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Abstract: Safety verification of hybrid systems is in general undecidable. Due to practical applications, it is sufficient
to only consider robustly safe hybrid systems in which a slight perturbation is guaranteed to result in the
same desired safety property. In this paper, we provide a constraint based abstraction refinement for safety
verification of nonlinear hybrid systems and prove that this refinement procedure will terminate for robustly
safe nonlinear hybrid systems.

1 INTRODUCTION tems in which a slight (quantifiable) perturbation is
guaranteed to result in the same desired qualitative
Hybrid systems (Alur et al., 1995; Schaft and Schu- properties (e.g., safety and stability).
macher, 2000; Ratschan and She, 2007) is a class of In this paper, we will provide a constraint based
dynamical systems, which in addition to the discrete approach for safety verification of continuous-time
events also contain continuous behaviors that evolvehybrid systems (Ratschan and She, 2007; Frehse,
according to differential equations or difference equa- 2008) such that the termination of our approach is
tions. Many examples of hybrid systems (Fehnker guaranteed even for a very rich class of models, which
and Ivancic, 2004) are obtained when a digital sys- involve function symbols in{+, x,", sin,cosexp}.
tem is embedded in an analog environment which, in Note that unless otherwise specified, hybrid systems
many cases, is described by physical laws that arein this paper denote continuous-time hybrid systems.
formulated using differential equations or difference Following our earlier works (Ratschan and She,
equations. Such systems usually operate in safety-2007; Ratschan and She, 2006; She and Zheng, 2008),
critical domains, for example, inside automobiles, air- we continue to use constraints for describing hybrid
crafts, and chemical plants. Thus, an important task is systems. In addition, for describing robust hybrid sys-
to verify that a given hybrid system is safe, that is, to tems, we use the solution sets to the corresponding
verify that every trajectory of a given hybrid system constraints defined for hybrid systems with small per-
starting from an initial state never reaches an unsafeturbations.
state (i.e., a so-called “bad” state). For verifying safety property of hybrid systems,
The safety verification problem of hybrid sys- we use an abstraction refinement technology. That it,
tems is in general undecidable (Henzinger et al., for a concrete hybrid system, we first split its state
1998) and terminating algorithms exist only for cer- space into boxes and then abstract it to a finite tran-
tain special cases, for example, linear hybrid au- sition system which over-approximates the concrete
tomata (Henzinger et al., 1998) and o-minimal hybrid system in a conservative way. During the refinement
automata (Lafferriere et al., 1999). procedure, we also include more information from
Since hybrid systems often model a given real sys- the concrete system into the abstract one, which is
tem in practice with perturbations, the notation of ro- done by constructing a reachability constraint, check-
bustness (Henzinger and Raskin, 2000; Franzle, 2001;ing whether a certain state fulfills this constraint and
Girard and Pappas, 2006; Damm et al., 2007; Julius etremoving states that do not fulfill this constraint by an
al., 2007) has been introduced to model the given realinterval based pruning algorithm. However, the inter-
system up to perturbations. Hence, from the practical val based abstraction refinement in some cases results
viewpoint, it is sufficient to only consider robust sys- in the wrapping effect (Neumaier, 1993), which will
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be explained in Subsection 3.1. For reducing such
a wrapping effect, we propose a quantifier elimina-
tion based remedy. That is, we first construct a con-

initial/unsafety states).
Definition 1.

straint to describe the reachable set on the boundariesl- An arithmetic expression is a term (in the

of boxes such that every free variable only occurs
once; then, we employ a special quantifier elimination
method to get the exact solution set to this constructed
constraint; finally, we use this exact solution set in the
reachability constraint for further computation.

Moreover, based on our proposed remedy, we can
prove that our abstraction refinement procedure will
eventually terminate for robustly safe hybrid systems.

Compared to the discrete time model in (Damm
et al., 2007), there are variables for describing dif-
ferentiation, which do not vary over the state space
and may take unbound values. Moreover, compared
to the counter-example guided abstraction refinement
(CEGAR) based approach (Klaedtke et al., 2007), we
avoid solving a large reachability constraint formulat-
ing states reachable via a trajectory over a finite num-
ber of abstract states (i.e., boxes).

This paper is organized as follows. In Section 2
we formulate our basic notions on hybrid systems and
robust hybrid systems. In Section 3, we introduce a
constraint based abstraction refinement for safety ver-
ification of hybrid systems, associated with a remedy
for reducing the wrapping effect in Subsection 3.1
and a special quantifier elimination method in Sub-
section 3.2. In Section 4 we analyze the termination
of our abstraction refinement procedure with our pro-
posed remedy for robustly safe hybrid systems. In
Section 5 we conclude the paper.

2 ROBUST HYBRID SYSTEMS

We fix a variablem ranging over a finite set of dis-
crete moded = {my,...,m,} and variablesy, ..., Xk
ranging over closed real intervals, ..., lx. We de-
note bySthe resulting state spawex I x --- x Iy and
let X = {xa,...,x}. For denoting the derivatives of
X1,...,X We use variablegs,..., X, ranging oveiR
each, and leX = {xi,...,%}. Moreover, for denot-
ing the targets of jumps, we use varialigsx;, ..., X
ranging oveM andly, ..., I and letX’ = {x},...,x}.
For simplicity, we sometimes use the veckto de-
notex,...,X, and(m,X) to denote a state. Similar
notations are used fot andX.

In order to describe hybrid systems we use con-
straints that are arbitrary Boolean combinations of
equalities and inequalities over terms. These con-

straints are used, on the one hand, to describe the

possible flows and jumps and, on the other hand, to

mark certain parts of the state space (e.g., the set of
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predicate-logical sense) with function symbols in
{+,x,", sin,cosexp}.

