LEADER FOLLOWING FORMATION CONTROL FOR OMNIDIRECTIONAL MOBILE ROBOTS

The Target Chasing Problem

Tiago Pereira do Nascimento, Fernando A. Fontes, António Paulo Moreira
INESC Porto, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal

André Gustavo Scolari Conceição
Department of Electrical Engineering, Federal University from Bahia, Salvador, BA, Brazil

Keywords: Formation control, Nonlinear model predictive controller, Mobile robots, Omnidirectional mobile robots.

Abstract: This paper describes a novel approach in formation control for mobile robots. Here, a Nonlinear Model Predictive Controller (NMPC) is used to maintain the formation of three omnidirectional mobile robots. The details of the controller structure are presented as well as its functionality in a soccer robot team. Three Middle Size League Robots are used for evaluation. A case of study based in a soccer robot situation is presented, developed, and implemented to evaluate the performance of the controller. Simulations results are presented and discussed.

1 INTRODUCTION

An adaptive framework based in predictive control for creation and maintaining of a mobile robot team formation was conceived as main objective of this work. A formation is usually defined as the special arrangement of a set of agents of the same type, where the relative positions of its elements are steady even if the formation is moving. The used formation differs from the usual rigid formations where the relative position of a team element must be precisely maintained. Here, the ideal formations are the ones that maximize the team perception of the environment or of an element that can be a leader robot or of a moving target.

A formation in "V" is usually normal in sets of birds. This allows them to maximize the traveled distance and minimize the friction with the air flying in the air tunnel left by the front bird. Nevertheless, in the human sphere, a team formation can be used in a variety of ways that goes from military operations to team sports. In soccer for example, a formation describes the number of players used in each tactic formation in the field (defense, offense or middle). In this sport, the formation is less rigid and highly dynamic.

The field of formation coordination and control of a mobile robot team has been the area of many studies in recent years (Bicho et al., 2006), (Monteiro and Bicho, 2008) and (Monteiro and Bicho, 2010). The advantages of using a team of multiple robots include robustness, flexibility, and adaptability to unknown dynamic environments (Lim et al., 2009). These are clearly important when considering applications such as saving and rescue missions, deep ocean mapping, forest fire detection, mine removal detection, or even soccer robot competition.

In (Kanjanawanushkul and Zell, 2008) a strategic division of formation control in three big groups is made: leader following, virtual structure, and behavior-based. There are also approximations purely based in predictive control in which each robot has an identical role in the formation. The virtual structure approach handles the problem as a rigid body where all robots maintain a steady position, subjected to physical constraints. In this strategy, any perturbation made to any robot is propagated to the other robots from the structure. This is due to a relatively simple controller, as the ones described in (Tan and Lewis, 1996), (Ghommam et al., 2010) and (Ren and Beard, 2003). Nevertheless, the virtual structure approach has a high computational cost as the number of robots increase. Another problem of this approach is the velocity of the whole formation which is relatively low, becoming a real problem in cases of dynamic ob-
mobile vehicles is proposed. It is considered that there are two sub-problems to be solved to fulfill the main objective: the trajectory control problem and the formation control problem. With non-holonomic vehicles, the problems are strictly different. When only a single vehicle is moving to follow a fixed trajectory it cannot move in any direction, therefore needing a non-linear controller that would allow discontinued feedback and control laws. However, when the non-holonomic vehicle is moving as part of a formation, the relative position between the vehicles can be modified in any direction as if they were holonomic. To deal with this problem, only a linear controller was needed.

It can be noticed that usually the state of the art studies look for maintaining a rigid formation with a robot team in which the relative positions between the robots are fixed. This paper presents an approach where the desired formation is not rigid. Therefore, the proposed controller shall control the formations that optimize the perception of the environment by the team. By that, the robots relative positions have to vary during the formation movement.

2 FORMATION CONTROL

The controller used in this work to formation control was a Non-linear Model Predictive Controller (NMPC). The general structure of this controller can be classified in three types: distributed, centralized, or hybrid. These categories are based on the way the control signals of each robot are calculated.

