
 

 

ROBUSTIFYING THE SCRUM AGILE METHODOLOGY FOR 
THE DEVELOPMENT OF COMPLEX, CRITICAL AND 

FAST-CHANGING ENTERPRISE SOFTWARE 

Marcos Vescovi 
Finansolo Software, PO Box 847, Aptos, CA 95001, U.S.A. 

Flavio Varejão 
Departamento de Informática, Universidade Federal do Espirito Santo, Vitória, ES 29000, Brazil 

Vagner Cordeiro 
Finansolo Software, PO Box 847, Aptos, CA 95001, U.S.A. 

Keywords: Agile methods, Scrum methodology, Software design, Software entropy, Change curve. 

Abstract: A class of complex enterprise software including financial, taxation and supply chain management software 
contains mission critical functionality and change requests are substantial and frequent. Agile 
methodologies provide the adaptability but not the robustness necessary to deal with the criticality and to 
avoid software entropy. Task analysis shows that a significant effort of analysis and design is required to 
flatten the change curve. The Robust Agile Methodology, “R-Agile,” is proposed with the adaptability to 
handle fast-changing requirements, and the design and test necessary to handle complexity and criticality. 

1 INTRODUCTION 

Boehm and Turner (2003) suggest that risk analysis 
be used to choose between adaptive Agile and 
predictive Plan-driven methodologies. The authors 
suggest that each side of the continuum has its own 
home ground. The Agile methodologies are well 
suited for low criticality software with frequent 
change of requirements, and the Plan-driven 
methodologies are well suited for high criticality 
software with stable requirements. Over the past 
decade we have been developing enterprise software 
for Fortune 500 and e-Commerce companies 
presenting both challenges: high criticality and 
frequent change of requirements. Additionally, and 
more importantly, we had to deal with complexity 
and the risk of software entropy. Software entropy is 
a state reached over time as less well designed 
software becomes harder and harder to change. At a 
point, the cost of certain changes can become so 
high that they are not worth undertaking.    

In order to cope with these challenges, we have 
successfully developed an adaptation of the Scrum 
Agile Methodology. We have taken advantage of the 
adaptability and have added design and test to 
robustify the methodology. The change curve says 
that as the project runs, it becomes exponentially 
more expensive to make changes. In this paper we 
focus on design and argue that a substantial effort is 
necessary to flatten the change curve.  

In section 2, we discuss the suitability of 
traditional Plan-driven and Agile methodologies. In 
section 3, we present the characteristics of critical 
and fast-changing complex enterprise software. In 
section 4, we discuss the key role of analysis and 
design for flattening the exponential change curve. 
In section 5, we present the Robust Agile 
Methodology “R-Agile,” a more robust and agile 
methodology. We close with the conclusions. 

70
Vescovi M., Varejão F. and Cordeiro V..
ROBUSTIFYING THE SCRUM AGILE METHODOLOGY FOR THE DEVELOPMENT OF COMPLEX, CRITICAL AND FAST-CHANGING ENTERPRISE
SOFTWARE.
DOI: 10.5220/0003459800700079
In Proceedings of the 6th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2011), pages 70-79
ISBN: 978-989-8425-57-7
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)



 

 

2 SUITABILITY OF 
METHODOLOGIES 

In this section, we briefly discuss and summarize the 
advantages and drawbacks of Plan-driven and Agile 
methodologies. More extensive comparisons can be 
found in the work of Boehm and Turner (2003) and 
Fowler (2001), who focus on design and discuss 
planned vs. evolutionary design.  

2.1 Plan-Driven Methodologies  

Traditional Plan-driven methodologies, such as the 
waterfall method (Royce, 1970), are based on the 
principle that time spent early in the software 
production cycle can lead to greater economy at later 
stages. McConnell (1996) shows that a bug found in 
the early stages (such as requirements specification 
or design) is cheaper in money, effort and time to fix 
than the same bug found later on in the process. 

With Plan-driven methodologies, a substantial 
effort of analysis and design is performed up front. 
This is an important advantage of the Plan-driven 
methodologies, leading towards a flatter change 
curve and potentially avoiding software entropy. 
Another advantage relates to the extensive testing 
phase which is necessary to ensure correct 
functioning of mission-critical functionality. These 
advantages are well-suited to handle complexity and 
criticality of functionality. 

The main drawback of the Plan-driven 
methodologies is related to the long release cycles. 
Most of the design is performed without learning 
from later phases of development and operations. 
With shorter cycles, a lot can be learned from 
usability and incorporated into the design. Design is 
usually longer than needed and many unnecessary 
features are included in the project. The project costs 
more and takes a much longer time to market, which 
impacts business negatively. Customers most often 
get involved later in the process when a full-
packaged release is available. 