An atomic arithmetic state space constraint is of
form erc, where e is an arithmetic expressios, r
{=,<,>,<,>} is a relation operator, and c is a
real-valued constant.

A mode constraint is an expression of frore=my
orm =m, where me M.

4. A state space constraint is a Boolean combination
of forms ms— aas, where ms is a mode constraint
containing only m,— is a Boolean implication,
and aas is a Boolean combination of atomic arith-
metic state space constraints containing variables
only in X.

5. A flow constraint is a Boolean combination of
forms ms— fs, where ms is a mode constraint con-
taining only m,— is a Boolean implication, and
fs.is'a Boolean combination of atomic arithmetic
state space constraints containing variables only
in XUX.

A jump constraint is a Boolean combination of
forms js— js/, where js is a state space constraint,
— is a Boolean implication, and’j$s a Boolean
combination of mode constraints containing only
m' and atomic arithmetic state space constraints
containing variables only in X/ X',

2.

3.

6.

Definition 2. A hybrid systemover the state space

S is a tuple(Flow,JumpInit,UnSaf¢ consisting of

a flow constraint Flow describing the continuous dy-
namical evolutions, a jump constraint Jump describ-
ing the set of possible discrete jumps, a state space
constraint Init describing the set of initial states, and
a state space constraint UnSafe describing the set of
unsafe states.

For simplicity, we useFlow for describing both
the flow constraint and the subset 8fx R sat-
isfying this flow constraint.  Similar conventions
are also used fodump Init and UnSafe Thus, a
hybrid system# can also be formulated as a tu-
ple (Flow, JumpInit, UnSafe, whereFlow C Sx RX,
JumpC Sx S, Init C S andUnSafeC S.

Definition 3.
1. Aflow of length | in a mode m is a function:r
[0,1] — S such that

e (r(t),r(t)) € Flow, wherer(t) denotes the
derivative of the projection of r to its contin-
uous part, and

e forallt € [0,1], the mode of t) is m.
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For simplicity, for a flow r, we will use lgm) to
denote its length and () its mode.

2. Atrajectoryof # is a finite sequence of flowss=
ro,f,...,rp suchthat:

e len(rj) =l foralli=0,...,p,

o ifi >0, (ri—1(li—1),ri(0)) € Jump for all i=
1,...,p,

e iflj >0thenforallte [0,ki], (m(r),r(t),f(t)) €
Flow, wherer is the derivative of the projection
of r to its continuous part.

3. A hybrid systen# = (Flow,JumpInit,UnSafe

is safe if and only if, there is no trajectory
ro,...,rp of 2 such that §(0) is in Init and rp(l)
is in UnSafe, where | is the length gf.r

The semantics of a hybrid system is a tran-
sition system with an uncountable set of states.
Formally, the semantics of a hybrid system =
(Flow,JumpInit,UnSafe is a transition system
M () = (S, Snit, StepsSSunsaid WhereS=M x 11 x
-+ X Iy, Snit = {s€ S: ssatisfiednit}, Synsate= {SE
S: ssatisfiedUnSafé, and Stepsis defined as the
union of two transition relationSteps and Steps,,
whereSteps C Sx Scorresponds to transitions due
to continuous flows and is defined by:

e ((MX),(m,x)) € Steps, if there exists a trajec-
tory o = rq (i.e., a flowrg) such thatm(rg) = m,
ro(0) = X andr(len(ro)) = X,

andSteps, C Sx Scorresponds to transitions due to
discrete jumps and is defined by:

o ((MX),(nf,x)) € Steps, if ((MX),(nf,x)) €
Jump
It is well-known that checking whether a hybrid

system is safe is an undecidable problem (Henzinger

et al., 1998). However, in practice we are not inter-

ested with a hybrid system whose safety changes un-
der small perturbations. Hence, it is sufficient to have
an algorithm that can prove safety for systems whose

safety does not change under small perturbations.
In order to introduce the notation of perturbations,

e o, if @andq@ have a different Boolean structure
or do not have mode constraints at the same
place, and

e the maximum of the distances between two cor-
responding atomic (arithmetic or mode) con-
straint, otherwise.

Now, after denoting the distance between two vec-
torsX and¥ to be

—|x— — R
d®X) = X=Xl = max|x —x].

based on Definition 4, we can define the notion of an
g-perturbed solution set as follows.

Definition 5. A set P is are-perturbed solution set of
a constraintpif and only if

1. for everyX € P, there is a constraintpg* with
d(@, ¢") < € and anx* with d(X,X*) < € such that
@ (X*) holds.

2. for everyX ¢ P, there is a constraintp* with
d(@.¢") < € and anx* with d(X,X") < € such that
@" (X*) does not hold.

Example 1. Consider the constrairg defined by x=
0. Clearly, {x: x= 0} is ane-perturbed solution set
due to the following:

1. for x=0, choosingpas@‘ and x as X, d(@,¢*) =
0< &, d(x,x*) =0< ¢, and@*(x*) holds.

2. for any x# 0, choosingg as ¢* and x as X,
d(g.¢*) =0<¢, d(x,x") =0< g, andg’(x*) does
not hold.

Moreover, P= {x: x = €} with € > 0 is also ane-

perturbed solution set due to:

1. for x=¢, choosing x=€/2 as@* and X = ¢/2,
d(@.¢") =¢/2 <&, d(x,X") =€/2 < g, and@(X*)
holds.

2. for any x# €, choosing x=¢/2 as¢@* and X =
X—¢€/2, d(g,@") = €/2 < &, d(x,X*) = €/2 <&,
and@*(x*) does not hold.