Here, the distributed architecture was chosen as can be seen in Fig. 1. In this case, each one of the robots calculates the total control inputs U_n solving its own optimization problem. This takes away the dependency from a central processing unit, guaranteeing the functioning of the formation even in cases of communication failure. Therefore, each robot must have information about the state x_n (position and speed) of each mate of its team. Also, in case of the communication failure or supervisor failure, the robot uses its
predicted open-loop strategy to determine these informations, having, therefore, a tolerance degree to failure. Nevertheless, it has the disadvantage of putting a cost in computing the simulation of the entire formation progression, which is done by each one of the robots. However, this was not a problem, for the robots only calculate their own control inputs. As each robot solves its optimization problem in a decentralized architecture, the formation becomes difficult to stabilize.

The capacity of the NMPC controller to create and maintain a formation comes from the fact that cost functions used by the controllers of each robot in the team formation are coupled. This coupling is done while the information about the position and speed of the other robots are used in the cost function of each robot to penalize the geometry or desired objective deviation. This turns the entire group formation stable where the actions of each robot affect the other mates. Fig. 2 exposes the structure of the used controller. This controller can be divided in three parts:

- **State of the Formation** - The controller contains structures to keep the formations state (position and speed of each other robot in the formation or of any target that should be followed), updating them in each control loop. These informations can be received by a supervisor or by other robots from the team, or even by the robot itself using its own resources;

- **Optimizer** - This part uses a numeric minimization method to optimize the cost function and obtain the signals of optimal control. Here it is used a method called Resilient Propagation (RPROP), which guarantees quick convergence;

- **Simulator** - This part does the simulation not only of the robot state evolution but also the state evolution of the other elements in the formation (other robots or targets). This element uses a dynamic simplified model to emulate the robot evolution. The speeds of the other robots or targets are assumed during the entire horizon of prediction as being constant and equals to the actual speed.

The controller receives as parameters the desired formation, the position of the robot in formation and the actual state of the other elements in the formation. For each formation there are a different cost functions. Then each mDec uses its controller optimizer and it starts to give to the simulator the control input U for the robot the mDec is controlling. The simulator uses this information to simulate the complete formation evolution for the prediction horizons T_p. The simulator gives back to the optimizer a cost value to the control inputs, and the iterative process of minimization is repeated cyclic.

The Resilient Propagation algorithm (RPROP) appeared in the learning algorithms category used in neural networks (Riedmiller and Braun, 1993), being adapted to this application. This is an adaptive method where the step value is not proportional to the gradient function value to be minimized in a desired point (as it happens in the Steepest Descent algorithm), but it keeps adapting with the function behavior. Therefore, it becomes immune to the uncertainties of the derivative function value, depending only on the temporal behavior of its signal. This algorithm was tested initially with the values suggested by (Riedmiller and Braun, 1993) ($\eta^+ = 1.5$, $\eta^- = 0.5$, $\Delta_0 = 0.1$) and it revels to be capable to converge where the Steepest Descent failed.

3 PROBLEM FORMULATION

The developed framework was applied to a formation with three omnidirectional mobile robots from
the FEUP’s 5DPO team (Fig. 3) that can fulfill two main objectives: the optimization of the target relative velocity perception and relative state perception (ball relative velocity perception and relative state perception) using two robots (observers) while a third robot places itself in an ideal position to receive the ball (receiver). The robots should maintain this formation following the ball movement and avoiding the collisions between them or with the target.

Figure 4: The Desired Formation.