 Besides the above inconveniences, the Plan-
driven methodologies are not well-suited and 
adaptable for fast changing requirements software. 
The design and overall project is rigid and 
requirement changes are not welcome. 

2.2 Agile Methodologies  

Larman and Basili (2003) present a brief history of 
iterative and incremental development, showing that 
adaptive methods have been proposed since the 

1970s. The "Manifesto for Agile Software 
Development" was published by Kent et al. (2001). 
The Agile methods promote development, 
teamwork, collaboration, and process adaptability 
throughout the life-cycle of the project. Such 
methods became popular in the past decade, in 
particular with fast paced web development. 

Agile methods propose much shorter release 
cycles, allowing quick feedback and adaptation. The 
process involves customers more often, which 
results in increased customer satisfaction. 
Developers are empowered, feel more responsible 
and become better contributors. Agile methods are 
particularly well-suited for fast-changing 
requirements software. 

The main inconvenience with the Agile methods 
is associated with decreased analysis and design, 
which can result in software entropy and exponential 
change curve. This is especially true in the case of 
complex and large software. Another drawback is 
that the reduced testing phase may not be sufficient 
to ensure the quality necessary for mission-critical 
functionality. 

In summary, Plan-driven methods are better 
suited for critical and complex software while Agile 
methods are better suited for software requiring fast 
changes. A methodology for dealing simultaneously 
with complexity, criticality and adaptability is 
sought. This paper proposes such a methodology. 

3 COMPLEX, CRITICAL 
AND FAST-CHANGING 
SOFTWARE 

Over the past decade we have developed enterprise 
payment and financial software, supply chain 
management and taxation software for several 
Fortune 500 and e-Commerce companies world-
wide. The specific products and solutions developed 
were functionally different but shared similar 
characteristics. The most relevant characteristics are 
presented below. For simplicity, we are not 
discussing the additional complexity associated with 
the enterprise requirements of performance, 
scalability, robustness and security. 

1. Large number of objects for modeling the 
domain; 

2. Complex relationships between the objects; 
3. Complex calculations and processing methods; 
4. Substantial and frequent change of 

requirements; 

ROBUSTIFYING THE SCRUM AGILE METHODOLOGY FOR THE DEVELOPMENT OF COMPLEX, CRITICAL
AND FAST-CHANGING ENTERPRISE SOFTWARE

71



 

 

5. Tight deadlines, limited resources and pressure 
from customers; 

6. Mission critical operations dependent on the 
software. 

The first two characteristics have implications on 
the size and complexity of the objects and data 
model. Without careful analysis and design, objects 
and database schemas became large and overly 
complex. Coding became more difficult and bugs 
became more numerous and harder to find and fix. 
Extensions and modifications became exponentially 
expensive. Changes in data and object models were 
usually deep and came at a higher cost. In our 
experience, the tasks of abstraction and 
generalization of concepts were necessary to 
simplify the model and required substantial analysis 
and design. Without this effort, complexity takes 
over and the change curve becomes exponential. 

The third characteristic relates to the complexity 
of calculations and processes. Billing, revenue 
sharing and taxation are common examples of 
calculations in which the effort to define the 
mathematics required as much effort as coding itself. 
The consequences of careless analysis and design 
were often buggy implementations requiring various 
iterations to fix. The iterations were costly, 
involving various releases and testing phases. In our 
experience, non-modular design created the typical 
scenario of gas plant complexity, which was hard to 
understand, extend and fix. In order to accommodate 
for customer requests, branching became the faster 
and easier solution. But maintenance of the various 
branches came at a prohibitive cost. The complexity 
and its related costs were again exponential. 

The fourth characteristic is also challenging. In 
our experience, the change of requirements was 
frequent and continuous for a single system and each 
customer wanted something different. If there was 
no change of requirements we could have 
envisioned various steps of refactoring, thus 
improving the design over time. But the continuous 
change on top of the issues described with the first 
three characteristics made development harder. 
Carefully designing a system for extensive change 
was the key to flatten the change curve. Besides 
using well architected frameworks, in some cases we 
used domain models, rule engines and workflow 
engines to deal with the frequent change of 
requirements. Up-front design was necessary to 
develop such architectures. 