O

Example 2. Consider another constraigtdefined by
x? < 0. Clearly, its solution set is empty arfdis an

we first define a distance measure on constraints ase-perturbed solution set af. Moveover, P= {(x: 3% <

follows.
Definition 4.

1. The distance between two atomic arithmetic
constraints erc and ‘e’c is defined by
d(e,r,c,e(,r’,c’) = 00, if e ?é e orr 7é r/,
and|c—c/|, otherwise.

. The distance between two mode constraints m
my and m= my is o if my # mp andO, otherwise.

. The distance between two constraiptand ¢ is
defined by @, @) =

€} is also ane-perturbed solution set af due to:

1. for every xc P, choosing X< € as¢* and ¥ =
min{e + x,v/¢€}, d(g,¢*) = ¢, d(x,x*) < ¢, and
@ (x*) holds.

2. for every x such that x /g, choosing % < € as
@ and X = x+¢, d(@,¢") =¢, d(x,x*) = ¢, and
@ (x*) does not hold.

3. for every x such thatx —/g, choosing X < € as
@ and X =x—¢,d(@,¢") =¢, d(x,x*) = ¢, and
@ (x*) does not hold. O
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Definition 5 is extended for hybrid systems with
small perturbations as follows.

Definiton 6. A  hybrid
(Flowg, Jump, Initg, UnSafe) is an €
perturbed manifestation of a hybrid system
H (Flow,JumpInit,UnSaf¢ if and only if
Flowg, Jump, Init and UnSafg are e-perturbed
solution sets of Flow, Jump, Init and UnSafe,
respectively.

Definition 6 allows us to define robustness of a

system 9 =

hybrid system with the same desired safety property

as follows.
Definiton 7. A hybrid system # =
(Flow,JumpInit,UnSafe is robustly safe if

and only if there exists a constant > 0
such that all its e-perturbed manifestations
#He = (Flowg, Jump, Inite, UnSafe) are safe.

Example 3. Consider the hybrid systeny =
(Flow, JumpInit,UnSafe, where Flow isx= 0, Jump
is 0, Init is x= 0, and UnSafe is x 1. Clearly, this
hybrid systen¥ is safe. However/' = (x=¢,0,x=
0,x = 1) with € > 0 is an e-perturbed manifestation
of # but not safe, implying that H is not robustly
safe. O

3 CONSTRAINT BASED
ABSTRACTION REFINEMENT

In this section we describe a constraint based algo-

rithm for safety verification of hybrid systems based

on the abstraction refinement technology. That is, we
abstract a hybrid system to a finite transition system
(theabstractior) which is defined to be:

Definition 8. Atransition systenover a finite sek is
atuple (Trans, Init, Unsafe) where Trags> x ¥ and
Init C %, UnsafeC >. We call the sek thestate space
of the system.

In contrast to Definition 2, here the state space is
a parameter. This will allow us to add/remove states
to the state space during abstraction refinement.

Definition 9. A trajectory of a transition system
(Trans Init,UnSafg over a setX is a function r:
{0,...,p} — o such that for all te {1,...,p}, (r(t—
1),r(t)) € Trans. The system &afeif and only if there

is no trajectory from an element of Init, to an element
of Unsafe.

When we use abstraction to analyze hybrid sys-

safe. If the current abstraction is not yet safe, we re-
fine the abstraction, that is, we include more informa-
tion about the concrete system into it. This results in
Algorithm 1.

Algorithm 1: Abstraction Refinement.

Input:  a hybrid systen¥ described by constraints
Output: “safe”, if the algorithm terminates
let A be an abstraction of the hybrid system
while Ais not safedo
refine the abstractioA
end while

In order to implement this algorithm, we need
to fix the state space of the abstract system. Here
we use pairdm,B), wherem is one of the modes
{my,...,my} andB is a hyper-rectanglebpy), rep-
resenting subsets of the concrete state sjzac€o-
gether with an abstract state, we store the infor-
mation whether it is initial or unsafe and the in-
formation from which other states it is reachable.
We call such information thenarks of the state.
For the initial abstraction we use the state space
{(m,{X] (m,X) € S})|1<i<n}, where all states
are marked as initial, and unsafe, and all transitions
between states are possible.

For refining the abstraction, we split a box into
two pieces, replace one abstract state by two, and in-
clude more information from the concrete system into
the abstract one by removing unreachable elements
from the boxes, removing superfluous marks from the
new abstract states, and removing unreachable states
from the abstraction.

To remove unreachable elements from the boxes
representing the abstraction, we use a constraint that
formalizes when an element of the concrete state
space might be reachable, and then remove elements
that do not fulfill this constraint. In order to do this,
for a boxB = [xq,X1] X -+ X [X, %], we let its j-th
lower face bexy,X1] x -+ x [Xj,Xj] x -+ X [, %] and
its j-th upper face béx;,X1| x --- x [Xj,Xj] x --- X
[, X. Note that two boxes in the same mode are
non-overlappingdf their interiors are disjoint.