The mathematical definition of the system can be understood as having three robots and a ball (target). Taking as base for this formation definition the elements presented in Fig. 4. The ball position and speed vectors in global coordinates are respectively:

\[X_{\text{ball}}(k) = \begin{bmatrix} x_{\text{ball}}(k) \\ y_{\text{ball}}(k) \end{bmatrix}^T, \]

\[V_{\text{ball}}(k) = \begin{bmatrix} v_{x_{\text{ball}}}(k) \\ v_{y_{\text{ball}}}(k) \end{bmatrix}^T. \]

It is considered also that the unit vector of the ball’s velocity \(\hat{v}_{\text{ball}}(k) = \left[\hat{v}_{x_{\text{ball}}}(k), \hat{v}_{y_{\text{ball}}}(k) \right]^T \), is such that:

\[\hat{v}_{\text{ball}}(k) = \frac{v_{\text{ball}}(k)}{\sqrt{v_{x_{\text{ball}}}(k)^2 + v_{y_{\text{ball}}}(k)^2}}. \]

For each robot \(n \), its state is represented by:

\[X_n(k) = \begin{bmatrix} x_n(k) \\ y_n(k) \\ \Theta_n(k) \end{bmatrix}^T, \]

\[V_n(k) = \begin{bmatrix} v_{x_n}(k) \\ v_{y_n}(k) \\ w_n(k) \end{bmatrix}^T. \]

The position of the ball with respect to robot \(n \) is given by \(P_{Rn-B}(k) = [x_{Rn-B}(k), y_{Rn-B}(k)] \), where:

\[P_{Rn-B}(k) = \begin{bmatrix} (x_{\text{ball}}(k) - x_n(k)) \\ (y_{\text{ball}}(k) - y_n(k)) \end{bmatrix}. \]

Then, it shall be defined the unit vector \(\hat{P}_{Rn-B}(k) = [\hat{x}_{Rn-B}(k), \hat{y}_{Rn-B}(k)] \), which indicates the direction of the ball with respect to the robot, and its angle \(\theta_{Rn-B} \):

\[\hat{P}_{Rn-B}(k) = \frac{P_{Rn-B}(k)}{\sqrt{x_{Rn-B}(k)^2 + y_{Rn-B}(k)^2}}. \]

\[\theta_{Rn-B}(k) = \arctan2(y_{Rn-B}(k), x_{Rn-B}(k)). \]

Finally, there is also the definition of the positions of each robot \(n \) with respect to its mates in the formation \(y \), given by \(P_{Rn-Rj}(k) = [x_{Rn-Rj}(k), y_{Rn-Rj}(k)] \), where:

\[P_{Rn-Rj}(k) = \begin{bmatrix} (x_n(k) - x_j(k)) \\ (y_n(k) - y_j(k)) \end{bmatrix}. \]

3.1 The Observer Robot

The estimation of the quality of the ball state is a function of its moving direction with respect to the robot and the distance in between. This estimation is done by using an omnidirectional vision system, the description of which can be found in (Gouveia, 2008). Therefore, it’s clear that in this case, the robot’s direction is irrelevant.

Nevertheless, big distances between the robot and the ball results in failure of the ball’s detection. Consequently, this leads to the failure to estimate its velocity. When the distance is too small, it can occur that the robot cannot see the entire ball and, therefore, become incapable to detect correctly its position increasing the risk of undesired collisions. Take as an example the case in which the distance between the ball and the robot decreases with time in a straight line. In this case the robot only sees the ball increasing in size, making it difficult to estimate its velocity. In the ideal case the ball should move perpendicular to its position with respect to the robot. Therefore, the desired formation for the observer robots to be around the ball in a way to better estimate the ball velocity possesses the following characteristics:

- Each one of the robots puts itself in opposite sides of the ball, maintaining a parallel velocity with respect to the ball, \(v_{\text{ball}} \), with the same modulus;
- The robot position vector with respect to the ball, \(P_{Rn-RB} \), must be perpendicular to the ball’s velocity vector, \(v_{\text{ball}} \);
- Each one of the robots must maintain a distance \(|P_{Rn-B}| \) from the ball;
- The robots must not collide between them.

