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Abstract: Safety verification of hybrid systems is in general undecidable. Due to practical applications, it is sufficient
to only consider robustly safe hybrid systems in which a slight perturbation is guaranteed to result in the
same desired safety property. In this paper, we provide a constraint based abstraction refinement for safety
verification of nonlinear hybrid systems and prove that this refinement procedure will terminate for robustly
safe nonlinear hybrid systems.

1 INTRODUCTION

Hybrid systems (Alur et al., 1995; Schaft and Schu-
macher, 2000; Ratschan and She, 2007) is a class of
dynamical systems, which in addition to the discrete
events also contain continuous behaviors that evolve
according to differential equations or difference equa-
tions. Many examples of hybrid systems (Fehnker
and Ivančić, 2004) are obtained when a digital sys-
tem is embedded in an analog environment which, in
many cases, is described by physical laws that are
formulated using differential equations or difference
equations. Such systems usually operate in safety-
critical domains, for example, inside automobiles, air-
crafts, and chemical plants. Thus, an important task is
to verify that a given hybrid system is safe, that is, to
verify that every trajectory of a given hybrid system
starting from an initial state never reaches an unsafe
state (i.e., a so-called “bad” state).

The safety verification problem of hybrid sys-
tems is in general undecidable (Henzinger et al.,
1998) and terminating algorithms exist only for cer-
tain special cases, for example, linear hybrid au-
tomata (Henzinger et al., 1998) and o-minimal hybrid
automata (Lafferriere et al., 1999).

Since hybrid systems often model a given real sys-
tem in practice with perturbations, the notation of ro-
bustness (Henzinger and Raskin, 2000; Fränzle, 2001;
Girard and Pappas, 2006; Damm et al., 2007; Julius et
al., 2007) has been introduced to model the given real
system up to perturbations. Hence, from the practical
viewpoint, it is sufficient to only consider robust sys-

tems in which a slight (quantifiable) perturbation is
guaranteed to result in the same desired qualitative
properties (e.g., safety and stability).

In this paper, we will provide a constraint based
approach for safety verification of continuous-time
hybrid systems (Ratschan and She, 2007; Frehse,
2008) such that the termination of our approach is
guaranteed even for a very rich class of models, which
involve function symbols in{+,×, ˆ, sin,cos,exp}.
Note that unless otherwise specified, hybrid systems
in this paper denote continuous-time hybrid systems.

Following our earlier works (Ratschan and She,
2007; Ratschan and She, 2006; She and Zheng, 2008),
we continue to use constraints for describing hybrid
systems. In addition, for describing robust hybrid sys-
tems, we use the solution sets to the corresponding
constraints defined for hybrid systems with small per-
turbations.

For verifying safety property of hybrid systems,
we use an abstraction refinement technology. That it,
for a concrete hybrid system, we first split its state
space into boxes and then abstract it to a finite tran-
sition system which over-approximates the concrete
system in a conservative way. During the refinement
procedure, we also include more information from
the concrete system into the abstract one, which is
done by constructing a reachability constraint, check-
ing whether a certain state fulfills this constraint and
removing states that do not fulfill this constraint by an
interval based pruning algorithm. However, the inter-
val based abstraction refinement in some cases results
in the wrapping effect (Neumaier, 1993), which will
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be explained in Subsection 3.1. For reducing such
a wrapping effect, we propose a quantifier elimina-
tion based remedy. That is, we first construct a con-
straint to describe the reachable set on the boundaries
of boxes such that every free variable only occurs
once; then, we employ a special quantifier elimination
method to get the exact solution set to this constructed
constraint; finally, we use this exact solution set in the
reachability constraint for further computation.

Moreover, based on our proposed remedy, we can
prove that our abstraction refinement procedure will
eventually terminate for robustly safe hybrid systems.

Compared to the discrete time model in (Damm
et al., 2007), there are variables for describing dif-
ferentiation, which do not vary over the state space
and may take unbound values. Moreover, compared
to the counter-example guided abstraction refinement
(CEGAR) based approach (Klaedtke et al., 2007), we
avoid solving a large reachability constraint formulat-
ing states reachable via a trajectory over a finite num-
ber of abstract states (i.e., boxes).

This paper is organized as follows. In Section 2
we formulate our basic notions on hybrid systems and
robust hybrid systems. In Section 3, we introduce a
constraint based abstraction refinement for safety ver-
ification of hybrid systems, associated with a remedy
for reducing the wrapping effect in Subsection 3.1
and a special quantifier elimination method in Sub-
section 3.2. In Section 4 we analyze the termination
of our abstraction refinement procedure with our pro-
posed remedy for robustly safe hybrid systems. In
Section 5 we conclude the paper.

2 ROBUST HYBRID SYSTEMS

We fix a variablem ranging over a finite set of dis-
crete modesM= {m1, . . . ,mn} and variablesx1, . . . ,xk
ranging over closed real intervalsI1, . . . , Ik. We de-
note bySthe resulting state spaceM× I1×·· ·× Ik and
let X = {x1, . . . ,xk}. For denoting the derivatives of
x1, . . . ,xk we use variables ˙x1, . . . , ẋk, ranging overR
each, and leṫX = {ẋ1, . . . , ẋk}. Moreover, for denot-
ing the targets of jumps, we use variablesm′,x′1, . . . ,x

′
k

ranging overM andI1, . . . , Ik and letX′ = {x′1, . . . ,x′k}.
For simplicity, we sometimes use the vector~x to de-
notex1, . . . ,xk, and(m,~x) to denote a state. Similar
notations are used for~x′ and~̇x.

In order to describe hybrid systems we use con-
straints that are arbitrary Boolean combinations of
equalities and inequalities over terms. These con-
straints are used, on the one hand, to describe the
possible flows and jumps and, on the other hand, to
mark certain parts of the state space (e.g., the set of

initial/unsafety states).

Definition 1.

1. An arithmetic expression is a term (in the
predicate-logical sense) with function symbols in
{+,×, ˆ, sin,cos,exp}.

2. An atomic arithmetic state space constraint is of
form erc, where e is an arithmetic expression, r∈
{=,<,>,≤,≥} is a relation operator, and c is a
real-valued constant.

3. A mode constraint is an expression of from m=mi
or m′ = mi , where mi ∈ M.

4. A state space constraint is a Boolean combination
of forms ms→ aas, where ms is a mode constraint
containing only m,→ is a Boolean implication,
and aas is a Boolean combination of atomic arith-
metic state space constraints containing variables
only in X.

5. A flow constraint is a Boolean combination of
forms ms→ fs, where ms is a mode constraint con-
taining only m,→ is a Boolean implication, and
fs is a Boolean combination of atomic arithmetic
state space constraints containing variables only
in X∪ Ẋ.