Observe that a pointin a bdis reachable only if
it is reachable either from the initial set via a flow in
B, from a jump via a flow irB, or from a neighboring
box via a flow inB. So we can formulate constraints
corresponding to each of these conditions and then re-
move points from boxes that do not fulfill at least one
of these constraints. For this, we first give a constraint
describing flows within boxes as follows, which has

tems, the abstraction should over-approximate the been described in (Ratschan and She, 2006).

concrete system in a conservative way: if the abstrac-

tion is safe, then the original system should also be
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Lemma 1. For a box BC R and a mode m, if there is
aflow in B and m from a poirk= (xg,...,x)" €Bto
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a pointy = (yi,...,yk)" € B such that for every point As an over-approximation, the first and simplest
u on the flow with its derivativé, (m,U,U) satisfies ~ choice is to define the constraiReachablg(m,X)
the flow constraint Floym, X, X), then as X € B%and denote the resulting constraint by
Reachabl® . (n7,Z). We have studied this case with
€ Rof flowg(t, X.Y)l, (1) computatioyr?al examplesin (Ratschan and She, 2005;
where flovi(t,X,y) denotes Ratschan and She, 2007; Ratschan and She, 2007a;
Ratschan and She, 2006) by usingraining algo-
/\ Jai,...,aa1,...,&(a1,...,a) €B rithm (Ratschan, 2002) that takes a constraint, and an
1<i<k abstract statém’,B’) and returns a sub-box & that
AFlow(m, (ay,...,a), (a1,...,&)) AYi =X +&-t] still contains all the solutions of the constraintBh

) By using the pruning algorithm we can get

We ~denote the above constraint . by 5 new B' by removing certain points that are
Reacl(mX,y). ~Notice that in Lemma 1, the ot reachable and thus do not fulfill the con-
state(m,y) is assumed to be reachable fram,Xx) straint Reachabl@ o, (m,2).  Since the constraint

via a flow in B. However, the information on the
state (m.%) is missing, which in fact requires to Reachabl%yB,(s',Z) depends on all current abstract

be reachable via a trajectory starting from initial. States, a change & might allow further pruning of
Without loss of generality, we can beforehand assume Other abstract states. So we can repeat pruning until a
that we already have a constraReachablg(m,X) fixpoint is reached. For a given set of abstract states
describing thatm,X) is reachable from initial. Thus, - 5, We denote the resulting fixpoint Byrune, ().

the above three possibilities for reachability allow us Moreover, since we do not need to consider unreach-
to formulate the following theorem: able parts of the state space in the abstraction, we can

do the operatiom <- Prune, (3 ) anywhere in Algo-
rithm 1. We do this at the beginning, and each time
is refined by splitting a box.

Thus, the abstraction ovétrune, () for # is
constructed as follows:

Theorem 1. For a set of abstract states, a pair
(m,B’) € 3 and a poinZ € B, if (m',Z) is reachable
and z is not an element of the box of any other abstract
state in3, then

ifig(m,2)v \/ Iflgg(mn.2) 1. mark an abstract state7,B’) as initial if we can-
(MB)es not disproveflg (n,2) in Theorem 1;
v V Bflg g (n,2) 2. mark an abstract statev, B') as unsafe if we can-
(mB)es,m=n,B7#B' not disprove the constraik € B'UnSafén’, X);
where Ifly(m,2), Iflgg(m,nm',2), and Bf g (mM,2) 3. let Trans= Trans- UTrans,, whereTrans- cor-
denote the following three constraints, respectively: responds to the transitions due to the continuous
e 3X e B'[Init(n,X) A Reachy (M, %,2)], flows, Trans, corresponds to the the transitions
e3% € BIX ¢ B|Reachablgm®) A due to the dlscretejur_nps, aidans- an_dTransD
Jumpm,%,n,%') A Reacky (n, %, 2)] are computed according to the following cases:
e X< BnB'[Reachablg(m,X) A[vfaces F of BX ¢ e m=m andB=B" ((mB),(mB)) € Trans- ;
F = inf, g (¥)]] AReacky (M, 2)]. e m=ni, B+# B and we cannot disprove

. . . . . the constraint Bfl,gg in Theorem 1:
Here, wﬁw, (X) = 3xq,..., Ix[Flow(m', X, (Xq,. .., %)) A (m.B), (M. B)) € Trang..

.XjFZ o it F i.S the j._th lower fac_e of B and e If we cannot disprove the constrainix €
Ny gy (X) = 3, I[Flow(m, X, G, .. %)) A BIX € BJflyg(mx,m,x) in Theorem 1:
Xj < 0] if F is the j-th upper face of B (m,B), (nY,B’y)) € Trans, .

Based on Theorem 1, if we can prove that a cer-
tain point does not fulfill the big constraint in The-
orem 1, we know that it is not reachable from the
set of initial states. However, the big constraint
is not first-order, since it uses some defined predi- Theorem 2. (Ratschan and She, 2007) For a hybrid
cates (e.g.Reachablg and facesF of B'). Thus, systemy and sets of abstract states, containing
we need to eliminate the defined predicates by sub-all elements of the state space reachable from initial,
stituting the constraints implied by their definitions. such that all boxes corresponding to the same mode
For this, we first have to fix a certain constraint for are non-overlapping, the safety of Abstracs) im-
Reachablg(m,X). plies the safety of the hybrid system

The above abstraction is easily computed since the
set of abstract states is finite. Denoting the resulting
transition system bybstract, (%), we have that:
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Based on the first choice, our second choice is to
substituteReachabl® ;(m,X) for Reachablg(m,X)
in the big constraint in Theorem 1, resulting in a con-
straintReachablg g, (1, 2).

Similarly, due to recursion, we have constraints BS =[1,2] x

Reachablg (m,2) with i € {0,...}. Clearly, all
these constraints also fulfill Theorem 1.

Since Reachablg,B, (m,2) with i > 1 is a
very large constraint, we will avoid directly dis-
proving such a constraint by computing an over-
approximation of the reach set on the boundariof
arriving at the following constraint that expresses a
disjunction over all faces:

\/  [xeFAReachabl g(n.%)].
F face ofB

We denote it byreachboung g(n',X), and for
each faceF of B, we denote the corresponding dis-
junct by reachboung g ¢ (M, X). Since the disjuncts
only depend on one box, we have to apply the prun-
ing algorithm only for one abstract state, and we can
store the resulting faces with that abstract state and
use such information in the constraigflg g (n,2).