Therefore, taking into account all the elements previously described, the weights given to each one of them, and a penalization term to the variation of control effort, the cost function that represents all this,
embedded in each of the two observer robots is as follows:

\[
J(N_1, N_2, N_c) = \sum_{i=1}^{N_c} \lambda_1 (d_{setpoint} - |P_{Rn-B}(i)|)^2 + \\
\sum_{i=1}^{N_c} \lambda_2 (\dot{P}_{Rn-B}(i) \cdot \dot{v}_{ball}(i))^2 + \\
\sum_{i=1}^{N_c} \lambda_3 \left(\frac{1}{d_{min} + |P_{Rn-Rm}(i)|}\right)^2 + \\
\frac{1}{d_{min} + |P_{Rn-Rm}(i)|} + \\
\sum_{i=1}^{N_c} \lambda_4 (\Delta U(i))^2,
\]

(10)

Where,
- \(N_1, N_2\): prediction horizon limits, in discrete time, so that \(N_1 > 0 \leq N_2 \leq N_p\), where \(N_p\) is the desired prediction horizon.
- \(N_c\): control horizon.
- \(\lambda_1, \lambda_2, \lambda_3, \lambda_4\): weights for each component of the cost function
- \(\Delta U(k) = [v_r(k) - v_r(k - 1)] + [v_n(k) - v_n(k - 1)] + [w_r(k) - w_r(k - 1)]\): variation of the control signals, with \(U(i)\) being the reference velocities vector with respect of the center of mass of the robot.

3.2 The Receiver Robot

The ideal position of the receiver robot with respect to the ball to have a good reception of it corresponds to the one in which the robot velocity vector is collinear with the ball velocity vector, with the same modulus. Also, the robot orientation should be such that the front of the robot is turn towards the ball. Therefore, the robot can then slowly decelerated and the distance between it and the ball can be decreased in a way to receive the ball in ideal conditions.

Summarizing it, the formation here should possess the following characteristics:
- The robot’s velocity has to be equal in modulus and direction to the ball’s velocity \(v_{ball}\);
- The robot’s position vector with respect to the ball, \(P_{Rn-B}\), must be collinear to the ball’s velocity vector, \(v_{ball}\);
- The robot’s orientation \(\theta_r\) must be at all times equal to the vector \(P_{Rn-B}\)’s angle, defined by \(\theta_{Rn-B}\), in a way that the kicker of the robot is always turn towards the ball;
- The robot must be at a distance \(|P_{R-B}|\) from the ball.

Finally, joining all the elements previously described, the weights given to each one of them, and a penalization term to the variation of control effort, the cost function that represents all this, embedded in the receiver robot is as follows:

\[
J(N_1, N_2, N_c) = \sum_{i=1}^{N_c} \lambda_1 (d_{setpoint} - |P_{Rn-B}(i)|)^2 + \\
\sum_{i=1}^{N_c} \lambda_2 (-1)^2 + \\
\sum_{i=1}^{N_c} \lambda_3 \left(\frac{1}{d_{min} + |P_{Rn-Rm}(i)|}\right)^2 + \\
\frac{1}{d_{min} + |P_{Rn-Rm}(i)|} + \\
\sum_{i=1}^{N_c} \lambda_4 (\Delta U(i))^2,
\]

(11)

Where,
- \(N_1, N_2\): prediction horizon limits, in discrete time, so that \(N_1 > 0 \leq N_2 \leq N_p\), where \(N_p\) is the desired prediction horizon.
- \(N_c\): control horizon.
- \(\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5\): weights for each component of the cost function
- \(\Delta U(k) = [v_r(k) - v_r(k - 1)] + [v_n(k) - v_n(k - 1)] + [w_r(k) - w_r(k - 1)]\): variation of the control signals, with \(U(i)\) being the reference velocities vector with respect of the center of mass of the robot.

4 RESULTS

Once the formation algorithm was implemented, some tests in simulation were made to validate the proposed controller and to test its performance under different conditions. Here, a simulation software called SimTwo was used to simulate the formation (Costa, 2010) done by three omnidirectional robots and the target (ball).