6. A jump constraint is a Boolean combination of
forms js→ js′, where js is a state space constraint,
→ is a Boolean implication, and js′ is a Boolean
combination of mode constraints containing only
m′ and atomic arithmetic state space constraints
containing variables only in X∪X′.

Definition 2. A hybrid systemover the state space
S is a tuple(Flow,Jump, Init,UnSafe) consisting of
a flow constraint Flow describing the continuous dy-
namical evolutions, a jump constraint Jump describ-
ing the set of possible discrete jumps, a state space
constraint Init describing the set of initial states, and
a state space constraint UnSafe describing the set of
unsafe states.

For simplicity, we useFlow for describing both
the flow constraint and the subset ofS× R

k sat-
isfying this flow constraint. Similar conventions
are also used forJump, Init and UnSafe. Thus, a
hybrid systemH can also be formulated as a tu-
ple (Flow,Jump, Init,UnSafe), whereFlow⊆ S×R

k,
Jump⊆ S×S, Init ⊆ S, andUnSafe⊆ S.

Definition 3.

1. A flow of length l in a mode m is a function r:
[0, l ] 7→ S such that

• (r(t), ṙ(t)) ∈ Flow, where ṙ(t) denotes the
derivative of the projection of r to its contin-
uous part, and

• for all t ∈ [0, l ], the mode of r(t) is m.
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For simplicity, for a flow r, we will use len(r) to
denote its length and m(r) its mode.

2. A trajectoryofH is a finite sequence of flowsσ =
r0, r1, . . . , rp such that:

• len(r i) = l i for all i = 0, . . . , p,
• if i > 0, (r i−1(l i−1), r i(0)) ∈ Jump for all i=

1, . . . , p,

• if l i > 0 then for all t∈ [0, l i ], (m(r), r(t), ṙ(t))∈
Flow, whereṙ is the derivative of the projection
of r to its continuous part.

3. A hybrid systemH = (Flow,Jump, Init,UnSafe)
is safe if and only if, there is no trajectory
r0, . . . , rp of H such that r0(0) is in Init and rp(l)
is in UnSafe, where l is the length of rp.

The semantics of a hybrid system is a tran-
sition system with an uncountable set of states.
Formally, the semantics of a hybrid systemH =
(Flow,Jump, Init,UnSafe) is a transition system
M (H ) = (S,SInit ,Steps,SUnSafe) whereS= M× I1×
·· ·× Ik, SInit = {s∈ S: ssatisfiesInit}, SUnSafe= {s∈
S : ssatisfiesUnSafe}, and Stepsis defined as the
union of two transition relationsStepsC andStepsD ,
whereStepsC ⊆ S×S corresponds to transitions due
to continuous flows and is defined by:

• ((m,~x),(m,~x′)) ∈ StepsC , if there exists a trajec-
tory σ = r0 (i.e., a flowr0) such thatm(r0) = m,
r0(0) =~x andr(len(r0)) = ~x′,

andStepsD ⊆ S×Scorresponds to transitions due to
discrete jumps and is defined by:

• ((m,~x),(m′,~x′)) ∈ StepsD if ((m,~x),(m′,~x′)) ∈
Jump.

It is well-known that checking whether a hybrid
system is safe is an undecidable problem (Henzinger
et al., 1998). However, in practice we are not inter-
ested with a hybrid system whose safety changes un-
der small perturbations. Hence, it is sufficient to have
an algorithm that can prove safety for systems whose
safety does not change under small perturbations.

In order to introduce the notation of perturbations,
we first define a distance measure on constraints as
follows.

Definition 4.

1. The distance between two atomic arithmetic
constraints erc and e′ r ′ c′ is defined by
d(e, r,c,e′, r ′,c′)

.
= ∞, if e 6= e′ or r 6= r ′,

and|c− c′|, otherwise.

2. The distance between two mode constraints m=
m1 and m= m2 is ∞ if m1 6= m2 and0, otherwise.

3. The distance between two constraintsφ andφ′ is
defined by d(φ,φ′) .

=

• ∞, if φ andφ′ have a different Boolean structure
or do not have mode constraints at the same
place, and

• the maximum of the distances between two cor-
responding atomic (arithmetic or mode) con-
straint, otherwise.

Now, after denoting the distance between two vec-
tors~x and~x′ to be

d(~x,~x′) = ‖~x−~x′‖∞ = max
1≤i≤k

|xi− x′i|.

based on Definition 4, we can define the notion of an
ε-perturbed solution set as follows.

Definition 5. A set P is anε-perturbed solution set of
a constraintφ if and only if

1. for every~x ∈ P, there is a constraintφ∗ with
d(φ,φ∗)≤ ε and an~x∗ with d(~x,~x∗)≤ ε such that
φ∗(~x∗) holds.

2. for every~x /∈ P, there is a constraintφ∗ with
d(φ,φ∗)≤ ε and an~x∗ with d(~x,~x∗)≤ ε such that
φ∗(~x∗) does not hold.

Example 1. Consider the constraintφ defined by x=
0. Clearly,{x : x = 0} is anε-perturbed solution set
due to the following:

1. for x= 0, choosingφ asφ∗ and x as x∗, d(φ,φ∗) =
0< ε, d(x,x∗) = 0< ε, andφ∗(x∗) holds.

2. for any x 6= 0, choosingφ as φ∗ and x as x∗,
d(φ,φ∗) = 0< ε, d(x,x∗) = 0< ε, andφ∗(x∗) does
not hold.

Moreover, P= {x : x = ε} with ε > 0 is also anε-
perturbed solution set due to:

1. for x= ε, choosing x= ε/2 as φ∗ and x∗ = ε/2,
d(φ,φ∗) = ε/2< ε, d(x,x∗) = ε/2< ε, andφ∗(x∗)
holds.

2. for any x6= ε, choosing x= ε/2 as φ∗ and x∗ =
x− ε/2, d(φ,φ∗) = ε/2 < ε, d(x,x∗) = ε/2 < ε,
andφ∗(x∗) does not hold.

Example 2. Consider another constraintφ defined by
x2 < 0. Clearly, its solution set is empty and/0 is an
ε-perturbed solution set ofφ. Moveover, P= {x : x2 <
ε} is also anε-perturbed solution set ofφ due to:

1. for every x∈ P, choosing x2 < ε as φ∗ and x∗ =
min{ε+ x,

√
ε}, d(φ,φ∗) = ε, d(x,x∗) ≤ ε, and

φ∗(x∗) holds.
2. for every x such that x≥

√
ε, choosing x2 < ε as

φ∗ and x∗ = x+ ε, d(φ,φ∗) = ε, d(x,x∗) = ε, and
φ∗(x∗) does not hold.