Spilt [0,2] x [0,2] x [0,2] into the following four
boxes:
=1[0,1] x [0,1] x [0,2],B2=[0,1] x [1,2] x [0,2],
[Oa 1] X [07 2]a84: [17 2] X [1a 2] X [07 2]

Using our recursive version again, we get the follow-
ing three boxes:

7 =10,1] x [0,1] x [0,1],
B;=[1,2] x[0,1] x [0,2],
B, — [1,2] x [1,2] x [0,2].

Associated with these three boxes, we have the follow-
ing faces:

F={0<x<1Aay=0At=0};
F1={Xx=1A0<y<1A0<t<1);
Fo={1<x<2Ay=1A0<t<2);
Fro={X=2A1<y<2A0<t<2).

Clearly, e C Fr1 C Fr2. U
So, we will in this subsection provide a remedy

Since these faces enclose the set of states where dor reducing the wrapping effect. Specifically, we im-
flow might leave the abstract state, we call them the prove the recursive reasoning by four complements
outflow-face®f the abstract state (cf., the use of faces which are described in details as follows:

in the analysis of rectangular automata (Preuf3ig et
al., 1998) and the use of faces for CEGAR based
reachable analysis in Algorithm 4 in (Klaedtke et
al., 2007)). Note that this recursive reasoning based
method with computational examples has also been
described in (Ratschan and She, 2008) and imple-
mented in (Ratschan and She, 2007a).

3.1 A Remedy for Reducing the
Wrapping Effect

We have introduced a recursive reasoning based
method for safety verification of hybrid systems
above. However, box splitting in some cases will still
lead to an worse over-approximation (Preuf3ig et al.,
1998). This phenomenon is called as the wrapping
effect (Neumaier, 1993), which is illustrated by the
following example.

Example 4. Consider a box0,2] x [0,2] x [0,4] and

let the initial set be F= {0 <x<1Ay=0At =0}

and the flow constraintbg= {x=y=1 = 1}.

Clearly, the exact reachable set on the faceds+
{Xx=2Ay=tA1<y<2}.

However, after using the recursive version the
original box, we get a boX0,2] x [0,2] x [0,2] as
the over-approximative reachable set. The over-
approximative reachable set on the facegs = {x=
2A1<y<2A1<t<2}.

256

1. For each abstra¢m, B) € 3, we first compute the
intervals for the corresponding components of the
derivatives of the states im,B). That is, we ap-
ply our pruning algorithm to the following con-
straint andR:

Eala"'aak[(ala"'vak)eB. )
AFlow(m, (@1.....a). (a....&))]

to obtain a box containing all the solutions on
ai, ..., a satisfying the above constraint. We de-
note this resulting box bB. This information has

in fact been computed when we apply our pruning
algorithm to the big constraint in Theorem 1 and
(m,B). So, we just need to store this computed
information and do not need to apply our pruning
algorithm once more.

(@)

2. For each(m,B), letting B = By x --- x By =
[a1,a1] x -+ X [&,a&] in Reacl(m,X,y), we ar-
rive at

dteRso[ A\ JFala<a<any =x-+a-t]].

1<i<k

3)
We denote this constraint bfReack(m,X,y).
Then, we use Reacl(mXy) instead of
Reacls(m,X,y) in reachbound gr(m,X) to
get a new constraint, which is denoted by
reachbounf] g ¢ (M, X).
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3. For every predicate of formX € B
in  reachbound g ¢ (n,X), ~ where B
X1, X1] x -+ X [X, %], we will replace it by
ANix < % < X, arriving at the constraint
reachbounf{ g (N, X). Then, we use a quanti-
fier elimination method teeachboun{] g (M, X)

to compute the reachable states on the fece
which will be discussed in Subsection 3.2.
Note that in this way, for every fac&, we
get the exact solutions of to the constraint
reachbounf g - (M,X), which describes the
reachable information on the faée Moreover,
note that for abstract states marked as initial
or reachable with jumps, we do not need to
recompute the exact solution set on the faces
but directly use the over-approximations instead,
which can be easily understood after termination
analysis in Section 4.

. We use the reachable information on the faces in
the constrainBflg g (n,2) for further computa-
tion until a fixpoint is reached.

Now, for Example 4, starting with the initial ab-
straction, after applying the above improvement, the
over-approximative reachable set on the face is com-
puted to be

Fr={x=2Ay=tA1<y<2},

which is the exact reachable $&t

Clearly, except for the initial constraint and the
jump constraint, every arithmetic expression in the
constraintreachbounngyF(rrY,X) is either a linear
equality or a linear inequality. Hence, the so-
lution set to reachbounf] ; - (n,X) can be easily
computed by the quantifier elimination. Note that
we do not directly apply the quantifier elimination
to reachboung g (m,X) due to the fact that the
flow constraint used ifReacly(m,%,y) may be non-
polynomial.

Thus, based on the above four complements, let-
ting Abstract (#) be the resulting system, we have
the following theorem which is similar to Theorem 2.

Theorem 3. For a hybrid system# and sets of
abstract statess, containing all elements of the
state space reachable from the initial set such that
all boxes corresponding to the same mode are non-
overlapping, the safety of Abstrgats) implies the
safety of the hybrid system.

3.2 Quantifier Elimination

In this subsection, we will discuss how to apply the
guantifier elimination mentioned in Subsection 3.1.