The fifth and sixth characteristics simply added 
stress to the development team. This paper describes 
a methodology combining the best practices of the 
Agile and the Plan-driven methodologies. We focus, 

in particular, in adding analysis and design to the 
Agile Methodology, which relates more directly to 
characteristics 1 through 4 above. In order to deal 
with the implications of characteristics 5 and 6, 
other issues need to be examined. First, there has to 
be resolution around the deadline-milestone 
prevailing in the industry. Either the customers need 
to agree to the more adaptable Agile methodologies 
or some rigidity and predictability need to be added 
to the methodologies. Another important issue 
relates to the stricter testing necessary to ensure 
correct functioning of critical functionality. 
Although the proposed methodology contains the 
necessary testing component, this paper focuses on 
the need for further analysis and design and how it 
has been balanced within the proposed 
methodology. 

4 THE ROLE OF ANALYSIS 
AND DESIGN 

We have experienced an exponential change curve 
on various occasions, in particular when fast 
development took priority and did not allow for 
careful analysis and design. This happened despite 
the fact that our engineering team was composed of 
talented Silicon Valley developers. In such cases, 
changing or enhancing the system became 
prohibitively expensive and some of the systems had 
to be redesigned and rebuilt. 

According to Fowler (2001), Agile methods have 
rejuvenated the notion of evolutionary design with 
practices that allow evolution to become a viable 
design strategy. It also provides new challenges and 
skills as designers need to learn how to do a simple 
design, how to use refactoring to keep a design 
clean, and how to use patterns in an evolutionary 
style. Simplicity is at the core of the Agile 
methodologies. We argue that achieving Simplicity 
in a more substantial way that can avoid software 
entropy requires a significant effort of analysis and 
design. 

The definition of Simplicity proposed by Beck 
(1999) is, in order (most important first): 

1. Runs all the tests 
2. Reveals all the intention 
3. No duplication 
4. Fewest number of classes or methods 

If we further investigate the criteria above we see 
that Simplicity (as defined by Beck), especially in 
the case of complex enterprise software, can only be 

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

72



 

 

achieved in a more substantial way with careful 
analysis and design, contrasting with the "quick code 
and test" premises of the Agile methodologies. Let’s 
examine the criteria. 

1. Runs all the tests 

This is a Basic Requirement that a system must 
verify its intended functionality. This is minimal and 
required for most methodologies so we will not 
analyze this any further. 

2. Reveals all the intention 

This is an Adequacy Requirement and should be 
required for most methodologies as well. Fulfillment 
of this requirement is often intuitive and is 
ultimately defined by customer satisfaction. But for 
a system to reveal all the intention, it must at least 
have a complete model (i.e. it must cover the 
functionality) that can lead to accurate enough and 
precise enough results (i.e. the results must be 
acceptable). In terms of coding, the underlying 
model must be intuitive and clean so that 
communication and collaboration can happen. In 
terms of usability, careful interaction and graphical 
design must also be realized. As we can see, this 
criterion is not obvious to achieve and we find it 
difficult to be realized without careful analysis and 
design. 

3. No duplication 

This is an Optimization Requirement desirable in 
other methodologies as well. No Duplication 
requires the creation of modular code so that it can 
be reused. The idea is to have more fundamental 
building blocks that are used to build the system.  

If we interpret this criterion as not duplicating 
code in its most strict definition, i.e. not repeating 
code that is exactly the same, then the criterion is 
relatively easy to understand and follow. However, a 
more powerful and interesting interpretation of the 
criterion is the creation of more generic and abstract 
code that can be used to replace similar (and more 
numerous) pieces of code.  

If we perform Cognitive Task Analysis 
(Chandrasekaran, 1986), (Chandrasekaran, 1990), 
(Pirolli & Card, 2005), we see that the design of 
modular code that is generic and abstract to be 
reused, involves the following mental tasks: (1) 
decomposition of the problem into smaller 
functional or structural parts, (2) pattern matching to 
identify sets of similar parts, (3) creativity to create 
generic and abstract modular code to cope with sets 
of similar problem parts, (4) synthesis for combining 
and integrating the modular code, (5) analysis for 

critiquing the modular code and its integration, and 
(6) modification capability for adjusting the modular 
code and its integration whenever necessary.  

No duplication, in its more extensive 
interpretation, is underlying the construction of 
frameworks and is at the core of software 
architecture. Except for simpler software, it is 
difficult to imagine the achievement of this criterion 
without careful analysis and design. 

4. Fewest number of classes or methods 

The most basic interpretation of this criterion is that 
classes and methods that are not necessary should 
not be developed in advance. Classes and methods 
that might be needed in the future should not be 
implemented until they are definitely needed. This 
criterion accords to the fundamental principles of the 
Agile methodologies and is not too difficult to 
interpret and follow.  

