. In Computers & 
Society. 

A. Piskozub, 2002. Denial of service and distributed 
denial of service attacks, In Proceedings of 
International Conference on Modern Problems of 
Radio Engineering, Telecommunications and 
Computer Science, IEEE. 

Y. Xiang, Y. Lin, W. L. Lei, and S. J. Huang, 2004. 
Detecting DDOS attack based on network self-
similarity. In IEE Proc. Communications, IEE.  

L. Limwiwatkul and A. Rungsawang, 2004. Distributed 
denial of service detection using TCP/IP header and 
traffic measurement analysis. In Proc. International 
Symposium on Communications and Information 
Technologies, IEEE.  

A. Mitrokotsa and C. Douligeris, 2005. Detecting denial of 
service attacks using emergent self-organizing maps. 
In Proc. IEEE International Symposium on Signal 
Processing and Information Technology, IEEE. 

G. Oke, G. Loukas, and E. Gelenbe, 2007. Detecting 
denial of service attacks Bayesian classifiers and 

SECRYPT 2011 - International Conference on Security and Cryptography

88



 

random neural networks, In Proc. IEEE International 
Fuzzy Systems Conference, IEEE.  

G. Loukas and G. Oke, 2007. A biologically inspired 
denial of service detector using the random neural 
network, In Proc. IEEE International Conference on 
Mobile Adhoc and Sensor Systems, IEEE.  

M. F. Rohani, M. A. Maarof, A. Selamat, and H. Kettani, 
2007. Uncovering anomaly traffic based on loss of 
self-similarity behavior using second order statistical l 
model, In International Journal of Computer Science 
and Network Security. 

L. Feinstein, D. Schnackenberg, R. Balupari, and D. 
Kindred, 2003. Statistical approaches to DDOS attack 
detection and response, In Proceedings of the DARPA 
Information Survivability Conference and Exposition, 
IEEE. 

H. O. Peitgen, H. Jurgens, and D. Saupe, 1992. Chaos and 
Fractals, Springer. 

J. L. P. Velaquez, 2005. Brain, behaviour, and 
mathematics: are we using the right approaches? In 
Physica D, Elsevier. 

T. Tel and M. Gruiz, 2006. Chaotic Dynamics, 
Cambridge. 

J. Theiler, 1990. Estimating Fractal Dimension, In Journal 
Optical Society of America, OSA.  

J. P. Eckmann and D. Ruelle, 1985. Ergodic theory of 
chaos and strange attractors, In Reviews of Modern 
Physics, APS. 

W. Kinsner, 2005. A unified approach to fractal 
dimensions, In Proc. IEEE Conf. on Cognitive 
Informatics, IEEE. 

A. J. Roberts, 2005. Use the information dimension, not 
the Hausdorff, In Journal of Nonlinear Sciences, 
Springer. 

M. T. Rosenstein and J. J. Collins, 1994. Visualizing the 
effects  of  filtering  chaotic  signals,  In  Computers & 
Graphics, Elsevier. 

H. Korn and P. Faure, 2003. Is there chaos in the brain? II. 
Experimental evidence and related models, In C.R. 
Biologies, Elsevier. 

STUDY OF THE PHENOMENOLOGY OF DDOS NETWORK ATTACKS IN PHASE SPACE

89