We first assume thd = By x --- x By is the box
obtained by applying the pruning algorithm to Con-
straint (2) andRX. Let| be the se{i: 0 < B;}. With-
out loss of generality, Idt={i1,...,im} and consider
the following constraint:

3t eRzo[

A

1<j<k
i ¢ {in,...im}

A

je{iim}

Jaj[a) <& <A AY) =) +4;-t]]

4[4 < &) <AjAY) =Xj+4;]]

(4)
Clearly, t in Constraint (4) can be easily elimi-
nated. Moreoveng andy; satisfying the constraint
are in a polyhedron defined by a combination of lin-
ear (in)equalities ovet andy.
Specifically, this combination has

1. (k—m)(k—m—1)/2 (in)equalities of form
o &/8j(y; — X)) < (Y =) < &/aj(y;—xp), if
&aj >0, or
o &/aj(y; =xj) < (vi —x) < &/aj(y; —x;), if
éua,- <0,

wherei, j € {1,....K}\ {it,....im}i # |,

2. (k—m)m (in)equalities of form
o ai/aj(y; —x) < (vi —x) < &/aj(y; —x), if
a; >0, or
o &/8j(yj —x) < (i —x) < &/dj(yj — ), if
aj <0,

wherej € {1,... .k} \ {i1,...,im},i €{i1,...,im},
and

(k—m) (in)equalities of formy; —x; < 0 ory; —

X > 0, which are determined by the signs of the
rate intervals.

If the solution set forX is defined by a polyhe-
dron which is formulated by a combination of linear
(in)equalities over, the solutions set fofwill also be
formulated by a combination of linear (in)equalities
overy, implying that the solution set fofis also de-
fined by a polyhedron.

3.

4 TERMINATION ANALYSIS FOR
SAFETY VERIFICATION

In this section, we will analyze the termination of

our abstraction refinement based procedure for ro-
bustly safe hybrid systems, associated with the rem-
edy described in Subsection 3.1. Note that we here
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simply assume that the continuous behaviors evolve  Now, lets; = (Initg, Flowg, 0, UnSafe).! Clearly,

according to differential equations, that is, we only #; is ane-perturbed manifestation of . Similarly,

consider deterministic continuous evolutions. For the we can definetg, and# 3.

non-deterministic cases, we can similarly handle it. In addition, let ReachSef, ReachSegfs, and
Without loss of generality, we assume that in the ReachSetbe the reachable set ofg, , He /3, and#e.

flow constraint, the right side of the implication is Clearly,ReachSef C ReachSe; C ReachSet

of form X — fm(X) = O, where fy, is Lipschitz on Since we are just interested with the abstract states

l1 x -+ x I with the Lipschitz constarity. LetL = that are reachable frommit’ instead of reachable by

MaXmem Lm. In addition, letd(B) = max x g d(X,X') possible loops (or, cycles), it is sufficient to only con-

andd(8) = maxgc, d(B). Moreover, for two seté  sider the abstract states that can be reachable from

andBwith BC A, letd(A,B) = sugainfyegd(X,X).
For every modem and boxB, let ¢(m,B) be the
solution set ofgmp) in R and Prunggns,R¥) be
the result of applying our interval based pruning al-
gorithm to@mpg, andRK. Due to the convergence of

Init’. That s, letting
RS= {(mvx”(mvx) € (mv B)a (ma B) € B,
and(m,B) can be reachable fromit'},

the interval based pruning algorithm (Ratschan, 2002; for terminating analysis, it is sufficient to prove that

Damm et al., 2007), we have:

Theorem 4. (Ratschan, 2002; Damm et al.,
For every mode m and box B,

(Prunq(p(m,B)ka)a (p(mv B)) =0.

2007)

lim d
d(B)—0
Assume that the system # =
(Flow,JumpInit,UnSafe is robustly safe, that
is, there is ane such that all itse-perturbed

manifestations#; are also safe. In addition, we
assume that for each refinement step,

is Abstract (/) = (Trans,Init’,UnSafé) with
Trans = Trang U Trang,, whereTrang. corresponds
to flows andTrang, corresponds to jumps.

Due to Theorem 4, for the given constant
€/3, there is ao; such that whend(B) < oy,
d(Prung@,(m,B)),@(m,B)) < €/3. Letting &1 =
min{o1,€/3}, we can beforehand assume tlgs ) <
o =min{g,e1}.

I
Without loss of generality, let us first assume that

the solution set odumgm, X, m’,X') is empty.

Let Init be the set {(mX) : d(X,X) <
g Init(mX)}.  Clearly, Init C Inite.  Moreover,
Initg is ane-perturbed solution set dhit due to

1. for everyX € Initg, choosinglnit as @ and an
X such thatd(X,X) < € and Init(m,X) as X',
d(Init,@*) = 0 < e andg*(m,X*) holds.

2. foreveryX ¢ Initg, choosingnit as@* andx asx",
d(Init,@*) =0<¢, d(X,X") = 0 < e andInit(m,X)
does not hold.

Similarly, letUnSafe be the sef(m,X) : d(X,X) <
g,UnSafém,X')}. Then, UnSafecC UnSafe and
UnSafe is ane-perturbed solution set dInSafe

Let Flow be the sef(m,%,X) : d((X,X), (¥, X)) <
g,Flow(m,X,X)}. Then,Flow C Flowe andFlow is
ane-perturbed solution set ¢flow.
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the ab-
straction computed by our improved procedure

RSC ReachSet
For proving thatRSC ReachSet we first intro-
duce some notations as follows:

1. For each fac&’ of (m,B'), let Sz ' be the so-
lution set ofreachout, g ¢ (M, 2) in F’ by apply-
ing the quantifier elimination method introduced
in Subsection 3.2.

2. For an arbitrary but fix staten, X), letB((m,X), 0)
be the set

{(m2):d((m2),(mx)) < o}.

3. For an arbitrary but fix sefm, S) of states , let
B((m,S),0) be the set

{(m2):3Xe Sd((m,2),(m,X)) < a]}.

Due to the definitions dfnite andFlowg, we have
the following two lemmas.