However, a different interpretation of this 
criterion has a fundamental impact when dealing 
with complex software.  In order to cope with the 
complexity associated with the large number of 
classes, their relationships and their complex 
methods, it is important to design fewer but more 
powerful classes and methods. It is necessary to 
define classes and methods that are generic and 
often abstract. Fewer generic and abstract classes 
can replace multiple and more numerous specific 
and concrete classes, simplifying the overall 
representation. Fewer modular generic and abstract 
methods can replace multiple and more numerous 
specific and concrete methods as well, once again, 
simplifying a complex problem. Design patterns, for 
example, although more complex constructs 
themselves, are powerful mechanisms that simplify 
the overall design. 

The examples above are just a few examples of 
interpreting the criterion as creating fewer but more 
powerful concepts. We claim that the design of these 
fewer but more powerful concepts is crucial to deal 
with complexity. But this task, once again, requires 
significant effort. Cognitive Task Analysis 
(Chandrasekaran, 1986), (Chandrasekaran, 1990), 
(Pirolli & Card, 2005), indicates that such design 
involves (1) pattern matching to identify sets of 
similar classes or methods, (2) creativity to create 
generic and abstract classes and methods, (3) search 
on the space of possible design alternatives, (4) 
definition of criteria for evaluating the design 
alternatives, (5) synthesis and integration of classes 
and methods and (6) critique and modification of 
classes and methods. This is among the hardest tasks 
in   complex   software   development  and  requires 

ROBUSTIFYING THE SCRUM AGILE METHODOLOGY FOR THE DEVELOPMENT OF COMPLEX, CRITICAL
AND FAST-CHANGING ENTERPRISE SOFTWARE

73



 

 

careful analysis and design. 
As a result, in the case of complex software, 

Simplicity requires a significant amount of analysis 
and design. The more complex the system, the more 
analysis and design it requires. In some cases, it is 
arguable that the analysis and design effort required 
is comparable to, if not greater than, the coding 
effort.  

5 FLATTENING THE 
EXPONENTIAL CURVE 

Fowler (2001) proposes that the practices of 
continuous integration, testing, and refactoring 
provide a new environment that makes the 
evolutionary design of Agile methodologies become 
plausible. But he adds that design is important to 
flatten the curve. In Fowler´s words, "I'm sure that, 
despite the outside impression, XP isn't just test, 
code and refactor. There is room for designing 
before coding. Some of this is before there is any 
coding, most of it occurs in the iterations before 
coding for a particular task. But there is a new 
balance between up-front design and refactoring". 

The criteria of Simplicity proposed by Beck  
(1999) are clearly necessary to flatten the change 
curve and avoid software entropy. In the previous 
section, we examined the effort associated with 
achieving Simplicity and showed that in the case of 
complex software development, a significant amount 
of analysis and design is necessary.  

The short release cycles and the customer 
involvement of the Agile methodologies provide 
significant decrease in overall project effort and 
increase in customer satisfaction. However, it is 
important to add more analysis and design to the 
methodology. But the difficulty is in finding the 
right balance. 

Figure 1 below shows the change curve for 
options (1) Agile without additional design, (2) 
Substantial upfront design, and (3) additional design 
during iterations. Option 1 corresponds to the more 
radical Agile methodologies with minimal design 
effort. With option 2, substantial design is 
performed up-front before coding. This is similar to 
traditional Plan-driven methodologies in which the 
software is more fully designed up-front. Option 3 
corresponds to adding more design during each 
iteration (release cycle) of the Agile methodologies. 

 
Figure 1: Examples of change curves of Agile methods 
based on the amount of design performed. 

The curves showed in Figure 1 are qualitative 
and were estimated based on our experience. Curve 
(1) starts almost flat and then grows exponentially. 
Curves (2) and (3) are linear approximations 
assuming design was able to flatten the exponential 
curve. In reality, these are flattened exponentials and 
not lines. Option (1) has the advantage of short time 
to market which is crucial in today’s web industry 
but shows exponential behavior in the long run. 
Option (2) is the most long term efficient option but 
has longer time to market. Option (3) appears as a 
good compromise between time to market and long 
term efficiency. 

The methodology that has worked best in our 
experience is similar to option (3). Design has been 
added to each cycle of the Scrum Agile 
Methodology. Note that in our case we had 
reference implementations with framework 
architectures previously developed. For a 
development effort starting from scratch it may be 
necessary to develop a reference implementation. 
The reference implementation defines architecture, 
application server, framework, domain model and 
whatever is necessary to cope with complexity. Such 
reference implementation can be developed either in 
advance, when time permits, or in parallel with 
Option (1). In the latter case, an effort of integration 
is necessary to move the code implemented faster 
with the Option (1) model into the further 
architected reference implementation. But we 
strongly suggest developing the reference 
implementation using the principles of Agile. If a 
framework is to be developed then the necessary 
functionality should be developed first. The 
remaining functionality should only be developed if 
necessary. Substantial refactoring of the framework 
should also be considered, as suggested with Agile 
methodologies. 