3. for every x such that x≤−
√

ε, choosing x2 < ε as
φ∗ and x∗ = x− ε, d(φ,φ∗) = ε, d(x,x∗) = ε, and
φ∗(x∗) does not hold.
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Definition 5 is extended for hybrid systems with
small perturbations as follows.

Definition 6. A hybrid system H ε =
(Flowε,Jumpε, Initε,UnSafeε) is an ε-
perturbed manifestation of a hybrid system
H = (Flow,Jump, Init,UnSafe) if and only if
Flowε, Jumpε, Initε and UnSafeε are ε-perturbed
solution sets of Flow, Jump, Init and UnSafe,
respectively.

Definition 6 allows us to define robustness of a
hybrid system with the same desired safety property
as follows.

Definition 7. A hybrid system H =
(Flow,Jump, Init,UnSafe) is robustly safe if
and only if there exists a constantε > 0
such that all its ε-perturbed manifestations
H ε = (Flowε,Jumpε, Initε,UnSafeε) are safe.

Example 3. Consider the hybrid systemH =
(Flow,Jump, Init,UnSafe), where Flow iṡx= 0, Jump
is /0, Init is x= 0, and UnSafe is x= 1. Clearly, this
hybrid systemH is safe. However,H ′ =(ẋ= ε, /0,x=
0,x = 1) with ε > 0 is an ε-perturbed manifestation
of H but not safe, implying that H is not robustly
safe.

3 CONSTRAINT BASED
ABSTRACTION REFINEMENT

In this section we describe a constraint based algo-
rithm for safety verification of hybrid systems based
on the abstraction refinement technology. That is, we
abstract a hybrid system to a finite transition system
(theabstraction) which is defined to be:

Definition 8. A transition systemover a finite setΣ is
a tuple (Trans, Init, Unsafe) where Trans⊆ Σ×Σ and
Init ⊆ Σ, Unsafe⊆ Σ. We call the setΣ thestate space
of the system.

In contrast to Definition 2, here the state space is
a parameter. This will allow us to add/remove states
to the state space during abstraction refinement.

Definition 9. A trajectory of a transition system
(Trans, Init,UnSafe) over a setΣ is a function r :
{0, . . . , p} 7→ σ such that for all t∈ {1, . . . , p}, (r(t−
1), r(t))∈Trans. The system issafeif and only if there
is no trajectory from an element of Init, to an element
of Unsafe.

When we use abstraction to analyze hybrid sys-
tems, the abstraction should over-approximate the
concrete system in a conservative way: if the abstrac-
tion is safe, then the original system should also be

safe. If the current abstraction is not yet safe, we re-
fine the abstraction, that is, we include more informa-
tion about the concrete system into it. This results in
Algorithm 1.

Algorithm 1: Abstraction Refinement.

Input: a hybrid systemH described by constraints
Output: “safe”, if the algorithm terminates

let A be an abstraction of the hybrid systemH
while A is not safedo

refine the abstractionA
end while

In order to implement this algorithm, we need
to fix the state space of the abstract system. Here
we use pairs(m,B), wherem is one of the modes
{m1, . . . ,mn} and B is a hyper-rectangle (box), rep-
resenting subsets of the concrete state spaceS. To-
gether with an abstract state, we store the infor-
mation whether it is initial or unsafe and the in-
formation from which other states it is reachable.
We call such information themarks of the state.
For the initial abstraction we use the state space
{(mi ,{~x | (mi ,~x) ∈ S}) | 1≤ i ≤ n}, where all states
are marked as initial, and unsafe, and all transitions
between states are possible.

For refining the abstraction, we split a box into
two pieces, replace one abstract state by two, and in-
clude more information from the concrete system into
the abstract one by removing unreachable elements
from the boxes, removing superfluous marks from the
new abstract states, and removing unreachable states
from the abstraction.

To remove unreachable elements from the boxes
representing the abstraction, we use a constraint that
formalizes when an element of the concrete state
space might be reachable, and then remove elements
that do not fulfill this constraint. In order to do this,
for a boxB = [x1,x1]× ·· · × [xk,xk], we let its j-th
lower face be[x1,x1]×·· ·× [x j ,x j ]×·· ·× [xk,xk] and
its j-th upper face be[x1,x1]× ·· · × [x j ,x j ]× ·· · ×
[xk,xk]. Note that two boxes in the same mode are
non-overlappingif their interiors are disjoint.

Observe that a point in a boxB is reachable only if
it is reachable either from the initial set via a flow in
B, from a jump via a flow inB, or from a neighboring
box via a flow inB. So we can formulate constraints
corresponding to each of these conditions and then re-
move points from boxes that do not fulfill at least one
of these constraints. For this, we first give a constraint
describing flows within boxes as follows, which has
been described in (Ratschan and She, 2006).

Lemma 1. For a box B⊆R
k and a mode m, if there is

a flow in B and m from a point~x= (x1, . . . ,xk)
T ∈B to
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a point~y= (y1, . . . ,yk)
T ∈ B such that for every point

~u on the flow with its derivativė~u, (m,~u,~̇u) satisfies
the flow constraint Flow(m,~x,~̇x), then

∃t ∈R≥0[ f low∗B(t,~x,~y)], (1)

where f low∗B(t,~x,~y) denotes

∧

1≤i≤k

∃a1, . . . ,ak, ȧ1, . . . , ȧk[(a1, . . . ,ak) ∈ B

∧Flow(m,(a1, . . . ,ak),(ȧ1, . . . , ȧk))∧yi = xi+ ȧi ·t]
We denote the above constraint by

ReachB(m,~x,~y). Notice that in Lemma 1, the
state(m,~y) is assumed to be reachable from(m,~x)
via a flow in B. However, the information on the
state (m,~x) is missing, which in fact requires to
be reachable via a trajectory starting from initial.
Without loss of generality, we can beforehand assume
that we already have a constraintReachableB(m,~x)
describing that(m,~x) is reachable from initial. Thus,
the above three possibilities for reachability allow us
to formulate the following theorem:

Theorem 1. For a set of abstract statesB , a pair
(m′,B′) ∈ B and a point~z∈ B′, if (m′,~z) is reachable
and z is not an element of the box of any other abstract
state inB , then

IflB′(m
′,~z)∨

∨

(m,B)∈B
JflB,B′(m,m′,~z)

∨
∨

(m,B)∈B ,m=m′,B 6=B′
BflB,B′(m

′,~z)

where IflB′(m
′,~z), JflB,B′(m,m′,~z), and BflB,B′(m

′,~z)
denote the following three constraints, respectively:

• ∃~x∈ B′ [Init(m′,~x)∧ReachB′(m
′,~x,~z)],

• ∃~x ∈ B∃~x′ ∈ B′[ReachableB(m,~x) ∧
Jump(m,~x,m′,~x′)∧ReachB′(m

′,~x′,~z)]
• ∃~x∈B∩B′[ReachableB(m,~x)∧[∀faces F of B′[~x∈

F ⇒ inF
m′,B′(~x)]]∧ReachB′(m

′,~x,~z)].