Lemma 2. For each(m,B) € Init’, (m,B) C Initg, C
nite.

Proof. Clearly, Initg, C Inite. So, for eachim,B) €
Init’, we only need to prove that for ea¢m,B)
Init’, (m,B) C Inite,. For this, it is sufficient to prove
that for eacm,X) € (m,B), (m,X) € Inite,.

Since (m,B) € Init’, there is ax* € B such that
Init(m,X*) holds. Moreover, sinc& X" € B and
d(B) < &1, we haved(X,X*) < €1. Due to the defini-
tion of Inite,, we proved that for eactm,X) € (m,B),
(m,X) € Inite,. O

Lemma 3. For each pair(n',B’) € 8, assume that
(m',B') is reachable from Inftvia finite transitions in
Trang.. Then, for each face 'Fof (m,B'), Sy ¢/ C
ReachSetif Sgr # 0. Moreover, BSg r/,0) C
ReachSef which implies thatn',B’) C ReachSet

lIn 24, due to the definition oflowe, the continuous
evolutions are non-deterministic.
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Proof. We will prove it by the induction method.

e Letting (m,B) € Init’, we want to prove that for
each facé= of (m,B), F = Sgr C ReachSetand
B(F,0) C ReachSet According to Lemma 2,
(m,B) C Initg; € ReachSet which implies that
for each face= of (m,B), Sgr C ReachSetand
B(F,0) C ReachSet

e Assume that (mB) is reachable from
Init" such that for each face F ofm,B),
(m SgF) C ReachSetand B(F,0) C ReachSet
whenSgr # 0. First, we want to prove that if
((m,B),(m,B')) € Trang., then for each facé’
of (m,B'), Sy C ReachSetwhenSy g/ # 0.
According to Theorem 1 and Eq. (3), 8 ¢/
is not empty, then for eacfm,y) € Sz ¢/, there
is a state(m,X) € Sgr such thatReacky (m,X,y)
holds. That is, the following constraint holds:

JteRso[ A Jala<a<aAy=x-+a-t]

1<i<k
(5)

So, itis sufficient to prove thdn, y) € ReachSet

Equivalently, lettingx; = &, it is sufficient to

prove thatd((as,...,a), f(¥)) < €, which can

be completed by combining the following argu-

ments:

— LetA =inf{& : & = fnj(d),d€ B’} andA =
sup(a : & = fmi(d),a< B'}. Moreover, le§f
B’ be such tha#j = f,;(Y) andX € B be such
thatA = fmi(X). Sincefy, is Lipschitz with the
Lipschitz constantm, d(A,A) = || fmi(¥) —
fmi (X)]| < L|ly — X||2 < KLd(y,x) < €&, when
d(B') <o =min{g, &1}

— Let B = [&,&)] x --- x [&, &/ be the result of
applying our interval based pruning algorithm.
Sinced(B') < g, due to Theorem 4 and our as-

sumptionsd (&, A) < £/3 andd (&, A)) < &/3.

-If & € [a,A], then d(&, fmi(y) <
d@,A) + dA fmi(Y) < €3 + e
If & € [A,&], then d(&,fmi(y) <

d(&,A) + d(A, fmi(Y)) < /3 +€1; And if
& € [AL A, thend (&, fmi(Y)) < d(ALA) <&1.

Thus, due to the above arguments, we proved that

for each facer'of (m,B'), Sy rr € ReachSet,
WhenSg/’F/ 7é 0.

Second, we want to prove th&(Syr/,0) C
ReachSet Since for every arbitrary but fix state
(m,¥) € B(Sg ¢/, 0), there exists a staten,y) €
Sy such that(y,y') < 0. According to the def-
inition of Sy ¢/, there is a statém,X) € Sgr such
that(nm,y) is reachable fronim,X) via a flow de-
termined byX = &, whered, i = 1,...k is the
same as the one occurs in Eq.(5). Cledy, )

can be reachable from a stat®, X+ y — V) via
the flow determined by = &. SinceB(Sgr,0) C
ReachSet

d(fo (), fwr (V) < KLA(Y,Y) < &1
when d(8) < ¢ = min{g,e}, and thus
d(@, f (V) < d(@, fw (¥)) + d(fr (), fw (V) <
€/3+ 2g1 < g, implying that(n',¥) € ReachSet
Thus,B(Sy r/,0) C ReachSet
Third, sinced(s) < g, (m,B’) C B(Sg/r/,0),
which implies thain',B") C ReachSet

Thus, due to the above induction method, we com-
pleted the proof. O

Now, consider the case thatmgm,X,n7,X) is
non-empty. Let

Jump = {((m,X), (m,X)) : d((X,X), (X", X*)) <k,
Jumgm, X", m’,X*)}.

Clearly, JumpC Jump. Moreover,Jump is ane-
perturbed solution set dump Similarly, we can de-
fine Jump, andJump, .

Due to the definition ofump, we have the fol-
lowing lemmas.

Lemma 4. For each pair((m,B), (n7,B')) € Trang,,
((mB),(m,B’)) € Jump, C Jump. Moreover,
((mv B)a B((mv B/),Sl)) C Jum&sl C ‘]umg

Proof. Clearly, Jump, C Jump,, C Jump. For
each pair((m,B), (m,B')) € Trang,, we first want to
prove: for each((m,X),(nm,X)) € ((m,B),(m,B')),
(M%), (M, %)) € Jump, .

Since ((m,B),(m,B')) € Trang,, there is a
pair (X*,X*) € (B,B') such that the constraint
Jumpgm, x*, M, X*) holds. Moreover, sinc& x* €
B, X,X* € B/, d(B) < g1, andd(B') < &1, we have
d(X,x*) < & andd(X,X*) < €. Due to the def-
inition of Jump, ((m,X), (M,X)) € Jump,. Thus,
((m,B),(m,B)) C Jump, .