In this simulation the SimTwo has the job of another software called HAL (Hardware Abstraction Layer), which is an application that receives the sensor signals and communicates with the actuators, and
then with the mDec (software of control of the real robots) by IP protocol. In the real robots, the HAL sends to the robot’s mDec the state of the other robots and the state of the ball. Then, each mDec sends to the SimTwo the control references of its robot. Each mDec also communicates with another central computer (the supervisor) that contains the Coach software, sending its own state and the state of the ball while observing it. Finally, the Coach sends to each mDec individually the state of the other robots in formation, in a way that each robot has the information of position and velocity of its mates. It can be noticed that this arrangement is similar the one used in real experiments, where the only difference is the replacement of the SimTwo for the HAL in each robot.

Figure 5: Communications between applications diagram. There are many variables that influences the quality of the result. Among them are the weights (the λ_i) of each cost function and the optimizer parameters. The cost function values for both observer and receiver robots can be seen in table 1. In the minimization of the cost function values, only the relationship between the weights given to each element that meters to the final result. Therefore, to the penalization of the relative position with respect to the ball λ_2 was given a value ten times bigger than the penalization of the distance between the robot and the ball λ_1, due to the fact that the first penalization is harder to maintain. The weight given to the penalization of the proximity between robots, λ_3, was set very high to avoid the maximum number of collisions. The penalization for the receiver robot’s orientation, λ_4 in table 1, was set as half of λ_2, for this was not very important to the formation. Finally, the value of the control effort (λ_4 in the first table and λ_5 in the second one) was chosen to be the smallest value that could forbid the robots to move themselves around the target when this was stationary. The final values were a result of an iterative process. This process did not need to be very precise, due to the fact that there were a very large range of weights that could give similar results. Nevertheless, the NMPC controller parameters were $N_p = 10$, $N_c = 2$ and the used reference trajectory to find them was an gate signal extracted in a previous work done by (Ferreira and Moreira, 2010).

Table 1: Weights for the Observers and Receiver.

<table>
<thead>
<tr>
<th>Weight</th>
<th>Observer Value</th>
<th>Receiver Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>λ_2</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>λ_3</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>λ_4</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>λ_5</td>
<td>-</td>
<td>5</td>
</tr>
</tbody>
</table>

The initial parameters used on the RPROP optimization algorithm were the ones suggested by (Riedmiller and Braun, 1993) where the algorithm description can also be found. The fist tests were done with these parameters ($\eta^+ = 1.5$ and $\eta^- = 0.5$) and resulted in a very satisfactory performance by the controller. Some changes made on these values were tested (decrement of η^+ and increment of η^-) and produced visible improvements, having the final values become as the ones shown in table 2.

Table 2: RPROP optimizer parameters.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT_{max}</td>
<td>20</td>
</tr>
<tr>
<td>ϵ</td>
<td>0.05</td>
</tr>
<tr>
<td>η^+</td>
<td>1.2</td>
</tr>
<tr>
<td>η^-</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Therefore, the following simulation results made with the formation control framework evaluate the proposed controller. First, the simulations for formation convergence are shown to evaluate the formation controller. Secondly, simulations for the evaluation of the formation maintenance were made.

4.1 Formation Convergence Results

The following results show the trajectories followed for each one of the robots when, starting from different positions, converge to a preset formation. The target in these cases is stationary during the simulation making the internal product of any vector with the ball velocity vector equals to zero. It is important to notice that the robots number 1 and 2 are the
observer robots while the robot number three is the receiver robot. The desired distance between each robot to the ball was defined to be 1 m.

4.1.1 Simulation 1

In this simulation the robots start at positions perfectly opposites and far from the ball. For having less risk of collision or probability of the robots to interfere with each other, this became the simplest case. The results can be seen in Fig. 6. The robots converge perfectly to their positions in formation, making straight trajectories towards the target. As can be seen in the plot of the distance with respect to the time, it can be estimate that the robots have converged to the desired formation in approximately four seconds.

4.1.2 Simulation 2

Here all robots start from the same side of the ball, thought separated by a distance of 3 m. The results can be seen in Fig. 7. From this simulation on it can be noticed some interaction between the robots. The robot 3 went directly to the ball, in a straight line. The robots 1 and 2 went also to the ball avoiding the robot 3 when starting to get close to this robot. This formation converged in about 5 seconds.