Here, inF
m′ ,B′(~x)= ∃ẋ1, . . . ,∃ẋk[Flow(m′,~x,(ẋ1, . . . , ẋk))∧

ẋ j ≥ 0] if F is the j-th lower face of B′, and
inF

m′,B′(~x) = ∃ẋ1, . . . ,∃ẋk[Flow(m′,~x,(ẋ1, . . . , ẋk)) ∧
ẋ j ≤ 0] if F is the j-th upper face of B′.

Based on Theorem 1, if we can prove that a cer-
tain point does not fulfill the big constraint in The-
orem 1, we know that it is not reachable from the
set of initial states. However, the big constraint
is not first-order, since it uses some defined predi-
cates (e.g.,ReachableB and facesF of B′). Thus,
we need to eliminate the defined predicates by sub-
stituting the constraints implied by their definitions.
For this, we first have to fix a certain constraint for
ReachableB(m,~x).

As an over-approximation, the first and simplest
choice is to define the constraintReachableB(m,~x)
as ~x ∈ B and denote the resulting constraint by
Reachable0

B ,B′(m
′,~z). We have studied this case with

computational examples in (Ratschan and She, 2005;
Ratschan and She, 2007; Ratschan and She, 2007a;
Ratschan and She, 2006) by using apruning algo-
rithm (Ratschan, 2002) that takes a constraint, and an
abstract state(m′,B′) and returns a sub-box ofB′ that
still contains all the solutions of the constraint inB′.

By using the pruning algorithm, we can get
a new B′ by removing certain points that are
not reachable and thus do not fulfill the con-
straint Reachable0

B ,B′(m
′,~z). Since the constraint

Reachable0
B ,B′(s

′,~z) depends on all current abstract
states, a change ofB′ might allow further pruning of
other abstract states. So we can repeat pruning until a
fixpoint is reached. For a given set of abstract states
B , we denote the resulting fixpoint byPruneH (B ).
Moreover, since we do not need to consider unreach-
able parts of the state space in the abstraction, we can
do the operationB ← PruneH (B ) anywhere in Algo-
rithm 1. We do this at the beginning, and each timeB
is refined by splitting a box.

Thus, the abstraction overPruneH (B ) for H is
constructed as follows:

1. mark an abstract state(m′,B′) as initial if we can-
not disproveIflB′(m

′,~z) in Theorem 1;

2. mark an abstract state(m′,B′) as unsafe if we can-
not disprove the constraint∃~x∈ B′UnSafe(m′,~x);

3. let Trans= TransC ∪TransD , whereTransC cor-
responds to the transitions due to the continuous
flows, TransD corresponds to the the transitions
due to the discrete jumps, andTransC andTransD
are computed according to the following cases:

• m= m′ andB= B′: ((m,B),(m,B)) ∈ TransC ;

• m = m′, B 6= B′ and we cannot disprove
the constraint B f lm,B,B′ in Theorem 1:
((m,B),(m,B′)) ∈ TransC ;

• If we cannot disprove the constraint∃x ∈
B∃x′ ∈ B′JflB,B′(m,x,m′,x′) in Theorem 1:
((m,B),(m′,B′)) ∈ TransD .

The above abstraction is easily computed since the
set of abstract states is finite. Denoting the resulting
transition system byAbstractH (B ), we have that:

Theorem 2. (Ratschan and She, 2007) For a hybrid
systemH and sets of abstract statesB , containing
all elements of the state space reachable from initial,
such that all boxes corresponding to the same mode
are non-overlapping, the safety of AbstractH (B ) im-
plies the safety of the hybrid systemH .
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Based on the first choice, our second choice is to
substituteReachable0

B ,B(m,~x) for ReachableB(m,~x)
in the big constraint in Theorem 1, resulting in a con-
straintReachable1

B ,B′(m
′,~z).

Similarly, due to recursion, we have constraints
Reachablei

B ,B′(m
′,~z) with i ∈ {0, . . .}. Clearly, all

these constraints also fulfill Theorem 1.
Since Reachablei

B ,B′(m
′,~z) with i ≥ 1 is a

very large constraint, we will avoid directly dis-
proving such a constraint by computing an over-
approximation of the reach set on the boundary ofB,
arriving at the following constraint that expresses a
disjunction over all faces:

∨

F,face ofB

[

~x∈ F ∧Reachable0
B ,B(m

′,~x)
]

.

We denote it byreachboundB ,B(m′,~x), and for
each faceF of B, we denote the corresponding dis-
junct by reachboundB ,B,F(m

′,~x). Since the disjuncts
only depend on one box, we have to apply the prun-
ing algorithm only for one abstract state, and we can
store the resulting faces with that abstract state and
use such information in the constraintBflB,B′(m

′,~z).
Since these faces enclose the set of states where a
flow might leave the abstract state, we call them the
outflow-facesof the abstract state (cf., the use of faces
in the analysis of rectangular automata (Preußig et
al., 1998) and the use of faces for CEGAR based
reachable analysis in Algorithm 4 in (Klaedtke et
al., 2007)). Note that this recursive reasoning based
method with computational examples has also been
described in (Ratschan and She, 2008) and imple-
mented in (Ratschan and She, 2007a).

3.1 A Remedy for Reducing the
Wrapping Effect

We have introduced a recursive reasoning based
method for safety verification of hybrid systems
above. However, box splitting in some cases will still
lead to an worse over-approximation (Preußig et al.,
1998). This phenomenon is called as the wrapping
effect (Neumaier, 1993), which is illustrated by the
following example.

Example 4. Consider a box[0,2]× [0,2]× [0,4] and
let the initial set be FI = {0≤ x≤ 1∧y = 0∧ t = 0}
and the flow constraint beφ = {ẋ= ẏ= ṫ = 1}.

Clearly, the exact reachable set on the face is FE =
{x= 2∧y= t ∧1≤ y≤ 2}.

However, after using the recursive version the
original box, we get a box[0,2]× [0,2]× [0,2] as
the over-approximative reachable set. The over-
approximative reachable set on the face is FR,1= {x=
2∧1≤ y≤ 2∧1≤ t ≤ 2}.