6 THE ROBUST AGILE 
METHODOLOGY 

This section presents the Robust Agile Methodology, 

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

74



 

 

“R-Agile.” For the past few years, we have 
successfully used this methodology to develop 
critical and fast-changing complex enterprise 
software. Applications of our software include: 
payment, revenue sharing and billing solutions for 
the telecom and e-commerce industries; and order 
management, taxation, logistics and financial 
solutions for the supply chain industry. 

The proposed methodology is a modified version 
of the Scrum Agile Methodology (Beedle et al., 
1999). The fundamental change is that we have 
included additional analysis and design to make the 
methodology more robust. We have also 
complemented Scrum by adding a dedicated Testing 
Team. In this section we will present more details of 
the methodology, mostly highlighting the points 
where our methodology differs from traditional 
Scrum. Notice that the parameters of the 
methodology, such as sprint duration and 
chronology, ratio of team members and even more 
structural elements of the methodology, can be 
adjusted based on the specifics of the project. For 
example, the criticality of the software, whether 
mission or revenue critical, importance of time to 
market, availability of resources and project budget 
are factors that affect the parameters of the 
methodology. The methodology described below is 
the one that worked best in our overall experience. 

6.1 Teams and Roles 

We have added dedicated Design and Testing Teams 
to the more traditional Product and Coding Teams of 
the Scrum Methodology. We present below the 
composition and the role of each team. 

6.1.1 Product Team 

The company can have various scrums running in 
parallel. We had the experience of running about 2 
to 3 simultaneous scrums. Running Agile methods 
on very large projects can be challenging, requiring 
special coordination and scaling strategies. These 
experiences have been reported by Talby et al. 
(2006) and Chow & Cao (2008). In this paper we 
will concentrate on small to mid-size projects (< 20 
developers) where the methodology works fine 
without special treatment. We will describe the team 
composition and roles for each Scrum. 

Although the company can have multiple 
product managers, we used one product manager per 
Scrum. The product manager is called the “product 
owner” and is responsible for making sure that the 
product under development fulfills the business and 

company requirements. The product manager 
interfaces with the customers who can be external or 
internal to the organization.  

We had Scrums that required more than one 
product manager. In such cases, the product 
managers collaborated within the same Scrum but 
one of the product managers was considered the 
product owner for the Scrum. The product manager 
also coordinates with the product managers of the 
other Scrums so that the overall product integrates 
well. 

6.1.2 Design Team 

The Design Team is dedicated to analysis and 
design. The goal is to keep the code clean and as 
simple as possible according to the definition of 
Simplicity discussed in previous sections. The team 
is responsible for the analysis and design required to 
flatten the change curve, which is critical for 
complex enterprise software development. In 
addition to designing for Simplicity, the Design 
Team is responsible for reviewing the code and 
identifying parts that are candidates for Refactoring. 

Although analysis and design are being added, it 
is important to avoid overdesign. The design task 
itself should follow the principles of Agile, by 
designing at the necessary level. We suggest a 
generalization of the suggestions proposed by 
Fowler (2001). The Design Team should (1) invest 
time in learning about analysis and design principles 
and methods, (2) concentrate on when to apply such 
principles and methods (not too early), (3) 
concentrate on how to implement them in its 
simplest form first, adding complexity later when 
necessary, and (4) not hesitate in removing 
overdesigned parts. 

We have used one software designer for a team 
of 4-6 developers. The exact number depends on 
many factors including the maturity of the project, 
the maturity of the team, the complexity of the 
project and other factors. We can cite a few reasons 
why we were able to design successfully using a 
relatively small ratio of designer/developer: (1) 
following the Agile principles and only designing 
what was necessary, (2) the Coding Team was also 
responsible for design, (3) often part of the Coding 
Team is working on less complex or repetitive parts 
of the code which do not require additional design 
by the Design Team, and (4) later phases of the 
project often require less design. Software architects 
are a key part of the Design Team. In addition, the 
team can include a few specialists, such as user 
interface designers, a modeling analyst responsible 

ROBUSTIFYING THE SCRUM AGILE METHODOLOGY FOR THE DEVELOPMENT OF COMPLEX, CRITICAL
AND FAST-CHANGING ENTERPRISE SOFTWARE

75



 

 

for data and process modeling, and a database 
optimization analyst.  