Similarly, we can prove that for each
((mvx)v(maxl)) € ((ma B)vB((maB,)a£l>>'
(MX),(M,X)) € Jumpg,. Thus,
((mv B)a B((mv B/),Sl)) C Jum&sl' U

Based on Lemma 4, we can easily extend
Lemma 3 to the case that the solution set of
Jumpgm, X, m',X') is not empty.

Lemma 5. For each (m,B) € 3, assume that
(m',B') is reachable from Init Then for each face
F’ of (m,B'), Sy e € ReachSgtwhen $ g/ # 0.
Moreover, BSy r/,0) C ReachSet implying that
(m',B") C ReachSet
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Proof. Since (m,B’) is

the

reachable from Init’,
re is a trajectory such thatmg,Bp) € Init/,

((maBi))a(m+1aBi+l)) € Trans and (mpop) =

(mf

,B) fori =0,...,p—1. For proving that for

each faceF’ of (m,B'), Sy p C ReachSetwhen
Sy # 0, we proceed as follows.

First, assume that there is a certgisuch that

— ((mj,Bj)),(mMj+1,Bj41)) € Trang, (or possi-
bly, ((m;,Bj)),(mj,Bj)) € Trang,), and

—for all | such that 0< | < |,
((m,B), (M1,Bi41)) € Trang.,
(m,B),(m,B)) ¢ Trang and

(M, By), (M41,B111)) ¢ Trang,.
By Lemma 31 S-:’j,l,Bj,lﬂBj - REaChS@t

and B(SijlijlmBj,o) C ReachSet Since
(mj,Bj)  CB(Ss;4.8; 18;,0),  (M;,Bj) C
ReachSet From Lemma 4,

=if  ((mj,Bj)),(Mj+1,Bj11)) € Trang,

then (mj,1,Bj;1) € ReachSet and also
B((mMj+1,Bj+1),0) C ReachSet

— it ((m;,By)),(m;,B;)) € Trang,
B((m;j,Bj),0) C ReachSet

Second, let be the set

{i:0<i<p-1,((m,Bi),(m1,Bi11) € Trang,
or (m,Bj),(m,B;)) € Trang, }

andq be the number of elementslinWith the as-

sumption that the elements irarely,...,lq such

thatly < --- <lg, we divide the trajectory into
g+ 1 parts (i.erg,r1,ro,...,rq) such that

— for0<i <lq,ro(i) =r(i).

—for each k e {1,2,...,9 — 1}, if
((m,Bi),(m,Bj)) € Trang,, then for each
0 <i < g1 — Iy I’k(i) = r(lx + i); if
((my,Bi),(m+1,Bi+1)) € Trang,, then for
each O<i <l 1 —lk—1,rc(i) =r(lk+i+1).

—if ((my,By,),(my,By,)) € Trang,, then for
each 0< i < p—lq, rq(i) = r(lqg+1i); if
(Mg, Big), (My41,Bigr1)) € Trang,, then for
each0<i < p—Ilqg—1,r(i) =r(lk+i+1).

Due to Lemma 3,ro(lg) € ReachSet From

Lemma 4,r1(0) C ReachSetand (r1(0),0) C

also

ReachSet Again, based on Lemmas 3 and 4, by
using the induction method and by proceeding in
the same ways as described for proving Lemma 3
and as described in Iltem (1), we can obtain that for

each faceF’ of (nf,B’), Sy r C ReachSetand
B(Sy r/,0) € ReachSetwhenSg g/ # 0.

Moreover, sincel(3) < g, (m,B") C B(Sg ¢/, 0),

which implies tha{n',B") C ReachSet O
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Due to the definition onSafg and the similarity
to Lemma 2, we have the following lemma.

Lemma 6. For each (mB) € UnSafé (m,B) C
UnSafg C UnSafe.

Thus, based on Lemmas 2, 5 and 6, we reach our
main result of this paper, which is described as fol-
lows:

Theorem 5. If 7 is safe, then Abstragt(s) with
d(8) < ois also safe, which implies that the abstrac-
tion refinement procedure terminates and returns the
positive answer.

Proof. Assume thafAbstract, (3) with d(3) < ois
unsafe. We want to deduce a contradiction. Since
He is safe, Init"n UnSafé = 0 when d(3) < o.
Thus, there is a trajectory fromit’ to UnSafé such
that r(0) € Init’, and r(p) € UnSafé and for all
ie{l,...,p—1}, r(i) ¢ UnSafé Due to Lemma

5, r(p) € ReachSet Due to Lemma 6,r(p) €
UnSaf(g1 C UnSafe, implying that#z is unsafe, con-
tradicting with the condition tha, is safe. Thus,
we proved that if#; is safe, therAbstract, (3 ) with
d(B) < ois also safe. Therefore, our abstraction re-
finement process terminates and returns the positive
answer. O

From Theorem 5, we know that for a robustly safe
hybrid system, our constraint based abstraction refine-
ment procedure with our remedy will eventually ter-
minate.

5 CONCLUSIONS

Safety verification of hybrid systems is in general un-
decidable. Due to practical applications, it is suffi-
cient to only consider robustly safe hybrid systems in
which a slight perturbation is guaranteed to result in
the same desired safety property. In this paper, we
provide a constraint based abstraction refinement for
safety verification of nonlinear hybrid systems by re-
moving states that do not fulfill the reachability con-
straint. Moreover, we propose a remedy to reduce the
wrapping effect caused by our interval based abstrac-
tion refinement. Based on this remedy, we prove that
our refinement procedure will terminate for robustly
safe nonlinear hybrid systems.
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