Spilt [0,2]× [0,2]× [0,2] into the following four
boxes:

B1 = [0,1]× [0,1]× [0,2],B2 = [0,1]× [1,2]× [0,2],

B3 = [1,2]× [0,1]× [0,2],B4 = [1,2]× [1,2]× [0,2].

Using our recursive version again, we get the follow-
ing three boxes:

B′1 = [0,1]× [0,1]× [0,1],

B′3 = [1,2]× [0,1]× [0,2],

B′4 = [1,2]× [1,2]× [0,2].

Associated with these three boxes, we have the follow-
ing faces:

FI = {0≤ x≤ 1∧y= 0∧ t = 0};
F1 = {x= 1∧0≤ y≤ 1∧0≤ t ≤ 1);

F2 = {1≤ x≤ 2∧y= 1∧0≤ t ≤ 2);

FR,2 = {x= 2∧1≤ y≤ 2∧0≤ t ≤ 2).

Clearly, FE ⊂ FR,1⊂ FR,2.

So, we will in this subsection provide a remedy
for reducing the wrapping effect. Specifically, we im-
prove the recursive reasoning by four complements
which are described in details as follows:

1. For each abstract(m,B)∈ B , we first compute the
intervals for the corresponding components of the
derivatives of the states in(m,B). That is, we ap-
ply our pruning algorithm to the following con-
straint andRk:

∃a1, . . . ,ak
[

(a1, . . . ,ak) ∈ B
∧Flow(m,(a1, . . . ,ak),(ȧ1, . . . , ȧk))

] (2)

to obtain a box containing all the solutions on
ȧ1, . . . , ȧk satisfying the above constraint. We de-
note this resulting box bẏB. This information has
in fact been computed when we apply our pruning
algorithm to the big constraint in Theorem 1 and
(m,B). So, we just need to store this computed
information and do not need to apply our pruning
algorithm once more.

2. For each(m,B), letting Ḃ = Ḃ1 × ·· · × Ḃk =
[ȧ1, ȧ1]× ·· · × [ȧk, ȧk] in ReachB(m,~x,~y), we ar-
rive at

∃t ∈R≥0
[

∧

1≤i≤k

∃ȧi[ȧi ≤ ȧi ≤ ȧi ∧yi = xi + ȧi · t]
]

.

(3)
We denote this constraint byReach′B(m,~x,~y).
Then, we use Reach′B(m,~x,~y) instead of
ReachB(m,~x,~y) in reachboundB ,B,F(m

′,~x) to
get a new constraint, which is denoted by
reachbound′

B ,B,F(m
′,~x).
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3. For every predicate of form ~x ∈ B
in reachbound′

B ,B,F(m
′,~x), where B =

[x1,x1] × ·· · × [xk,xk], we will replace it by
∧k

i=1xi ≤ xi ≤ xi , arriving at the constraint
reachbound′′

B ,B,F(m
′,~x). Then, we use a quanti-

fier elimination method toreachbound′′
B ,B,F(m

′,~x)
to compute the reachable states on the faceF,
which will be discussed in Subsection 3.2.
Note that in this way, for every faceF, we
get the exact solutions of~x to the constraint
reachbound′

B ,B,F(m
′,~x), which describes the

reachable information on the faceF . Moreover,
note that for abstract states marked as initial
or reachable with jumps, we do not need to
recompute the exact solution set on the faces
but directly use the over-approximations instead,
which can be easily understood after termination
analysis in Section 4.

4. We use the reachable information on the faces in
the constraintBflB,B′(m

′,~z) for further computa-
tion until a fixpoint is reached.

Now, for Example 4, starting with the initial ab-
straction, after applying the above improvement, the
over-approximative reachable set on the face is com-
puted to be

FR = {x= 2∧y= t ∧1≤ y≤ 2},

which is the exact reachable setFE.
Clearly, except for the initial constraint and the

jump constraint, every arithmetic expression in the
constraintreachbound′′

B ,B,F(m
′,~x) is either a linear

equality or a linear inequality. Hence, the so-
lution set to reachbound′′

B ,B,F(m
′,~x) can be easily

computed by the quantifier elimination. Note that
we do not directly apply the quantifier elimination
to reachboundB ,B,F(m

′,~x) due to the fact that the
flow constraint used inReach′B(m,~x,~y) may be non-
polynomial.

Thus, based on the above four complements, let-
ting Abstract′

H
(B ) be the resulting system, we have

the following theorem which is similar to Theorem 2.

Theorem 3. For a hybrid systemH and sets of
abstract statesB , containing all elements of the
state space reachable from the initial set such that
all boxes corresponding to the same mode are non-
overlapping, the safety of Abstract′

H
(B ) implies the

safety of the hybrid systemH .

3.2 Quantifier Elimination

In this subsection, we will discuss how to apply the
quantifier elimination mentioned in Subsection 3.1.

We first assume thaṫB= Ḃ1× ·· ·× Ḃk is the box
obtained by applying the pruning algorithm to Con-
straint (2) andRk. Let I be the set{i : 0∈ Ḃi}. With-
out loss of generality, letI = {i1, . . . , im} and consider
the following constraint:

∃t ∈ R≥0

[

[
∧

1≤ j ≤ k

j /∈ {i1, . . ., im}

∃ȧ j [ȧ j ≤ ȧ j ≤ ȧ j ∧y j = x j + ȧ j · t]
]

∧
[

∧

j∈{i1,...,im}
∃ȧ j [ȧ j ≤ ȧ j ≤ ȧ j ∧y j = x j + ȧ j · t]

]

]

.

(4)

Clearly, t in Constraint (4) can be easily elimi-
nated. Moreover,xi andyi satisfying the constraint
are in a polyhedron defined by a combination of lin-
ear (in)equalities over~x and~y.

Specifically, this combination has

1. (k−m)(k−m−1)/2 (in)equalities of form

• ȧi/ȧ j(y j − x j) ≤ (yi − xi) ≤ ȧi/ȧ j(y j − x j), if
ȧiȧ j > 0, or

• ȧi/ȧ j(y j − x j) ≤ (yi − xi) ≤ ȧi/ȧ j(y j − x j), if
ȧiȧ j < 0,

wherei, j ∈ {1, . . . ,k} \ {i1, . . . , im}, i 6= j,

2. (k−m)m (in)equalities of form

• ȧi/ȧ j(y j − x j) ≤ (yi − xi) ≤ ȧi/ȧ j(y j − x j), if
ȧ j > 0, or

• ȧi/ȧ j(y j − x j) ≤ (yi − xi) ≤ ȧi/ȧ j(y j − x j), if
ȧ j < 0,

where j ∈ {1, . . . ,k}\{i1, . . . , im}, i ∈ {i1, . . . , im},
and

3. (k−m) (in)equalities of formyi − xi ≤ 0 or yi −
xi ≥ 0, which are determined by the signs of the
rate intervals.