We have also experimented with rotating the 
members of the Design Team. We usually strike a 
balance considering the following factors: (1) level 
of design and architecture experience, (2) project 
phase, and (3) the need to have members of the 
Coding Team also involved with design. The 
rotation was interesting in many ways. It caused the 
developers to feel more responsible and empowered. 
It also allowed the primary designers and architects 
to code, keeping them up-to-date with the 
programming technologies. Learning by design is a 
powerful learning tool (see research by Pappert & 
Harel (1990)). In general, the rotation promoted 
collaboration and avoided hierarchy and other 
human relational issues. 

6.1.3 Coding Team 

The Coding Team has the responsibility to deliver 
the product. The team is mostly responsible for 
coding, but is also responsible for design, testing (in 
particular unit testing), technical communication and 
release.  

Continuous integration is an important activity 
for Agile methods. Scripts are developed to 
automate code check-out, compilation, release 
generation and to run test scripts. We were not 
always able to implement continuous integration, 
but the activity was very rewarding when 
implemented. The continuous integration was 
usually executed on a daily basis. When resources 
are available, a dedicated Release Team should be 
responsible for the continuous integration. In our 
case it was implemented collaboratively by the 
Coding and Test Teams. 

One important member of the Coding Team is 
the Scrum Master whose primary role is to make 
sure that the developers are performing according to 
the plan and do not get stuck. The Scrum Master 
also ensures that the Scrum process is used as 
intended. The Coding Team is usually composed of 
4-8 developers, plus the Scrum Master. When time 
permits, the Scrum Master can also code. 

6.1.4 Testing Team 

The Testing Team is a team dedicated to testing, the 
same as traditional quality assurance teams. In the 
case of mission critical systems, it has been 
challenging to apply the “do only the minimal” 
principle of the Agile Methodology to testing. We 
were able to separate parts of the system that were 
not critical, but the core required rigorous quality 

assurance. We were also able to reduce the amount 
of automated testing. Our Testing Team was 
composed of 2 engineers for a team of 4-8 
developers. Once again, this parameter will depend 
on the specifics of the project at hand. 

6.2 Activities and Schedule 

One of the most important aspects of the Agile 
methodologies is the much shorter release cycles 
than traditional Plan-driven methodologies. In 
Scrum, such release cycles are called Sprint. We 
have had experience with both packaged releases 
and incremental improvements. In the first case, we 
had contractual obligations to release a particular set 
of functionalities to external customers. The latter 
case allowed for the release as improvements were 
developed and fits more naturally with the Scrum 
methodology. But even in the first case, we used the 
Scrum methodology, thus generating shorter internal 
releases and providing packaged releases at longer 
cycles. What was important in this case was a close 
relationship and agreement with the customer to 
define the appropriate milestones for the packaged 
releases, as the Scrum methodology avoids defining 
long term plans in advance. 

We have mostly worked with 2-week Sprints, 
but have experimented also with 3-week Sprints. 
The 2-week Sprint is more dynamic, allowing faster 
time to market and market feedback. However, it 
can feel tight, in particular before project 
stabilization or when dealing with complex mission-
critical functions which are harder to implement and 
require full testing. We experienced most difficulties 
and pressure during the last two days of the 2-week 
Sprint when we performed integration testing and 
associated bug fixing and regression testing. When 
we were able to do it, continuous integration 
definitely helped to ease the process. It is also 
important to check with the team in order to decide 
on 2 or 3-week Sprints. The personality and style of 
the team can affect the decision.  

Table 1 shows the activities and schedule of the 
R-Agile Robust Agile Methodology.  It presents the 
activities associated with each of the Product, 
Design, Coding and Testing Teams and can be used 
for either 2 or 3 week Sprints. The second week of a 
3 week Sprint is simply a continuation of the 
activities started in the first week. 

A key aspect of the proposed R-Agile Scrum 
Methodology is related to the temporal relationship 
and sequencing of the activities. The main activities 
of the Product and Design Teams, which are 
Specification  and  Design respectively, happens one  

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

76



 

 

Table 1: R-Agile Scrum Methodology with 2-3 Week Sprint Release Cycle. 