4.1.3 Simulation 3

The third simulation shows a more complex situation, where the robots start from the same alignment with respect to the ball. The results can be seen in Fig. 8. The robot 3, closest to the ball, went to occupy instantaneously the position in its front. When the robot number 2 approaches the ball, the robot number 3 moves slightly up, therefore, going around the ball, and occupying the space behind it. Finally, the robot number 1 puts itself in the space left by robots number 2 and 3. This process takes about 4.5 seconds.
4.2 Formation Maintenance Results

Now, the following simulations test situations in which, once the formation is made, the robots must maintain it moving in formation while tracking the target (the ball). These simulations were made to evaluate the capacity of the controller to maintain the desired formation. Besides the XY plot and the distance with respect to time graph, the graph of the internal product between the ball velocity vector and the each robot position vector with respect to the ball was also shown.

4.2.1 Simulation 1

In these testes the target moved in a straight line trajectory with a constant velocity that varied from 0.5m/s to 1.5m/s. These simulations can be seen in Figs. 9, 10, and 11. This is the simplest situation to maintain the formation in a target tracking problem, given the fact that the target velocity has direction and velocity constant what allows the controller to predict exactly its progression.

Figure 9: Maintaining formation in a straight line, simulation 1a.

To the target velocity equals to 0.5m/s and 1.0m/s the performance of the controller is similar and presents an acceptable accuracy. The distances from the ball are maintained close to the desired vale of 1 m while the values of the internal product are also similar to the desired ones (0 to the robots 1 and 2 and -1 to the robot 3). It can be noticed in the graphs of internal product, that the internal product of two unit vectors vary much more quickly around 0 then around -1. Therefore, the bigger variations of the internal product in robots 1 and 2 do not mean a bad control (as it can be seen in the plots XY).

With a velocity of 1.5m/s the controller shows a little difficulty in maintaining the formation with accuracy. The robots 1 and 2, although a little bit late with respect to the ball, do succeed in maintaining the desired formation. However, the robot 3 presents some difficulty in following the target trajectory, putting itself closer than it should what made it oscillate around the desired one.

Figure 10: Maintaining formation in a straight line, simulation 1b.
4.2.2 Simulation 2

This last simulation had the objective to evaluate the behavior of the controller when the target changes its direction abruptly. It has also the objective to evaluate if the robots are capable of reset their formation positions correctly avoiding any collision between them. For that purpose, two types of corners were tested: a 135° corner (a less abrupt angle) and a 90° corner (or a right angle). The results can be seen in Fig. 12 using a speed of 0.5 m/s.

By each change of direction the entire formation turns around the target and the robots reset their position in formation in a way to occupy the correct positions. Observing the plots of distance with respect to the time and internal product with respect to the time, the formation takes about three seconds to reset.

5 CONCLUSIONS

In this paper a novel approach of a Non-linear Model Predictive Controller was presented to formation control of omnidirectional mobile robots. The developed framework showed to be very flexible and easily adaptable. The projected controller is capable of making the team of robots to converge to the desired geometry around a target, even if the robots are very far apart. The merit of this accomplishment can be directed to the minimization algorithm used, the RPROP. Also, due to the high penalization on the extreme proximity between robots, the collisions between them are effectively limited or completely avoided.

In terms of maintaining the formation, the obtained results are highly dependent of the target velocity characteristics. In low velocities the results were obviously better due to the fact that the errors from the incorrect predictions do not result in big deviations in the desired geometry as it does when the velocities are high. In general, the controller reacted well to abrupt changes in the target speed direction, with the formation circulating the target instantaneously after the change in direction. Consequently, it made the geometry to be reset to accommodate the new direction.
ACKNOWLEDGMENTS

The authors thank the INESC Porto for contributing to this work and to the FCT (Fundação para Ciência e Tecnologia) from Portugal for supporting the project PTDC/EEA-CRO/100692/2008 - "Perception-Driven Coordinated Multi-Robot Motion Control".

REFERENCES