If the solution set for~x is defined by a polyhe-
dron which is formulated by a combination of linear
(in)equalities over~x, the solutions set for~ywill also be
formulated by a combination of linear (in)equalities
over~y, implying that the solution set for~y is also de-
fined by a polyhedron.

4 TERMINATION ANALYSIS FOR
SAFETY VERIFICATION

In this section, we will analyze the termination of
our abstraction refinement based procedure for ro-
bustly safe hybrid systems, associated with the rem-
edy described in Subsection 3.1. Note that we here
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simply assume that the continuous behaviors evolve
according to differential equations, that is, we only
consider deterministic continuous evolutions. For the
non-deterministic cases, we can similarly handle it.

Without loss of generality, we assume that in the
flow constraint, the right side of the implication is
of form ~̇x− fm(~x) = 0, where fm is Lipschitz on
I1× ·· ·× Ik with the Lipschitz constantLm. Let L =
maxm∈M Lm. In addition, letd(B) = max~x,~x′∈Bd(~x,~x′)
andd(B ) = maxB∈B d(B). Moreover, for two setsA
andB with B⊆A, letd(A,B) = sup~x∈A inf~x′∈Bd(~x,~x′).

For every modem and boxB, let φ(m,B) be the
solution set ofφ(m,B) in R

k and Prune(φm,B,R
k) be

the result of applying our interval based pruning al-
gorithm toφ(m,B) andRk. Due to the convergence of
the interval based pruning algorithm (Ratschan, 2002;
Damm et al., 2007), we have:

Theorem 4. (Ratschan, 2002; Damm et al., 2007)
For every mode m and box B,

lim
d(B)→0

d(Prune(φ(m,B),R
k),φ(m,B)) = 0.

Assume that the system H =
(Flow,Jump, Init,UnSafe) is robustly safe, that
is, there is anε such that all its ε-perturbed
manifestationsH ε are also safe. In addition, we
assume that for each refinement step, the ab-
straction computed by our improved procedure
is Abstract′

B
(H ) = (Trans′, Init ′,UnSafe′) with

Trans′ = Trans′C∪Trans′D, whereTrans′C corresponds
to flows andTrans′D corresponds to jumps.

Due to Theorem 4, for the given constant
ε/3, there is aσ1 such that whend(B) ≤ σ1,
d(Prune(φ,(m,B)),φ(m,B)) ≤ ε/3. Letting ε1 =
min{σ1,ε/3}, we can beforehand assume thatd(B )≤
σ = min{ ε1

kL ,ε1}.
Without loss of generality, let us first assume that

the solution set ofJump(m,~x,m′,~x′) is empty.
Let Initε be the set {(m,~x) : d(~x,~x′) ≤

ε, Init(m,~x′)}. Clearly, Init ⊂ Initε. Moreover,
Initε is anε-perturbed solution set ofInit due to

1. for every~x ∈ Initε, choosingInit as φ∗ and an
~x′ such thatd(~x,~x′) ≤ ε and Init(m,~x′) as ~x∗,
d(Init,φ∗) = 0≤ ε andφ∗(m,~x∗) holds.

2. for every~x /∈ Initε, choosingInit asφ∗ and~x as~x∗,
d(Init,φ∗) = 0≤ ε, d(~x,~x∗) = 0≤ ε andInit(m,~x)
does not hold.

Similarly, letUnSafeε be the set{(m,~x) : d(~x,~x′)≤
ε,UnSafe(m,~x′)}. Then, UnSafe⊂ UnSafeε and
UnSafeε is anε-perturbed solution set ofUnSafe.

Let Flowε be the set{(m,~x,~̇x) : d((~x,~̇x),(~x′,~̇x′))≤
ε,Flow(m,~x′,~̇x′)}. Then,Flow⊂ Flowε andFlowε is
anε-perturbed solution set ofFlow.

Now, letH ε = (Initε,Flowε, /0,UnSafeε).
1 Clearly,

H ε is anε-perturbed manifestation ofH . Similarly,
we can defineH ε1 andH ε/3.

In addition, let ReachSetε1, ReachSetε/3, and
ReachSetε be the reachable set ofH ε1, H ε/3, andH ε.
Clearly,ReachSetε1 ⊆ ReachSetε/3⊆ ReachSetε.

Since we are just interested with the abstract states
that are reachable fromInit ′ instead of reachable by
possible loops (or, cycles), it is sufficient to only con-
sider the abstract states that can be reachable from
Init ′. That is, letting

RS= {(m,~x)|(m,~x) ∈ (m,B),(m,B) ∈ B ,
and(m,B) can be reachable fromInit ′},

for terminating analysis, it is sufficient to prove that
RS⊆ ReachSetε.

For proving thatRS⊆ ReachSetε, we first intro-
duce some notations as follows:

1. For each faceF ′ of (m′,B′), let SB′,F ′ be the so-
lution set ofreachout′

B ,B′,F ′(m
′,~z) in F ′ by apply-

ing the quantifier elimination method introduced
in Subsection 3.2.

2. For an arbitrary but fix state(m,~x), letB((m,~x),σ)
be the set

{(m,~z) : d((m,~z),(m,~x))≤ σ}.

3. For an arbitrary but fix set(m,S) of states , let
B((m,S),σ) be the set

{(m,~z) : ∃~x∈ S[d((m,~z),(m,~x))≤ σ]}.

Due to the definitions ofInitε andFlowε, we have
the following two lemmas.

Lemma 2. For each(m,B) ∈ Init ′, (m,B) ⊆ Initε1 ⊆
Initε.

Proof. Clearly, Initε1 ⊆ Initε. So, for each(m,B) ∈
Init ′, we only need to prove that for each(m,B) ∈
Init ′, (m,B)⊆ Initε1. For this, it is sufficient to prove
that for each(m,~x) ∈ (m,B), (m,~x) ∈ Initε1.

Since (m,B) ∈ Init′, there is a~x∗ ∈ B such that
Init(m,~x∗) holds. Moreover, since~x,~x∗ ∈ B and
d(B) ≤ ε1, we haved(~x,~x∗) ≤ ε1. Due to the defini-
tion of Initε1, we proved that for each(m,~x) ∈ (m,B),
(m,~x) ∈ Initε1.

Lemma 3. For each pair(m′,B′) ∈ B , assume that
(m′,B′) is reachable from Init′ via finite transitions in
Trans′C. Then, for each face F′ of (m′,B′), SB′,F ′ ⊆
ReachSetε if SB′,F ′ 6= /0. Moreover, B(SB′,F ′ ,σ) ⊆
ReachSetε, which implies that(m′,B′)⊆ ReachSetε.