Sprint First Week 

Team Monday Tuesday Wednesday Thursday Friday 

Product 
Specification 
Sprint n+1 

 
 

 
 

 
 

 
 

Design 
Design Review 
Sprint n 

Design  
Sprint n+1 

   

Coding 
Design Review 
Sprint n 

Code 
Sprint n 

   

Testing 
Code Test 
Scripts 
Sprint n 

  
Test  
Sprint n 

 

 
Sprint Last Week 

Team Monday Tuesday Wednesday Thursday Friday 

Product 
 
 

  
Review and 
Sign-off 
Sprint n 

Planning  
Sprint n+1 

Design 
 
 

 
 
 

Review  
Sprint n 

Planning  
Sprint n+1 

Coding   
Integration 
Sprint n 

Review and 
Push Production 
Sprint n 

Planning  
Sprint n+1 

Testing 
 
 

 
Final Test  
Sprint n 

Review 
Sprint n 

Planning  
Sprint n+1 

 

Sprint before Coding. During a 2 (or 3) week period, 
while the Coding Team is programming the features 
of Sprint n, the Product and Design Team are 
respectively specifying and designing for the 
following Sprint n+1. This gives the Product and 
Design Teams enough time to prepare their activities 
before the beginning of Coding. 

The Testing Team, on the other hand, performs 
testing of the features of Sprint n during the same 
Sprint n. The Testing Team starts developing the test 
scripts early in the Sprint. Ideally, the test scripts get 
developed before the corresponding code. This way, 
the code can be tested as it gets implemented. Code 
and test during the same Sprint can feel stressful, but 
it allows the developers to fix bugs while the code is 
still fresh in their minds. We have experimented 
with testing executed one Sprint after the Coding 
Sprint. It certainly provided more ease for the 
Testing Team, but had the inconvenience of having 
developers fixing bugs of the previous Sprint n-1 
during Sprint n. In addition, we had to manage two 
releases of the same features: the testing release at 

the end of Sprint n and the production release at the 
end of Sprint n+1. 

In the remainder of this section we summarize 
the main activities involved in the Scrum. 

6.2.1 Specification 

As described above, the Specification activity is 
performed one Sprint ahead of its corresponding 
Coding Sprint. Before starting the specification 
activity, the product owner is responsible for 
defining and prioritizing the desired product features 
and adding them to the Product Backlog. Each 
feature is described by a story and each story is 
specified with enough details so that the Design and 
Coding Team can understand it.   

6.2.2 Design 

Design is also performed in the previous Sprint n-1. 
The Design Team chooses the stories which require 
design from the Product Backlog according to their 
priority. The Design Team can also spend time 

 

ROBUSTIFYING THE SCRUM AGILE METHODOLOGY FOR THE DEVELOPMENT OF COMPLEX, CRITICAL
AND FAST-CHANGING ENTERPRISE SOFTWARE

77



 

 

reviewing the code and identifying areas for 
redesign and refactoring.   

6.2.3 Planning 

The Planning activity sets the beginning of the 
“official” Sprint. Planning is performed on a Friday. 
One reason for this is so that Sprints can finish with 
a Production Release on a Thursday. This allows for 
any emergency repair of a release to be performed 
on a Friday and not during the weekend. 

An entire day is devoted to Planning and is split 
into two meetings. During the first meeting the 
engineers learn about the stories and choose which 
ones to implement, taking into consideration the 
priority set by the product owner. The chosen stories 
are placed in the Sprint Backlog. During the second 
meeting, the engineers break down the stories into 
tasks that must be coded. The tasks are split among 
the developers, making sure that they can be 
completed during the Sprint. 

6.2.4 Design Review 

The Design Review activity is executed on a 
Monday and can even be extended if necessary. 
During this meeting, the Design Team discusses the 
design (which was performed during Sprint n-1) 
with the Coding Team. Only the developers 
involved with the designed parts are mandated to 
participate in the Design Review meeting. But in 
some cases we involved other developers. This was 
important so that more developers could learn about 
the design. Developers often needed to understand 
the design for a future Sprint and it saved everyone’s 
time to have the design review done once. There was 
also valuable feedback from the developers who, in 
addition, felt more involved and empowered. 

6.2.5 Coding 

The Coding Team has about 7 full days (in the case 
of a 2 week Sprint) to code, check in, unit test, 
integrate code and fix bugs related to the tasks 
committed during the Sprint Planning activity. Since 
the release cycles are short, we decided that only 
mission critical and revenue-affecting bugs and 
feature requests could interrupt a Sprint. As 
discussed, the Coding Team can also perform design 
of their respective tasks, of course in coordination 
with the Design Team and following the minimalist 
principle of Agile. 

6.2.6 Testing 

The Testing Team participates on the Sprint 
Planning activity. During the first meeting of the 
Planning activity, the Testing Team learns about the 
features to be implemented during the Sprint. This 
allows the Testing Team to produce test scripts for 
such features. During the second meeting of the 
Planning activity, the Testing Team defines and 
schedules the testing tasks to be executed during the 
Sprint. These testing tasks are planned and executed 
in the same way as the coding tasks of the Scrum. 