1In H ε, due to the definition ofFlowε, the continuous
evolutions are non-deterministic.
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Proof. We will prove it by the induction method.

• Letting (m,B) ∈ Init′, we want to prove that for
each faceF of (m,B), F = SB,F ⊆ ReachSetε and
B(F,σ) ⊆ ReachSetε. According to Lemma 2,
(m,B) ⊆ Initε1 ⊆ ReachSetε, which implies that
for each faceF of (m,B), SB,F ⊆ ReachSetε and
B(F,σ)⊆ ReachSetε.

• Assume that (m,B) is reachable from
Init ′ such that for each face F of(m,B),
(m,SB,F) ⊆ ReachSetε and B(F,σ) ⊆ ReachSetε
when SB,F 6= /0. First, we want to prove that if
((m,B),(m′,B′)) ∈ Trans′C, then for each faceF ′

of (m′,B′), SB′,F ′ ⊆ ReachSetε whenSB′,F ′ 6= /0.
According to Theorem 1 and Eq. (3), ifSB′,F ′

is not empty, then for each(m,~y) ∈ SB′,F ′ , there
is a state(m,~x) ∈ SB,F such thatReachB′(m,~x,~y)
holds. That is, the following constraint holds:

∃t ∈ R≥0
[

∧

1≤i≤k

∃ȧi [ȧi ≤ ȧi ≤ ȧi ∧yi = xi + ȧi · t]
]

.

(5)
So, it is sufficient to prove that(m,~y)∈ReachSetε.
Equivalently, letting ˙xi = ȧi, it is sufficient to
prove thatd((ȧ1, . . . , ȧk), f (~y)) ≤ ε, which can
be completed by combining the following argu-
ments:
– Let Ai = inf{ȧi : ȧi = fm,i(~a),~a∈ B′} andAi =

sup{ȧi : ȧi = fm,i(~a),~a∈ B′}. Moreover, let~y∈
B′ be such thatAi = fm,i(~y) and~x∈ B′ be such
thatAi = fm,i(~x). Sincefm is Lipschitz with the
Lipschitz constantLm, d(Ai ,Ai) = ‖ fm,i(~y)−
fm,i(~x)‖ ≤ L‖y− x‖2 ≤ kLd(y,x) ≤ ε1, when
d(B′)≤ σ = min{ ε1

kL ,ε1}.
– Let Ḃ = [ȧ1, ȧ1]× ·· ·× [ȧk, ȧk] be the result of

applying our interval based pruning algorithm.
Sinced(B′)≤ σ, due to Theorem 4 and our as-

sumptions,d(ȧi, Ȧi)≤ ε/3 andd(ȧi , Ȧi)≤ ε/3.
– If ȧi ∈ [ai ,Ai ], then d(ȧi, fm,i(~y)) ≤

d(ȧi ,Ai) + d(Ai , fm,i(~y)) ≤ ε/3 + ε1;
If ȧi ∈ [Ai ,ai ], then d(ȧi, fm,i(~y)) ≤
d(ȧi ,Ai) + d(Ai , fm,i(~y)) ≤ ε/3 + ε1; And if
ȧi ∈ [Ai ,Ai ], thend(ȧi , fm,i(~y))≤ d(Ai ,Ai)≤ ε1.

Thus, due to the above arguments, we proved that
for each faceF ′of (m′,B′), SB′,F ′ ⊆ ReachSet3ε1

whenSB′,F ′ 6= /0.
Second, we want to prove thatB(SB′,F ′ ,σ) ⊆
ReachSetε. Since for every arbitrary but fix state
(m′,~y′) ∈ B(SB′,F ′ ,σ), there exists a state(m′,~y) ∈
SB′,F ′ such thatd(~y,~y′)≤ σ. According to the def-
inition of SB′,F ′ , there is a state(m,~x) ∈ SB,F such
that(m′,~y) is reachable from(m,~x) via a flow de-
termined by~̇x = ~̇a, where~̇ai , i = 1, . . .k, is the
same as the one occurs in Eq.(5). Clearly,(m′,~y′)

can be reachable from a state(m,~x+~y′−~y) via
the flow determined bẏ~x= ~̇a. SinceB(SB,F ,σ)⊆
ReachSetε,

d( fm′(~y), fm′ (~y
′))≤ kLd(~y,~y′)≤ ε1

when d(B ) ≤ σ = min{ ε1
kL ,ε1}, and thus

d(~̇a, fm′(~y
′)) ≤ d(~̇a, fm′(~y))+d( fm′(~y), fm′ (~y

′))≤
ε/3+2ε1≤ ε, implying that(m′,~y′) ∈ReachSetε.
Thus,B(SB′,F ′ ,σ)⊆ReachSetε.
Third, sinced(B ) ≤ σ, (m′,B′) ⊆ B(SB′,F ′ ,σ),
which implies that(m′,B′)⊆ReachSetε.

Thus, due to the above induction method, we com-
pleted the proof.

Now, consider the case thatJump(m,~x,m′,~x′) is
non-empty. Let

Jumpε = {((m,~x),(m′,~x′)) : d((~x,~x′),(~x∗,~x′∗))≤ ε,
Jump(m,~x∗,m′,~x′∗)}.

Clearly, Jump⊂ Jumpε. Moreover,Jumpε is an ε-
perturbed solution set ofJump. Similarly, we can de-
fineJumpε1

andJump2ε1
.

Due to the definition ofJumpε, we have the fol-
lowing lemmas.

Lemma 4. For each pair((m,B),(m′,B′)) ∈ Trans′D,
((m,B),(m′,B′)) ⊆ Jumpε1

⊆ Jumpε. Moreover,
((m,B),B((m′,B′),ε1))⊆ Jump2ε1

⊆ Jumpε.

Proof. Clearly, Jumpε1
⊆ Jump2ε1

⊆ Jumpε. For
each pair((m,B),(m′,B′)) ∈ Trans′D, we first want to
prove: for each((m,~x),(m′,~x′)) ∈ ((m,B),(m′,B′)),
((m,~x),(m′,~x′)) ∈ Jumpε1

.
Since ((m,B),(m′,B′)) ∈ Trans′D, there is a

pair (~x∗,~x′∗) ∈ (B,B′) such that the constraint
Jump(m,~x∗,m′,~x′∗) holds. Moreover, since~x,~x∗ ∈
B, ~x′,~x′∗ ∈ B′, d(B) ≤ ε1, andd(B′) ≤ ε1, we have
d(~x,~x∗) ≤ ε1 and d(~x′,~x′∗) ≤ ε1. Due to the def-
inition of Jumpε1

((m,~x),(m′,~x′)) ⊆ Jumpε1
. Thus,

((m,B),(m′,B′))⊂ Jumpε1
.