The Testing Team can also participate on the 
Monday Design review. This is important especially 
if the Testing Team is to perform white-box testing, 
which requires testing algorithm paths and their 
efficiency.  

The testing tasks are composed of tasks for 
coding or for running test scripts. The Testing Team 
starts coding the test scripts on Monday. Since test 
scripts are usually coded faster than the actual code 
to be tested, the code can be tested as soon as it gets 
implemented. But we tended to spend a few days to 
create a batch of test scripts before beginning code 
testing around Thursday. This allowed the Testing 
Team to focus on either coding or testing and 
avoided too much back and forth between the two 
activities. This can be planned based on what the 
team feels comfortable with and also based on the 
specific Sprint. 

6.2.7 Review 

On Thursday of the last Sprint week, an informal 
Sprint Review is performed to make sure that the 
implementation meets the requirements. The code is 
pushed to production if signed-off by the product 
owner. A Sprint Retrospective can also be organized 
at times to evaluate the overall methodology and 
propose improvements. 

7 CONCLUSIONS 

We performed Cognitive Task Analysis to show that 
substantial analysis and design is necessary to create 
powerful code and avoid software entropy and 
exponential change curve. We have also discussed 
the more extensive testing necessary for critical 
functionality and the need for adaptability to handle 
fast change requirements. We have presented R-
Agile which is a robust and agile methodology to 
handle complexity, criticality and adaptability. We 
have successfully employed R-Agile to develop 

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

78



 

 

financial, taxation and supply chain management 
enterprise software. 

REFERENCES 

Beck, K., 1999. Extreme Programming Explained: 
Embrace Change, Addison-Wesley Professional;1999. 

Beck, K.; et al., 2001. Manifesto for Agile Software 
Development. Agile Alliance. In website: http:// 
agilemanifesto.org.  

Beedle, M., Devos, M., Sharon, Y., Schwaber, K., 
Sutherland, J., 1999. Scrum: An Extension Pattern 
Language for Hyperproductive Software 
Development. In Pattern Languages of Program 
Design 4, N. Harrison, B. Foote, and H. Rohnert, Eds. 
Addison-Wesley. 

Boehm, B., Turner, R., 2003. Using Risk to Balance Agile 
and Plan-driven Methods; In IEEE Computer, Vol. 36 
Issue: 6; pp. 57 - 66.  

Chandrasekaran, B., 1986. Generic Tasks in Knowledge-
Based Reasoning: High-Level Building Blocks for 
Expert System Design; In IEEE Expert 1(3): pp. 23–
30. 

Chandrasekaran, B., 1990. Design Problem Solving: A 
Task Analysis; In AI Magazine, Vol. 11, Number 4, 
pp. 59-71. 

Chow, T.; Cao, D., 2008. A Survey Study of Critical 
Success Factors in Agile Software Projects, Journal of 
Systems and Software, Volume 81, Issue 6, pp. 961-
971. 

Fowler, M., 2001. Is Design Dead?, In Extreme 
Programming Examined. Addison-Wesley Longman 
Publishing Co., Inc., Boston, MA, USA, pp. 3–17. 

Larman, C., Basili, V. R., 2003. Iterative and Incremental 
Development: A Brief History; In IEEE Computer, 
Cover Feature, June 2003, pp. 47-56. 

McConnell, S., 1996. Rapid Development: Taming Wild 
Software Schedules. Microsoft Press. 

Papert, S., Harel, I., 1990. Software Design as a Learning 
Environment; Interactive Learning Environments, v1 
n1 pp. 1-32. 

Pirolli, P., Card, S., 2005. The Sensemaking Process and 
Leverage Points for Analyst Technology as Identified 
Through Cognitive Task Analysis; In Proceedings of 
International Conference on Intelligence Analysis. 

Royce, W.,1970. Managing the Development of Large 
Software Systems; In Proceedings of IEEE WESCON, 
Number 26 (August), pp. 1–9. 

Talby, D., Hazzan, A., Dubinsky, Y., Keren, A., 2006. 
Agile Software Testing in a Large-Scale Project; In 
IEEE Software, vol. 23, no. 4, pp. 30-37. 

 
 

ROBUSTIFYING THE SCRUM AGILE METHODOLOGY FOR THE DEVELOPMENT OF COMPLEX, CRITICAL
AND FAST-CHANGING ENTERPRISE SOFTWARE

79