Similarly, we can prove that for each
((m,~x),(m′,~x′)) ∈ ((m,B),B((m′,B′),ε1)),
((m,~x),(m′,~x′)) ∈ Jump2ε1

. Thus,
((m,B),B((m′,B′),ε1))⊆ Jump2ε1

.

Based on Lemma 4, we can easily extend
Lemma 3 to the case that the solution set of
Jump(m,~x,m′,~x′) is not empty.

Lemma 5. For each (m′,B′) ∈ B , assume that
(m′,B′) is reachable from Init′. Then for each face
F ′ of (m′,B′), SB′,F ′ ⊆ ReachSetε when SB′,F ′ 6= /0.
Moreover, B(SB′,F ′ ,σ) ⊆ ReachSetε, implying that
(m′,B′)⊆ ReachSetε.
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Proof. Since (m′,B′) is reachable from Init ′,
there is a trajectory such that(m0,B0) ∈ Init ′,
((mi ,Bi)),(mi+1,Bi+1)) ∈ Trans′ and (mp,Bp) =
(m′,B′) for i = 0, . . . , p− 1. For proving that for
each faceF ′ of (m′,B′), SB′,F ′ ⊆ ReachSetε when
SB′,F ′ 6= /0, we proceed as follows.

• First, assume that there is a certainj such that

– ((mj ,B j)),(mj+1,B j+1)) ∈ Trans′D (or possi-
bly, ((mj ,B j)),(mj ,B j)) ∈ Trans′D), and

– for all l such that 0 ≤ l < j,
((ml ,Bl ),(ml+1,Bl+1)) ∈ Trans′C,
((ml ,Bl ),(ml ,Bl )) /∈ Trans′D and
((ml ,Bl ),(ml+1,Bl+1)) /∈ Trans′D.

By Lemma 3, SB j−1,B j−1∩B j ⊆ ReachSetε
and B(SB j−1,B j−1∩B j ,σ) ⊆ ReachSetε. Since
(mj ,B j) ⊆B(SB j−1,B j−1∩B j ,σ), (mj ,B j) ⊆
ReachSetε. From Lemma 4,

– if ((mj ,B j)),(mj+1,B j+1)) ∈ Trans′D,
then (mj+1,B j+1) ⊆ ReachSetε and also
B((mj+1,B j+1),σ)⊆ ReachSetε;

– if ((mj ,B j)),(mj ,B j)) ∈ Trans′D, also
B((mj ,B j),σ)⊆ ReachSetε.

• Second, letI be the set

{i : 0≤ i ≤ p−1,((mi,Bi),(mi+1,Bi+1) ∈ Trans′D
or ((mi ,Bi),(mi ,Bi)) ∈ Trans′D}

andq be the number of elements inI . With the as-
sumption that the elements inI arel1, . . . , lq such
that l1 ≤ ·· · ≤ lq, we divide the trajectory into
q+1 parts (i.e.,r0, r1, r2, . . . , rq) such that

– for 0≤ i ≤ l1, r0(i) = r(i).

– for each k ∈ {1,2, . . . ,q − 1}, if
((mi ,Bi),(mi ,Bi)) ∈ Trans′D, then for each
0 ≤ i ≤ lk+1 − lk, rk(i) = r(lk + i); if
((mi ,Bi),(mi+1,Bi+1)) ∈ Trans′D, then for
each 0≤ i ≤ lk+1− lk−1, rk(i) = r(lk+ i +1).

– if ((mlq,Blq),(mlq,Blq)) ∈ Trans′D, then for
each 0≤ i ≤ p− lq, rq(i) = r(lq + i); if
((mlq,Blq),(mlq+1,Blq+1)) ∈ Trans′D, then for
each 0≤ i ≤ p− lq−1, rk(i) = r(lk+ i +1).

Due to Lemma 3,r0(l0) ⊆ ReachSetε. From
Lemma 4, r1(0) ⊆ ReachSetε and (r1(0),σ) ⊆
ReachSetε. Again, based on Lemmas 3 and 4, by
using the induction method and by proceeding in
the same ways as described for proving Lemma 3
and as described in Item (1), we can obtain that for
each faceF ′ of (m′,B′), SB′,F ′ ⊆ ReachSetε and
B(SB′,F ′ ,σ)⊆ ReachSetε whenSB′,F ′ 6= /0.

Moreover, sinced(B )≤ σ, (m′,B′)⊆B(SB′,F ′ ,σ),
which implies that(m′,B′)⊆ ReachSetε.

Due to the definition ofUnSafeε and the similarity
to Lemma 2, we have the following lemma.

Lemma 6. For each (m,B) ∈ UnSafe′, (m,B) ⊆
UnSafeε1

⊆ UnSafeε.

Thus, based on Lemmas 2, 5 and 6, we reach our
main result of this paper, which is described as fol-
lows:

Theorem 5. If H ε is safe, then AbstractH (B ) with
d(B )≤ σ is also safe, which implies that the abstrac-
tion refinement procedure terminates and returns the
positive answer.

Proof. Assume thatAbstractH (B ) with d(B ) ≤ σ is
unsafe. We want to deduce a contradiction. Since
Hε is safe, Init ′ ∩ UnSafe′ = /0 when d(B ) ≤ σ.
Thus, there is a trajectory fromInit ′ to UnSafe′ such
that r(0) ∈ Init ′, and r(p) ∈ UnSafe′ and for all
i ∈ {1, . . . , p− 1}, r(i) /∈ UnSafe′. Due to Lemma
5, r(p) ⊆ ReachSetε. Due to Lemma 6,r(p) ∈
UnSafeε1

⊆UnSafeε, implying thatH ε is unsafe, con-
tradicting with the condition thatHε is safe. Thus,
we proved that ifH ε is safe, thenAbstractH (B ) with
d(B ) ≤ σ is also safe. Therefore, our abstraction re-
finement process terminates and returns the positive
answer.

From Theorem 5, we know that for a robustly safe
hybrid system, our constraint based abstraction refine-
ment procedure with our remedy will eventually ter-
minate.

5 CONCLUSIONS

Safety verification of hybrid systems is in general un-
decidable. Due to practical applications, it is suffi-
cient to only consider robustly safe hybrid systems in
which a slight perturbation is guaranteed to result in
the same desired safety property. In this paper, we
provide a constraint based abstraction refinement for
safety verification of nonlinear hybrid systems by re-
moving states that do not fulfill the reachability con-
straint. Moreover, we propose a remedy to reduce the
wrapping effect caused by our interval based abstrac-
tion refinement. Based on this remedy, we prove that
our refinement procedure will terminate for robustly
safe nonlinear hybrid systems.
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